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Abstract: 

Cell culture is an extensively used technique for studying the behavior and growth of cells in 

response to different conditions. Examining the effect of temperature variation on cells helps in 

understanding the characteristics of cancer cells and may help in developing therapeutic 

procedures. To study the effect of this variation, we propose to use a microenvironment with a 

programmable temperature gradient. Microfluidics based cell culture devices offer advantage of 

providing a controlled environment, effectively.  

The study focuses on creating a microfluidic cell culture device with a controlled temperature 

gradient. The device consists of two components– a microchannel (18mm×6mm) that holds the 

cell suspended in culture media and integrated multiple temperature sensors that detect the 

temperature in the microchannel. Soft lithography of Polydimethylsiloxane was used to fabricate 

the microchannel. The chromium temperature sensor, which is essentially a resistive pattern, was 

designed and fabricated using UV lithography technique. To measure the local temperature in a 

controlled gradient, integrated sensors are placed across the channel. These sensors give a 

measurement of the temperature inside the channel on the cold and hot regions. In order to provide 

this gradient, a custom built hotplate was devised which creates a difference of about 3˚ C across 

the width (6mm) of the channel.  

First, the designed sensors were calibrated and a linear relation between temperature and voltage 

was found. The device was evaluated by monitoring the temperature gradient across the channel 

for 6 hours. Cell compatibility of MCF-7 breast cancer cells was tested in the fabricated device 

with the set conditions and it can be used for in vitro experiments that last for hours. 
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Chapter 1 

Introduction 

1.1 Cell culture 

Cell culture is a major tool that is being extensively used in biological sciences [1]. Cell culture 

allows to explore the characteristics of cells in vitro. One of the major advantages of cell culture 

lies in its simplicity to study a single type of cell in a controlled microenvironment as compared to 

studying a whole organ or body which comprises of different cell types [2]. Further, it allows to 

manipulate the physical, chemical and physiological conditions in which the cells survive [2]. This 

helps researchers study the effect of these conditions on cells. Cell culture enables to better 

understand the behavior of cells in response to different conditions [2].   

Cell culture has many applications and it has had an enormous impact on human health. The ability 

to grow cells outside of their natural microenvironment primarily helps in understanding various 

cell functions such as proliferation, viability, adhesion and effect of drugs [2]. In addition, cell 

culture studies help in drug discovery and pharmacological applications, cancer research, genetics 

and gene therapy [3]. It also augments studies related to nutrition and aging [4]. Although, cell 

behavior and characteristics can be studied in vivo, it is difficult to quantitate and control these 

experiments [4]. Therefore experimental systems that can offer reproducibility and allows to 

quantitate the effects are required.  

One of the areas where cell culture techniques have had a major impact is cancer research. 

Examining the effect of temperature on cancer cells helps in understanding the characteristics of 

cancer cells and may help in developing therapeutic procedures. An example of a therapy 

procedure which can be used to treat cancer is hyperthermia. 
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1.2 Hyperthermia – therapy procedure for cancer 

Based on cell culture studies, hyperthermia – a therapy procedure that can kill cancer cells, has 

been developed [5]. In hyperthermia, the body tissue is exposed to temperature as high as 45˚C to 

destroy the cancer cells [5]. More often, this procedure is used in combination with other therapies 

like radiation and chemotherapy [5]. Hyperthermia causes the cancer cells to become more sensitive 

to these forms of treatment. It is also known to increase the effect of anticancer drugs on cancer 

cells [5]. Takahahshi et.al, studied the effect of hyperthermia in combination with radiotherapy 

and/or chemotherapy and stated in their research that anticancer drugs together with hyperthermia 

had an enhanced effect in treatment of cancer [6]. Hyperthermia is known to destroy cancer cells 

with least possible effect on normal cells [7]. Hyperthermia has been found to increase the drug 

diffusivity into the cancer cells by modifying local tumor environment [6] [8]. It can be used as a 

modality for drugs to target the tumor [8]. Hyperthermia increases tumor blood flow and allows 

better tumor microvascular permeability [9]. However, there are a few issues with respect to 

equipment and procedure that need to be overcome before hyperthermia can be considered a 

standard technique for cancer treatment [9].  

