Finite element modeling of dental restoration through multi-material laser densification

Date of Completion

January 2005

Keywords

Engineering, Metallurgy|Engineering, Materials Science

Degree

Ph.D.

Abstract

To provide guidance for intelligent selection of various parameters in the Multi-Material Laser Densification (MMLD) process for dental restorations, finite element modeling (FEM) has been carried out to investigate the MMLD process. These modeling investigations include the thermal analysis of the nominal surface temperature that should be adopted during experiments in order to achieve the desired microstructure; the effects of the volume shrinkage due to transformation from a powder compact to dense liquid on the temperature distribution and the size of the transformation zone; the evolution of transient temperature, transient stresses, residual stresses and distortions; and the effects of laser processing conditions, such as fabrication sequences, laser scanning patterns, component sizes, preheating temperatures, laser scanning rates, initial porosities, and thicknesses of each powder layer, on the final quality of the component fabricated via the MMLD process. ^ The simulation results are compared with the experiments. It is found that the predicted temperature distribution matches the experiments very well. The nominal surface temperature applied on the dental porcelain body should be below 1273 K to prevent the forming of the un-desired microstructure (i.e., a leucite-free glassy phase). The simplified models that do not include the volume shrinkage effect provide good estimations of the temperature field and the size of the laser-densified body, although the shape of the laser-densified body predicted is different from that obtained in the experiment. It is also fount that warping and residual thermal stresses of the laser-densified component are more sensitive to the chamber preheating temperature and the thickness of each powder layer than to the laser scanning rate and the initial porosity of the powder layer. The major mechanism responsible for these phenomena is identified to be related to the change of the temperature gradient induced by these laser processing parameters. The simulation result indicates that the size of the part to be processed has strong influence on the laser-processed part. The out-of-plane distortion of a layer processed by a moving laser beam can be minimized with a proper selection of the laser scanning pattern. The distortion is mainly caused by transient thermal stresses rather than residual thermal stresses. ^

Share

COinS