Date of Completion
12-11-2013
Embargo Period
12-11-2013
Major Advisor
William E. Mustain
Associate Advisor
Brain Willis
Associate Advisor
Yu Lei
Associate Advisor
Jeffrey McCutcheon
Associate Advisor
Ugur Pasaogullari
Field of Study
Chemical Engineering
Degree
Doctor of Philosophy
Open Access
Campus Access
Abstract
The electrochemical energy conversion devices, fuel cell, have received considerable attention over the past few decades because of their potential to provide high efficiency power since electrochemical processes are not limited by traditional Carnot or Rankine heat cycles. The oxygen reduction reaction (ORR) is an important electrochemical process that is active in low-temperature fuel cells. However, it is also the performance-limiting reaction, since it shows overpotential nearing 300 mV. Thus, currently, the most critical challenge is to discover low cost, stable, high activity catalysts for ORR. Nowadays, the most effective catalysts for ORR are still Pt group metals.
The catalyst support material is one of the most critical components of any electrochemical system. First, they allow for fine dispersion and stabilization of small clusters of electrochemically active noble metals. The resulting small particle size allows access to a much larger number of catalytic sites than the corresponding bulk metal, which is critical for electrochemical applications where current scales linearly with the number of sites. Second, interaction between the catalyst and support can have a significant influence on the catalyst electronic structure. The influence of the catalyst support will be amplified as catalyst dispersion is increased and particle size decreased.
In this study, three materials, tungsten carbide (WC), tungsten oxide (WO3) and tin-doped indium oxide (ITO) are chosen as the support materials, nanosized Pt clusters are deposited on the surfaces of these supports. The activity and stability of these platinum supported electrocatalysts for ORR have been evaluated by the physical characterization and electrochemical experiments, and the objective is to find out: 1) the intrinsic electrocatalytic activity of Pt clusters can be enhanced by tailoring the metal-support interaction between Pt and the catalyst support material; 2) strong interaction between nanosized Pt clusters and the support material can reduce Pt cluster agglomeration.
Recommended Citation
Liu, Ying, "The Influence of Non-Carbon Support Materials on the Activity and Stability of the Platinum Supported Electrocatalysts" (2013). Doctoral Dissertations. 274.
https://digitalcommons.lib.uconn.edu/dissertations/274