1.3 Temperature variation studies and their significance: 

Small variations in temperature can cause differences in cell behavior and individual protein 

activity, as in the study by Das et.al. In general, thermal effects are common occurrences in 

diseases and are also used in many therapy procedures [10]. It is also well known that thermal 

gradients exist within the human body as these are important for certain cellular functions [10]. The 

temperature of a cancerous tissue is slightly elevated as compared to a surrounding non-cancerous 

tissue [10]. Das et.al, proved in their study that cell viability is low in temperatures higher than the 

normal body temperature. In temperatures lower than the normal body temperature, the cell density 
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was low, but no significant effect of the thermal gradient was found [10]. In order to explore further 

the effects of temperature gradient on cancer cells, there exists a need to develop microsystems 

that efficiently provide a natural microenvironment for the cells and provide variations in 

temperature. 

Apart from cancer cell analysis, temperature gradient studies are also important in other areas. For 

instance, Lucchetta et.al, studied the effect of temperature gradient on Drosophila embryo 

development. It was shown in their work that the embryo on the warmer side of the designed 

PDMS microfluidic device developed rapidly relative to the cooler side [11]. 

Conventional cell culture techniques using polystyrene dishes, flasks or well plates involved large 

fluid volumes that prevent rapid changes in the conditions, manually involved cell manipulation 

and low accuracy of cell analysis [12]. Other limitations of the conventional cell culture techniques 

are that the device architecture is fixed, the culture surface is rigid and perfusion gradients are 

difficult to achieve [13]. Also, it is difficult to carry out studies that involve temperature gradients 

using the conventional cell culture techniques [15].   

1.4 Microfluidic cell culture devices 

Microfluidic cell culture provides techniques to culture and maintain cells within a controlled 

environment in micro-scale volume of reagents [12]. Additionally, microfluidic devices offer 

flexible device architecture, experimental flexibility and control and the ability to perform 

perfusion culture [12] [13]. Understanding the network between the requirements for cell culture and 

the conditions provided by microfluidic devices will further the technology of microfluidic cell 

culture [14]. 
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Microfluidic technology has emerged as a potential tool to create and manipulate cellular 

microenvironment, which can provide greater insight to cellular physiology leading to new 

discoveries. One of the contributors to the field of microfluidics is microelectronics [20]. The 

original technique of microfluidics was Photolithography on a Silicon substrate which was 

successful both in microelectronics and microelectromechanical systems (MEMS) [20]. However, 

Silicon is expensive and is not optically transparent. Therefore, it has been documented that 

fabrication of microsystems is easier when elastomeric materials are used [20]. 

1.5 Advantages of microfluidic cell culture devices: 

Microfluidics enables the precise application of experimental conditions to study the behavior of 

cells. The advantages of microfluidic cell culture over the macro-scale methods include efficient 

process control, design versatility and the ability to closely replicate the cell’s natural 

microenvironment [13]. Faster analysis is possible considering the augmented transfer of heat and 

mass heat over smaller lengths as compared to macrodevices [13]. Reduced reagent consumption, 

accurate experimentation and reduced risk of contamination add to the advantages of the use of 

microfluidic cell culture devices [13].   

A few advantages of microfluidic cell culture devices are: 

1. Flexibility of design[12][13] 

2. Fast response of the system[12] [13] 

3. Precise control over experimental conditions[13] 

4. Low reagent consumption [16] 

5. Perfusion culture can be performed [17] 

6. Ability to integrate biosensors into the cell culture device [12] [13] 
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7. Studies on single cells can be carried which is simple compared to studying the bulk of 

an organ [13] [18] 

8. Low number of cells suffice the experimental requirements[13] 

9. Sensors can be integrated into the devices allowing analysis of the conditions provided, 

on the cells [13] 

Considering the advantages offered by microfluidic cell culture devices, the recent trend has been 

the development of integrated microfluidic devices with electronic and mechanical components or 

chemical processes onto the substrate that help in analyzing the system [21].   

Currently, the most popular method of fabricating microfluidic devices for cell biological 

applications is the Soft-lithography of Polydimethylsiloxane (PDMS) [22]. PDMS based 

microfluidic devices are easy to fabricate and offer flexibility in design [23] [24]. PDMS is an 

elastomer, which is optically transparent, biocompatible and gas permeable [22]. In addition, PDMS 

is inert and non-toxic [21] [22] [23] [24]. These properties make it a better choice for researchers to use 

PDMS for cell biological applications [25]. Soft-lithography of PDMS helps to fabricate the 

channels at the dimensions of the cell [23] [24] [25]. 

