Date of Completion


Embargo Period



Graphene, Nanocomposites, Sol-gel Chemistry, Anionic Polymerization, Hybrid Organic-Inorganic Materials

Major Advisor

Dr. Douglas Adamson

Associate Advisor

Dr. Richard Parnas

Associate Advisor

Dr. Mu-Ping Nieh

Associate Advisor

Dr. Kelly Burke

Associate Advisor

Dr. Thomas Seery

Field of Study

Polymer Science


Doctor of Philosophy

Open Access

Open Access


Templating is a commercially viable process to achieve materials with reproducible morphology ranging from the nano-scale to the macro-scale. Templating techniques can be broken down into two broad categories based on their design strategy. The two design strategies are ether sacrificial templates or reusable templates. Sacrificial templates are consumed or unrecoverable. As a result, a new template has to be made and used with every production run and must be inexpensive to keep manufacturing costs reasonable. A reusable template requires that the template be durable and easily removed from the material afterward without damaging the structure that was just templated.

This dissertation highlights the use of templating, self-assembly, and hierarchical design to make unique ceramic and polymeric based composites with graphene. The materials produced have a wide range of properties and applications. Sol-gel chemistry was used in unique ways to produce hybrid organic-inorganic materials that mimicked the catalytic performance of the protein silicatein α. The catalytically active polymer was processed via spincoating or electrospinning and used as a template to fabricate ceramic films and fibers. Graphene was used to stabilize oil and water emulsions. The emulsions templated the formation of conductive composite foam materials with percolating networks of graphene. The emulsions could be made with the sol-gel precursor TEOS, to make silica-based composite, or with olefins such as butyl acrylate and styrene, to make polymeric composites with different physical properties.

Available for download on Tuesday, January 21, 2025