Consider a nonparametric regression model Y=mu*(X) + e, where the explanatory variables X are endogenous and e satisfies the conditional moment restriction E[e|W]=0 w.p.1 for instrumental variables W. It is well known that in these models the structural parameter mu* is 'ill-posed' in the sense that the function mapping the data to mu* is not continuous. In this paper, we derive the efficiency bounds for estimating linear functionals E[p(X)mu*(X)] and int_{supp(X)}p(x)mu*(x)dx, where p is a known weight function and supp(X) the support of X, without assuming mu* to be well-posed or even identified.