Important parameters that need to be controlled during cell culture include Oxygen, 

Carbondioxide, pH and temperature. In the current study, we focus on the effects of temperature 

gradient on cancer cells.  It is known that cell morphology, metabolism, proliferation and adhesion 

are all temperature dependent [22]. In order to study the effect of these variations on cells, it is 

essential to develop a microsystem that can efficiently provide a temperature gradient [23].   
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1.6 Objective 

In the current study, we propose to develop a microfluidics based cancer cell culture device that 

can provide a programmable temperature gradient. The goal is to create thermal gradient of 3˚ C 

across the width (6mm) of the microchannel. Multiple integrated sensors are placed inside the 

device to measure local temperature in the microchannel. These sensors are resistive patterns of 

Chromium metal, fabricated using Standard UV lithography techniques. The microchannel, 

fabricated by Soft Lithography of Polydimethylsiloxane (PDMS), holds the cells. A custom built 

hot plate has been devised to provide the mentioned thermal gradient. A major effort has also been 

devoted to monitoring the temperature gradient over a period of time in order to study the effect 

of this thermal gradient on MCF-7 breast cancer cells.  
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Chapter 2 

Design and Fabrication 

The primary requirement to design and fabricate the microfluidic cell culture device (shown in Fig 

1) is to provide a controlled temperature gradient and study its effect on the cancer cells. In order 

to achieve this goal, three essential components are required.  

1. A microchannel that can hold cells suspended in the culture medium  

2.  Integrated multiple temperature sensors that can give a localized measurement of 

temperature from within the channel 

3. A hot plate to provide the temperature gradient 

 

Fig 1: Illustration of the microfluidic cell culture device 

The following sections present a detailed procedure on the fabrication methods of each of the 

component in sequential order in which the device was designed.  

2.1 Temperature sensors 

2.1.1 Principle of Resistance Temperature Detector: 

The integrated temperature sensors were designed based on the principle of a Resistance 

Temperature Detector (RTD). RTDs are designed using metals whose resistance changes linearly 
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with temperature i.e. resistance increases with increase in temperature. In other words, RTDs have 

positive temperature coefficients (PTC) [26]. 

The equation below gives a relation between resistance and temperature. 

𝑅𝑡 = 𝑅0(1 + 𝛼(𝑡 − 𝑡0)) --------- (1) 

where  

             Rt – resistance of the metal at temperature t 

             R0 – resistance at room temperature t0 

             α  - temperature coefficient of resistance (˚C-1) 

Resistance of any conductor of length L and area of cross-section A can be calculated using the 

equation  

𝑅 = (𝜌 ∗ 𝐿)/𝐴 -------- (2) 

 where  

   ρ – Resistivity of the metal 

2.1.2 Fabrication of temperature sensors: 

The temperature sensors integrated into the microfluidic device were fabricated using standard UV 

Lithography techniques. UV lithography is a process used to transfer a pattern onto another layer 

on a substrate [21]. In order to integrate temperature sensors into a microfluidic device, a thin layer 

of metal has to be deposited inside the device and a substrate is needed for the same [11].   

A glass slide was used as a substrate since it is compatible with all the cleanroom techniques [11]. 

A microscopic half glass slide of dimensions 37.5mm×12.5mm×1mm was used to fabricate the 

temperature sensors which are resistive patterns of the metal.  

The metal used to design the sensors was Chromium because of the following advantages: 
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a) High resistivity 

b) Easy to fabricate 

c) Inexpensive and easily available. 

2.1.3 Substrate pretreatment 

The substrate must be cleaned before metal deposition.  Pretreatment of substrate is an important 

step in Thermal evaporation, which is a method used for thin-film deposition [23].  

First, the substrate was cleaned with Acetone in order to wash away any dust particles present on 

the surface, and dried using Nitrogen. Next, the substrate was subjected to Oxygen plasma (PDC-

32G plasma cleaner, Harrick Plasma) for 45 seconds. Plasma treatment is one of the ways to 

modify the surface of the substrate in order to improve adhesion while preserving the desired 

properties of the substrate material [30]. It chemically activates the surface and promotes the 

adhesion of metal on the substrate [24]. 

