Date of Completion
6-12-2014
Embargo Period
6-10-2014
Keywords
Aerogels, Transparent Conducting Oxide, Dye-Sensitized Solar Cells
Major Advisor
Alexander G. Agrios
Co-Major Advisor
Timothy Vadas
Associate Advisor
Ali Gokirmak
Associate Advisor
Steven L. Suib
Associate Advisor
Brian Willis
Field of Study
Environmental Engineering
Degree
Doctor of Philosophy
Open Access
Open Access
Abstract
Aerogels are attractive structures due to their high surface area, high porosity and particle interconnectivity, which are desirable properties for many device applications. They can be made by a facile sol-gel synthesis from low-cost metal salts to produce monolithic gels. These are dried supercritically to avoid the collapse of the structure that occurs with surface tension at the liquid-gas interface. SnO2 is a n-type, wide bandgap semiconductor. Doped SnO2 materials can exhibit transparency throughout the visible range of the solar spectrum and low electrical resistivity. They are commonly used as transparent conducting electrodes (TCEs) for a wide array of applications including solar cell fabrication. Here, doped-SnO2 aerogels are synthesized as bulk and thin film monoliths, the latter serving as porous electron collectors in dye-sensitized solar cells (DSCs). This thesis is an in-depth study of the effects of dopants, namely fluorine and antimony, in the properties of SnO2 aerogels. First, the use of fluorine and antimony is investigated to understand the effect of these dopants on the physical and optoelectronic properties of the SnO2 materials. Doped aerogels are then used as thin films and coated with conformal layers of TiO2 to fabricate DSCs. Solar cell characterization, including performance analysis and electron kinetics in the device, is conducted to understand the advantages of this system compared to the traditional TiO2 DSCs.
Recommended Citation
Correa Baena, Juan Pablo, "Doped-Tin Oxide Aerogels in Dye-Sensitized Solar Cells" (2014). Doctoral Dissertations. 477.
https://digitalcommons.lib.uconn.edu/dissertations/477