Date of Completion

5-10-2020

Embargo Period

4-16-2020

Advisors

Dr. Jeongho Kim, Dianyun Zhang, Jiong Tang

Field of Study

Mechanical Engineering

Degree

Master of Science

Open Access

Open Access

Abstract

A coupled thermal-mechanical finite element analysis is performed in order to simulate orthogonal cutting of normalized steels. The Johnson-Cook cook material and damage parameters are utilized to define the behavior and failure of the material. Four cases are simulated with workpiece materials of A2024-T351, AISI 1045, AISI 4140, and AISI 9310. The numerical results include the average cutting force, residual stresses and strains, chip morphology, and tool temperature. These results are summarized for each of the four cases and validated with experimental results found in literature. This study looks at optimizing the Johnson-Cook damage parameter D2 for steel materials in order to reduce model instabilities, and produce more accurate chip morphology. To better understand the influence certain input parameters have on output results within the finite element models, correlation analysis is performed for the AISI 9310 material. The outcomes of this correlation analysis both provide new data, as well as support the influence the Johnson-Cook damage parameter D2 has on the chip morphology. The results of this study indicate that the developed models have a high level of accuracy as the numerical predictions show agreement with observations collected in experiments carried out in open literature

Major Advisor

Dr. Jeongho Kim

Share

COinS