Date of Completion
1-5-2020
Embargo Period
1-4-2021
Keywords
DNA damage, Mutagenesis, DNA repair, Translesion synthesis, DNA replication, DNA-protein crosslink, tandem lesion
Major Advisor
Dr. Ashis K. Basu
Associate Advisor
Dr. Jing Zhao
Associate Advisor
Dr. Mark Peczuh
Field of Study
Chemistry
Degree
Doctor of Philosophy
Open Access
Open Access
Abstract
DNA harbors the genetic information in all living organisms and plays a pivotal role in passing the genetic information to the next generation. All living cells are exposed to numerous exogenous and endogenous agents that damage the DNA to form different lesions or adducts in DNA. Fortuitously, diverse DNA repair mechanisms exist in the living cells, which repair these DNA adducts before the replication apparatus of the cell copies the DNA. However, frequently extensive DNA damage or slow repair may allow replication bypass of a DNA lesion. As a result, cells adapt a DNA damage tolerance mechanism, termed as translesion synthesis (TLS) to bypass the lesions in DNA. Often, the TLS polymerases are of low fidelity and result in the misincorporation of the nucleobases generating mutations. If these mutations persist in the DNA, it may lead to alteration of genetic code and protein expression, thereby resulting in various diseases including cancer.
In this thesis, I investigated the mutagenicity and genotoxicity of three different adducts including a bulky DNA-peptide cross-link, a tandem lesion containing 2-deoxyribonolactone with thymine glycol and oxidative stress induced formamidopyrimidine dG (Fapy.dG) in human embryonic kidney (HEK293T) cells. My goal is to investigate the role of each of the TLS polymerases (pol ๐ถ, pol ๐น, pol ๐ธ, pol ๐ต), by replicating these lesions in selective polymerase-deficient human cell lines and determine the types and frequencies of mutations. From these analyses, it was discovered that these adducts are bypassed by TLS mechanism in both error-prone and error-free manner by the action of the specific TLS polymerases. From these studies, it was evident that the replicative bypass depends of the structure, DNA sequence context, and the orientation of the lesion in DNA. This research provides an insight to better understand the mutagenicity and toxicity of these lesions in human cells, which should benefit gene therapy applications in the future.
Recommended Citation
Naldiga, Spandana, "Replicative Bypass of a DNA-peptide Cross-link and Oxidative Single and Tandem DNA lesions in Human cells" (2020). Doctoral Dissertations. 2396.
https://digitalcommons.lib.uconn.edu/dissertations/2396