Date of Completion
7-31-2013
Embargo Period
7-26-2018
Keywords
tuning, resonance, frequency, perturbation
Major Advisor
Kazem Kazerounian
Co-Major Advisor
Kevin Murphy
Associate Advisor
Eric Jordan
Associate Advisor
Horea Ilies
Field of Study
Mechanical Engineering
Degree
Doctor of Philosophy
Open Access
Campus Access
Abstract
In multi-stage engine design, it is difficult – or impossible – to design a rotating component free of resonance. But it is imperative to tune the interfered frequencies outside of the engine operating speed range, in order to avoid high cycle fatigue. This dissertation develops a methodology for accomplishing this design task.
The first part of the work presents an approach for tuning of a single natural frequency of a turbine blade subjected to excitation generated by unsteady pressure in the operating speed range. Structural perturbations are performed in a way that only the eigenvalue of choice changes significantly, while producing only small disturbances to the other natural frequencies that lie outside of the operating speed range. This design technique is referred to as the Guided Tuning of Turbine Blades method (GTTB).
The second part of the work presents an approach on the tuning two adjacent excited frequencies of a bladed-disc such as an impeller which has two sets of blades of different chord lengths, namely long and splitter blades. Two solutions are presented. The first one involves the reduction of the inter-blade coupling through stiffening the disc structure followed by individual blade tuning. The second solution is based upon the eigenvalue veering or non-coalescent property of the asymmetric cyclic sector of the structure.
Validated through test measurements, this work indicates that a 5% to 10% shift of the eigenvalues is achievable in order to avoid resonance as normally encountered in engineering practice.
Recommended Citation
Duong, Loc Quang, "An Approach on Tuning Frequency of a Rotating Blade" (2013). Doctoral Dissertations. 151.
https://digitalcommons.lib.uconn.edu/dissertations/151