Date of Completion

5-5-2018

Embargo Period

5-2-2018

Advisors

Matthew Solomito, PhD; Kristin Morgan, PhD; David Giblin, PhD

Field of Study

Biomedical Engineering

Degree

Master of Science

Open Access

Open Access

Abstract

This work presents the creation, validation, and utility of a new full body biomechanical model to describe the golf swing. The model used 47 retroreflective markers to capture swing data with a 12-camera Vicon MX motion capture system. Motion data was collected at 250Hz, the data was processed, and a 17 segment custom biomechanical model was constructed in Visual3D (c-motion, Derwood, MD). Data from 10 subjects was collected. The swing was divided by 4 event times—Address, Peak Backswing, Impact, and Follow Through—at which the kinematics of the swing were analyzed. Validation results indicated excellent agreement between expected joint angles and joint angles calculated by the Visual3D model (R = 0.999). Kinematic results indicated that X-Factor at Peak Backswing = -43 ± 5°, Lead Shoulder Adduction at Peak Backswing = 76 ± 14°, and Lead Knee Flexion at Impact = 10 ± 9°. Additionally, Trunk Rotation at Address was found to be positively associated with ball carry and clubhead progression at Impact (p = 0.0497 and p = 0.0209, respectively), X-Factor at Peak Backswing and Impact were found to be positively associated with clubhead speed at Impact (p = 0.0028 and p = 0.0013, respectively), and Lead Shoulder Adduction at Peak Backswing and Impact were found to be positively associated with clubhead speed at Impact (p = 0.0093 and p = 0.0459, respectively). The groundwork has been laid for future studies concerning the golf swing. Performance enhancement and injury prevention remain long-term goals.

Major Advisor

Matthew Solomito, PhD

Share

COinS