2.1.4 Metal deposition 

Chromium metal (Kurt. J. Lesker Company) was deposited on the substrate by Thermal 

evaporation (Denton Vacuum 502A). The Thermal evaporator is integrated with a Quartz Crystal 

Microbalance (QCM) to monitor the rate of deposition. The thickness of the metal deposited was 

found using Dektak Stylus Profilometer. The measured thickness was in the range of 60 to 80 nm. 

Fig 2 shows a metal layer deposited on the glass substrate.  
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Fig 2: Thin Chromium metal layer deposited on a glass substrate 

The desired resistive pattern that constitutes the temperature sensor was transferred onto this 

substrate by Standard UV lithography technique. The following details the procedure of UV 

Lithography.  

2.1.5 Process flow of UV lithography 

UV lithography makes use of a photosensitive material (Photoresist), a photo mask and UV light 

to aid the process [21]. Fig 3 shows the process flow of UV Lithography 
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Fig 3 Process flow of UV Lithography 

In the following sections, each of the above mentioned steps is described. 

Step-1: Spin coating 

The surface of the metal film is coated with a thin layer of positive photoresist using a spin coater 

(Laurell Technologies Corporation, WS-650SZ-6NPP/LITE). A photoresist is a light sensitive 

material that is used to form a pattern on the surface of a substrate [27]. A positive photoresist when 

exposed to UV radiation becomes more soluble in the photoresist developer. The unexposed 

portion remains insoluble in the developer [28]. Fig 4 shows the mechanism of positive photoresist. 

This step is followed by soft baking. 
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Fig 4: Mechanism of positive photoresist 

Step-2: Soft bake 

Soft bake is done on a hotplate to remove excess solvent present in the photoresist deposited on 

the substrate. The temperature at which the soft baking is done is about 1130 Centigrade for about 

90 seconds.  

Step-3: UV Exposure 

 The substrate with the layer of photoresist on it is exposed to UV radiation through a photomask. 

The photomask was designed using L-Edit (v11.2).Fig 6 shows the photomask that was used for 

UV exposure. Time of exposure of UV radiation was 3 seconds. The length of the pattern shown 

in the figure is 6550µm and the width is 30 µm. Fig 5(A) shows the UV exposure of photoresist 

on the substrate.  

A 

B 
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Fig 5:(A) shows the exposure of the substrate to UV radiation, (B) shows the development step.  

 

Fig 6: (A) shows Photomask with resistive patterns (B) shows a magnified version of one sensor. 

Step-4: Development 

 In this step, the substrate is placed in a positive photoresist developer (AZ 300 MIF, AZ electronic 

materials) for 10 to 12 seconds to remove the portion of photoresist that has been exposed to UV 

radiation and the resistive pattern is protected by the photoresist. Then the substrate is rinsed with 

A 

B 

A B 
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distilled water and dried. Fig 5(B) shows the substrate after development. Fig 7 shows the pattern 

of photoresist on the metal, after development.  

 

 

Fig 7: Resistive pattern after development 

Step-5: Hard bake 

After development, hard baking is performed to improve the adhesion of photoresist structure to 

the surface of the substrate. Hard baking is usually done at 1200 Centigrade for about 10 minutes 

[14]. 

2.1.6 Wet etching:  

Wet etching is a process that makes use of a chemical solution (etchant) to etch the metals. Etching 

is usually done to transfer a pattern onto a structural layer beneath the photoresist layer [27]. Wet 

chemical etching is performed as detailed below. 

The metal on the substrate is etched out using Chromium etchant (Transene Company, Inc.), from 

the areas exposed to UV radiation. On the unexposed areas, there is still a thin photoresist layer 

30 µm 
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that protects the metal below it. When the metal is etched, the substrate is washed using distilled 

water. Fig 8 shows the substrate after etching.  

 

Fig 8: Substrate with metal and photoresist layer (after etching) 

Now, the substrate has metal and photoresist layer on the unexposed areas. It was then immersed 

in a container with Acetone and placed in a Sonicator for about 2 minutes. This removes the 

photoresist. Finally, the substrate was washed with Isopropanol and dried using Nitrogen. Fig 9 

shows the substrate with metal pattern after Acetone sonic wash.  

