Date of Completion
4-9-2019
Embargo Period
4-10-2020
Keywords
workload; sleep; sports science; gps; analytics; injury prediction; machine learning; multi-level modeling; mediation; moderation
Major Advisor
Douglas Casa
Associate Advisor
Craig Denegar
Associate Advisor
Lindsey Lepley
Associate Advisor
Robert Huggins
Associate Advisor
John Wilson and Tania Huedo-Medina
Field of Study
Kinesiology
Degree
Doctor of Philosophy
Open Access
Open Access
Abstract
The purpose of this work was to 1) examine injury risk, rates and physical and psychological wellbeing; 2) identify risk factors for injury; 3) investigate mechanistic pathways for changes in perceived fatigue and 4) investigate the ability of supervised machine learning techniques to predict injury in women and men’s student-athletes competing in national collegiate athletics association (NCAA) division I soccer. Injuries, workload, psychological well-being, sleep characteristics and physical activity disablement was longitudinally assessed for 256 athletes from 12 separate NCAA division I teams. Absolute injury risk and injury rates were calculated. Multi-level models were used to 1) assess differences in sleep and wellness inventories 2) identify injury risk factors, and 3) investigate causal pathways (moderators and mediators) of perceived fatigue. Supervised learning techniques were used to predict subsequent injury and area under the receiver operator characteristics curve (AUC) was used to evaluate model performance. Women’s collegiate soccer players experienced 2.05 (95%CI 1.20-3.51, p
Recommended Citation
Curtis, Ryan M., "Establishing an Injury Determinant Framework in NCAA Division I Soccer" (2019). Doctoral Dissertations. 2121.
https://digitalcommons.lib.uconn.edu/dissertations/2121