A study of high repetition rate pulse generation and all-optical add/drop multiplexing

Date of Completion

January 2002


Physics, Optics




Ultra high-speed optical time-division-multiplexed (OTDM) transmission technologies are essential for the construction of ultra high-speed all-optical networks needed in the information era. In this Ph. D thesis dissertation, essential mechanisms associated with ultra high speed OTDM transmission systems, such as, high speed ultra short pulse generation, all optical demultiplexing and all optical add/drop multiplexing, have been studied. Both experimental demonstrations and numerical simulations have been performed. ^ In order to realize high-speed optical TDM systems, high repetition rate, ultra short pulses are needed. A rational harmonic mode-locked ring fiber laser has been used to produce ultrashort pulses, the pulse jitter will be eliminated using a Phase-Locked-Loop (PLL), and the self-pulsation has been suppressed using a semiconductor optical amplifier (SOA). ^ Sub pico-second pulses are very important for all optical sampling in the ultrahigh-speed OTDM transmission system. In this thesis, a two stage compression scheme utilizing the nonlinearity and dispersion of the optical fibers has been constructed and used to compress the gain switched DFB laser pulses. Also a nonlinear optical loop mirror has been constructed to suppress the wings associated with nonlinear compression. Pedestal free, transform-limited pulses with pulse widths in range of 0.2 to 0.4 ps have been generated. ^ LiNbO3 modulators play a very important role in fiber optical communication systems. In this thesis, LiNbO3 modulators have been used to perform high repetition rate pulse generation, all optical demultiplexing and all optical add/drop for the TDM transmission system. ^