"Neural networks with Fourier plane nonlinear filtering for pattern rec" by Jian Li

Neural networks with Fourier plane nonlinear filtering for pattern recognition

Date of Completion

January 1996

Keywords

Engineering, Electronics and Electrical|Artificial Intelligence

Degree

Ph.D.

Abstract

We propose using Fourier plane nonlinear filtering to construct a two-layer neural network for pattern recognition. Nonlinear filtering techniques are used between the input layer and the first layer. We show that nonlinear filtering forms a locally closed convex region in the pattern space, which can be easily used to approximate any complex region. We show that a two-layer network with nonlinear filters can be used to form complex regions for complicated pattern recognition problems. This two-layer network has the following advantages: the size of the network is comparatively small; the training is always convergent; and the network does not necessarily need the information from the other classes to form the decision region.^ Phase encoding of the reference pattern for the Fourier plane nonlinear filtering is analyzed. We show that phase encoded nonlinear filtering can be used to construct a two-layer network for pattern recognition. The advantage of using phase encoding is its security.^ Composite images can be formed from the training images. When the composite images are used as the connecting weights, the hidden units can be reduced. We construct a two-layer network using nonlinear filters with composite images for face recognition. ^

Share

COinS