 

 

Fig 9: Substrate with metal pattern 

The metal pattern on the glass slide created as detailed above, offered a resistance and this acts as 

a temperature sensor. Fig 10 shows a microscopic image of the metal pattern on the substrate. 

Metal  
Photoresist 
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Fig 10: Metal pattern on the substrate 

2.2: Optimizing the design for temperature sensor: 

Using the procedure detailed in Section 2.1, four resistive patterns of varying lengths and widths 

were designed. The following provides the dimensions of each of the pattern and the resistance 

they offered. 

 

30 µm 

A 
Dimensions of the pattern A: 

Length = 1275 µm 

Width = 25 µm 

Resistance offered = 2 - 3 KΩ 
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Fig 11 (A) , (B), (C), (D) shows resistive patterns of varying dimensions and the resistances 

offered. 

C 

D 

B 
Dimensions of the pattern B: 

Length = 6550 µm 

Width = 30 µm 

Resistance offered = 3.8 -4.5 KΩ 

Dimensions of the pattern C: 

Length = 2075 µm 

Width = 20 µm 

Resistance offered = 0.8 - 2 KΩ 

Dimensions of the pattern D: 

Length = 1950 µm 

Width = 30 µm 

Resistance offered = 1.4 - 2 KΩ 
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Of the four patterns, pattern B was chosen. The reason was, easy to fabricate, resistance offered 

was in a medium range when compared to the other patterns and, stability. 

2.3 Wheatstone bridge 

In order to pick the temperature signals from the sensor, very thin wires were glued to the metal 

pattern using Silver epoxy glue. It is electrically conductive and can be used on almost any surface.  

Thin conducting wires were glued to the metal pads of the sensor and it is cured for two hours at 

1200 Centigrade. Resistance is checked at the free end of the glued wires, using a Digital 

multimeter. If the resistance value is almost equal to the value measured from the metal pads, the 

glue is cured. Otherwise, it is cured further, accordingly. The following fig 2.13 illustrates how the 

sensor forms a part of the bridge and the signal is used to monitor temperature.  

The sensor forms one of the arms of the Wheatstone bridge, a potentiometer forms two other arms 

and a resistor forms the fourth arm. The potentiometer and the resistor both have a value 

comparable to that of the temperature sensor (resistor). The Wheatstone bridge gives a voltage 

output for the temperature signal picked up by the temperature sensor (one of the arms). The circuit 

for the Wheatstone bridge is shown below.  
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Fig 12 : Temperature sensor as a part of Wheatstone bridge 

2.4 Thin PDMS layer on the substrate: 

The substrate (with fabricated sensors) was coated with a thin layer of PDMS. The PDMS 

prepolymer (Slyguard 184)and curing agent were mixed in the ratio of 10:1 was degassed, to 

remove any air bubbles that result from the mixing process,  and carefully poured onto the substrate 

avoiding further air bubbles. This was cured for two hours at 60˚C.  
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Fig 13: Substrate coated with a thin PDMS layer 

The substrate was coated with the PDMS layer in order to avoid direct contact of culture media 

with the metal.  

2.5 Fabrication of microchannel 

The microchannel shown in the fig 14 was fabricated by Soft lithography of Polydimethylsiloxane 

(PDMS). Soft Lithography is fabricating microfluidic devices using a soft polymeric mold such as 

PDMS replica from a master design. [23] The dimensions of the channel were according to the 

designed photomask such that the integrated sensors are within the microchannel to get a local 

measurement of temperature.  

 

 

Fig 14: Design of the microchannel  

2.5.1 Negative master design: 

The negative master design required to fabricate the microchannel was made by a thin film cut 

using a Silhouette printer shown in fig 15(a). The Silhouette printer is a commonly available 

desktop printer that is used to cut thin films.  Thin film is stuck on to the cutting mat and fed into 

18 mm 
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the printer as depicted in fig 15(a). The blade shown in fig 15(b) cuts the film when the desired 

pattern is sent to the printer using the compatible software. The patterns are carefully peeled out 

of the cutting mat and placed in a petri dish. This serves as a negative master design for the 

microchannel. The thickness of the film used was 100 µm.  

Silhouette printer is advantageous in ways that it is simple to use, thus offers flexibility to modify 

the design without consuming much time. It can cut complex patterns with a resolution of 1mm. 

