Title
Preosteocytes/Osteocytes Have the Potential to Dedifferentiate Becoming a Source of Osteoblasts
Document Type
Article
Disciplines
Life Sciences | Medicine and Health Sciences
Abstract
Presently there is no clear evidence for the ability of mature osteogenic lineage cells to dedifferentiate. In order to identify and trace mature osteogenic lineage cells, we have utilized transgenic mouse models in which the dentin matrix protein 1 (Dmp1) promoter drives expression of GFP (active marker) or Cre recombinase (historic label) in preosteocytes/osteocytes. In long bone chip outgrowth cultures, in which cells on the bone surface were enzymatically removed, cells with previous activity of the Dmp1 promoter migrated onto plastic and down-regulated Dmp1-GFP expression. Dmp1Cre-labeled cells from these cultures had the potential to re-differentiate into the osteogenic lineage, while the negative population showed evidence of adipogenesis. We observed numerous Dmp1Cre-labeled osteoblasts on the surface of bone chips following their in vivo transplantation. Our data indicate that cells embedded in bone matrix are motile, and once given access to the extra bony milieu will migrate out of their lacunae. This population of cells is phenotypically and functionally heterogeneous in vitro. Once the preosteocytes/osteocytes leave lacunae, they can dedifferentiate, potentially providing an additional source of functional osteoblasts.
Recommended Citation
Torreggiani, Elena; Matthews, Brya G.; Pejda, Slavica; Matic, Igor; Grcevic, Danka; Horowitz, Mark C.; and Kalajzic, Ivo, "Preosteocytes/Osteocytes Have the Potential to Dedifferentiate Becoming a Source of Osteoblasts" (2013). UCHC Articles - Research. 204.
https://digitalcommons.lib.uconn.edu/uchcres_articles/204
Comments
Originally published : PLoS One. 2013 Sep 6;8(9):e75204. doi: 10.1371/journal.pone.0075204.
- PMID:
24040401[PubMed - in process]- PMCID:
- PMC3765403
Free PMC Article