Date of Completion

4-23-2019

Embargo Period

4-23-2019

Advisors

Jeongho Kim, Michael Accorsi, Wei Zhang

Field of Study

Civil Engineering

Degree

Master of Science

Open Access

Open Access

Abstract

Finite element analysis (FEA) has become an increasingly popular tool used by researchers and professionals for comparing experimental data to theoretically expected values. Its use can prove to be an invaluable resource when analyzing or designing a system by giving the user the ability to understand the process being modeled at a much deeper level. However, finite element analysis it is still prone to generating inaccurate results if not used properly. When simulating certain physical processes, such as those found during manufacturing, the obtained results are sometimes prone to error when compared with their experimentally obtained counterparts.

The present work concentrates on exploring the various methods available for improving the accuracy of FEA for manufacturing processes. Specifically, the methods of improvement are explored as applied to laser-induced bending for a thin metal sheet. A series of sequentially-coupled thermomechanical analyses have been created for the laser bending process and the results have been improved upon through multiple analysis configurations. Through this approach, numerous finite element models have been created in order to study the effects of incorporating different element technologies available within current FEA commercial software. An improved model has been created and is discussed in detail for its better performance. Additionally, many model configurations for the same laser forming analysis are presented that do not show superior performance. They are included to investigate why certain modeling configurations do not yield accurate results.

Major Advisor

Jeongho Kim

Share

COinS