One of the major advantages is that it allows to avoid the design of negative pattern by using SU-

8 and going through all the steps of Photolithography which is time consuming and not very 

flexible. Therefore, Silhouette printer is a very convenient tool when the design required is of the 

order of few millimeters.  
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Fig 15 (a) Silhouette printer (b) Blade that cuts thin films fed into the printer (c) Negative pattern 

of the microchannel placed in a petri dish. 

 

Soft Lithography of PDMS involves three steps: 

1. Casting 

2. Curing and  

3. Releasing  

2.5.2 Casting and Curing:  

The PDMS polymer and the curing agent were mixed in a ratio of 10:1, measured by weight. This 

mixture was then placed in a degassing chamber for about 30 minutes to remove any air bubbles 

that form during the mixing process. This mixture was then poured into the petri dish with the 

films aligned. The petri dish was placed in an oven for three hours at 60˚C.  

(a) (b) 

(c) 
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Fig 16: PDMS poured on the negative master design 

2.5.3 Releasing 

After three hours, the cured PDMS was carefully peeled out from the petri dish and cut as required 

using a scalpel. Fig 17 shows the microchannel.  

 

Fig 17: Microchannel  

 2.6 Bonding microchannel to the substrate: 

The microfluidic cell culture device has a microchannel and substrate with temperature sensors on 

it. The microchannel fabricated as explained in section 2.5, is bonded to the substrate (section 2.1) 

6 mm 
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using Oxygen Plasma. Fig 18 shows the arrangement of the components in order to build the 

microfluidic device.  

 

Fig 18: (a) Microchannel, (b) Thin PDMS layer coated on the substrate (c) Substrate with 

temperature sensors 

The substrate with PDMS layer and the microchannel were subjected to Oxygen plasma treatment. 

This makes the PDMS surface hydrophilic, which is inherently hydrophobic. In other words, 

oxygen plasma chemically activates the PDMS surface such that it can bond to another surface 

(PDMS here) [30]. The microchannel and the substrate were first cleaned with Isopropanol to 

remove any dust on the surface. These were then placed in the oxygen plasma chamber with the 

bonding surfaces facing upwards, for 45 seconds. The microchannel was then aligned such that 

the sensors were within width of the channel and was bonded to the substrate. Fig 19 shows the 

microfluidic cell culture device.    

(a) 

(b) 

(c) 
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Fig 19: Microfluidic cell culture device 

2.7 Design of Hot Plate:  

The next component needed in order to achieve the goal is a custom built hotplate that can provide 

a temperature gradient. The equipment used to build the hot plate is described below. 

1. Aluminum plates -  surface of the hot plate on hot and cold sides 

2. Peltier cooler - source of heat 

Peltier cooler operates based on thermoelectric effect. It states that when an electrical current is 

applied across the between two conductors of a semiconductor material, a temperature difference 

is created [31]. One side of the Peltier cooler is heated up and the other side is cooled down when a 

current is applied. Fig 20 shows a Peltier cooler.   
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Fig 20: Peltier cooler 

3. Analog temperature sensor TMP 36: This is used to measure the temperature on the surface 

of the hotplate. It is a commercially available temperature sensor that operates on low voltage 

[26]. It provides voltage output that is linearly proportional to the temperature in ˚C [32].  Fig 21 

shows a TMP 36 sensor.  

 

Fig 21: TMP 36 sensor 

An aluminum plate is cut into two, and are placed separated to each other at a distance of about 2 

mm. A Peltier cooler is glued to the bottom of each plate using a thermally conductive glue. This 

is glued to another bottom plate and this setup collectively serves as a hotplate. The TMP 36 

sensors are placed on the top of the plate in order to get a measure of the surface temperature, 

accurately. The fabricated microfluidic cell culture device was placed symmetrically on both the 
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plates such that half of the microchannel was on the hot side and the other half on the cold side. 

Fig 22 shows the hot plate with the microfluidic device place on its surface.  

 

Fig 22: Custom built hotplate with the microfluidic device place on its surface 

The Peltier coolers are connected to a heater circuit which controls the current supplied, based on 

the LabVIEW PI control output.  
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Chapter-3  

Experiments and Results 

3.1 Calibration of sensors: 

The fabricated temperature sensors were calibrated prior to the experiment. Voltage values of the 

sensors were recorded at different temperatures using a program written in LabVIEW. A hotplate 

was used to change the temperature and corresponding voltage values of the sensor were recorded 

from LabVIEW output.  

