Date of Completion
9-23-2014
Embargo Period
9-21-2015
Advisors
Mohammed H. Tehranipoor, Domenic Forte
Field of Study
Electrical Engineering
Degree
Master of Science
Open Access
Campus Access
Abstract
In this thesis, a ZnO/Zn1-xMgxO based quantum cascade laser (QCL) is proposed as a candidate for generation of THz radiation at room temperature. The effect of spontaneous and piezoelectric polarizations are used to investigate THz generation. In addition, we compare absorption coefficient, optical gain, optical output power and WPE of GaN/InxGa1-xN, GaN/AlxGa1-xN and ZnO/Zn1-xMgxO quantum structures calculated using an envelope function framework. The modification of the band energies due to polarization and its effect on the generated THz radiation is explored. The structural and material properties, field dependence of the THz lasing frequency, and generated power are reported for a resonant phonon ZnO/Zn0.95Mg0.05O QCL emitting at 5.27 THz. The theoretical results are compared with those from GaN/InxGa1-xN and GaN/AlxGa1-xN QCLs of similar geometry. Higher calculated optical output powers [PZnMgO = 2.89 mW (nonpolar) at 5.27 THz, 2.75 mW (polar) at 4.93 THz] are obtained with the ZnO/Zn0.95Mg0.05O structure as compared to GaN/Al0.05Ga0.95N QCLs [PAlGaN= 2.37 mW (nonpolar) at 4.67 THz and 2.29 mW (polar) at 4.52 THz]. Furthermore, a higher WPE is obtained for ZnO/ZnMgO QCLs [24.61% (nonpolar) and 23.12% (polar)] when compared to GaN/AlGaN structures [14.11% (nonpolar) and 13.87% (polar)]. These results show that ZnO/ZnMgO material is optimally suited for THz QCLs.
Recommended Citation
Chou, HungChi, "Zinc & Nitride based QCL: A High Power Room Temperature Terahertz Source" (2014). Master's Theses. 669.
https://digitalcommons.lib.uconn.edu/gs_theses/669
Major Advisor
A.F. Mehdi Anwar