Date of Completion
8-23-2018
Embargo Period
2-19-2019
Keywords
gait analysis, gait pattern recognition, biometrics
Major Advisor
Song Han
Associate Advisor
Wenlong Zhang
Associate Advisor
Jinbo Bi
Field of Study
Computer Science and Engineering
Degree
Doctor of Philosophy
Open Access
Open Access
Abstract
Small or large deviations present in someone's gait patterns could be attributed to either their unique muscular-skeletal structure or possible neurological disorders, such as Parkinson’s Disease (PD) or stroke. With the rapid development of wearable technologies, it is now possible to quantitatively measure such deviations. In this thesis we develop an algorithmic framework that identifies the deviations caused from neurological disorders, that can have applications in gait physical therapy, or from unique individual behavior, which can have applications in behavioral biometrics. First, to objectively extract gait phases, an infinite Gaussian mixture model is presented to classify different gait phases, and a parallel particle filter is designed to estimate and update the model parameters in real-time. To objectively classify gait disorders caused by PD and stroke diseases and to facilitate gait physical therapy, an advanced machine learning method, multi-task learning, is used to jointly train classification models of a subject's gait. The proposed method significantly improves the performance when compared to the baseline solutions and is able to identify parameters that can be used to distinguish between the gait abnormalities and help therapists provide targeted treatment in clinics. Finally, we present a new approach for identifying unique gait patterns, and provide gait-based biometric authentication. For sensing, we use wearable shoes or socks capable of recording acceleration and ground contact forces. The proposed approach relies on multimodal learning, with a neural network of bimodal-deep auto-encoders, and outperforms existing state of art solutions.
Recommended Citation
Papavasileiou, Ioannis, "An Algorithmic Framework For Gait Analysis and Gait-Based Biometric Authentication" (2018). Doctoral Dissertations. 1925.
https://digitalcommons.lib.uconn.edu/dissertations/1925