The sensor on the cold side is named SA and the sensor on the hot side is named SB
.  SA and SB 

were calibrated to establish a relation between the voltage and temperature in the range of 20˚ C to 

45˚C. 

Fig shows the sequence of steps to calibrate the temperature sensors is schematically shown in fig 

23. 

                                                                                 

 

 

                          Fig 23: Block diagram showing the process flow of sensor calibration 

The device with integrated temperature sensors was positioned firmly on a hotplate. One sensor 

was calibrated at a time. An IR Temperature Gun was used to measure the surface temperature of 

the hotplate. As the temperature on the hotplate was increased, the resistance offered by the metal 

Sensor Power 

Supply  

Wheatstone 

bridge  
Amplifier LabVIEW 
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pattern (temperature sensor SA) increased. This increase in resistance of sensor SA was recorded 

as an increase in voltage (change in resistance is measured as voltage output of the Wheatstone 

bridge) using LabVIEW. The output was recorded from LabVIEW using NI DAQ. Similarly, 

sensor SB was also calibrated and a relation between temperature and voltage was obtained. 

Fig 24 shows the calibration of sensor SA and fig 25 shows the calibration of sensor SB  

 

Fig 24 Calibration of sensor SA 
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Fig 25 Calibration of sensor SB 

3.2 Experimental procedure 

The experimental setup is schematically illustrated in fig 26.  

The fabricated cell culture device was placed on the custom built hotplate symmetrically, such that 

half of the microchannel was on the hotter side and the other half on the colder side. The sensor 

SA
 on the cold side with resistance 3.5 k Ω, was connected to a Wheatstone bridge circuit with 

resistances of comparable value. The output of the bridge was connected to an Instrumentation 

amplifier with gain 252, in order to amplify and this output was read on a PC using LabVIEW. A 

feedback was given by LabVIEW to the heater circuit such that the current provided by the heater 

to the Peltier cooler was controlled.  

y = 0.0106x + 2.1248
R² = 0.9876

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

20 25 30 35 40 45

V
o

lt
ag

e
 (

V
)

Temperature (˚C)

SB - Calibration

Sensor



 
 

31 
 

 

Fig 26: Schematic of the experimental setup 

In order to maintain a temperature gradient and control the current provided by the heater circuit, 

a Proportional Integral (PI) control loop was used. A program for PI Control was written in 

LabVIEW, whose output controls the current provided by the heater circuit to the Peltier cooler.  
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3.2.1 PI Control [33] 

Fig 27 explains the working of a PI Control loop.  

 

Fig 27: PI control loop 

The setpoint is the desired value at which the temperature has to be maintained. Measured 

temperature is the value that the sensor reads.  If the set point and the measured temperature are 

equal, then the output of the controller is zero. If the measured temperature is different from the 

set point, there is an error and the current being supplied to the heater has to be changed.  

Error = Set point – Measured temperature 

If the measured temperature is lower than the set point, the error is positive. The controller gives 

a positive output which increases the current supply to the Peltier cooler and the temperature on 

the hotplate increases. This change in temperature is sensed by the integrated temperature sensor 

and current is supplied until the measured temperature reaches the value of the set point.   

When the measured value and the set point are equal, the current becomes zero. The current 

increases again when the measured temperature becomes lower than the setpoint. This loop repeats 

and the temperature is maintained around the value of the setpoint.  
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Proportional term: The proportional term depends on the current error value. It gives an output 

proportional to the error. The output can be adjusted by multiplying the error by a proportional 

constant (Kp). 
 

Integral term: The integral term integrates the error value over time. A change in error will cause 

the integral term to change. It sums up and gets added as an offset to the error term in order to give 

a corrected output. The error is multiplied by Integral gain (Ki) and added to the output.  

The values of Kp 
 and Ki  need to be optimized in order to get the desired output – less overshoot 

from the set point.  

Using the PI Control loop, a gradient of 3˚C was maintained in the microchannel across a width 

of 6mm, with the hot side at 40˚C and the cold side at 37˚C, on the hotplate.  

Fig 28 shows the experimental setup that was used to perform the experiments. 
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Fig 28: Experimental setup 

The electrical circuitry used in the experimental set up are 

1. Wheatstone bridge – gives s voltage output for a given resistance value of the sensor 

2. Instrumentation amplifier – amplifies the bridge output 

3. Heater circuit – controls the current being provided to the Peltier cooler in order to 

maintain the temperature gradient 

4. Voltage supply 

The experimental process flow is illustrated in the following fig 29 
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Fig 29: Experimental process flow 

Initially, when the power was turned on, the whole surface of the hotplate was at a uniform 

temperature (room temperature). This temperature is sensed by the integrated sensor and the 

change in temperature which is the output from the bridge circuit in terms of voltage, is amplified 

by the instrumentation amplifier. This amplified output is compared with the set point of 

temperature. Depending on the error value, the PI controller gives a positive output if the 

temperature is lower than the set point and a negative output, if the temperature is higher than the 

setpoint. The output changes the amount of current supplied by the heater circuit to the Peltier 

cooler. Thus, the temperature is maintained on hot and cold sides of the hotplate. The temperature 

values were automatically saved to a text file by LabVIEW.  

Sensor (temperature) 
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Instrumentation amplifier 
(amplifies the change in 
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LabVIEW(PI Control)
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Two cases have been tested with different Kp and Ki values in each case, to evaluate the 

performance of the hotplate and observe the temperature gradient within the microchannel.  

3.2.2: Testing  

 Case-1:- Hotside - 40 ̊ C and coldside 37 ̊ C with proportional gain Kp [V/ ºC]= 3 and integral 

gain Ki = 0.001 [V/ (ºC.s)] 

The output of the sensor for case 1 is shown in fig 30.  

 

 

Fig 30: Sensor output in case 1 (Ki = 0.001 [V/ (ºC.s)] and Kp [V/ ºC] = 3, Δt = 200 milliseconds 

) 

The above plot shows the output of the sensor for about 50 minutes. The temperature on the hotside 

was maintained at 40˚C and the temperature on the cold side at 37˚C. The fluctuations observed 

25

27

29

31

33

35

37

39

41

43

45

0 1000 2000 3000

Te
m

p
er

at
u

re
 (

˚C
)

Time (s)

Sensor output

Sensor - hotside

Sensor cold side

37˚C

40˚C



 
 

37 
 

were ±1˚C on both the hot and cold sides. Δt in this case is 200 milliseconds, which is the time 

taken by each loop in PI control.  

Case-2 :- Hotside - 37 ˚C and coldside 34 ˚C with proportional gain Kp  [V/ ºC] = 3 and 

integral gain Ki = 0.001 [V/ (ºC.s)] 

Fig 31 shows the sensor output in case 2.  

 

Fig 31: Sensor output in case 2 (Ki= 0.001V/ (ºC.s) and Kp [V/ ºC] = 3, Δt =200 milliseconds) 

The above plot shows the output of the sensor for about 50 minutes. The temperature on the hotside 

was maintained at 37˚C and the temperature on the cold side at 34˚C. The fluctuations observed 

were ±1˚C on both the hot and cold sides. Δt in this case is 200 milliseconds.  

3.3 Experiment – monitoring temperature gradient across the microchannel  

The temperature gradient across the microchannel was monitored for about 7 hours. Considering 

the fluctuations in temperature measurement of the sensor in section 3.2.2, the value of Kp was 
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reduced to 1. The experiment was performed at Kp [V/ ºC] =3 and Ki = 0.001 [V/ (ºC.s)]. (Δt is 

100 milliseconds). This gave a relatively stable temperature measurement and significantly 

reduced the fluctuation. The sensor output is shown in fig 32 and fig 33. 

Fig 32 shows the sensor output when the temperature on the was maintained at Hotside 40 ˚C and 

coldside at 37 ˚C . The gradient in temperature was monitored for about 7 hours. 

 

Fig 32 shows the output of the sensors in case 1 (Ki= 0.001 [V/ (ºC.s)] and Kp [V/ ºC] = 1, 

Δt=100 milliseconds) 

The graph shows the temperature on the hotside and coldside. Initially, when the power is turned 

on, the temperature rises from ambient level i.e. 25 ˚C and reaches 40 ˚C on the hot side and 37 ˚C 

on the cold side. The PI control loop helps maintain the temperature gradient of 3 ̊ C across a width 

of 6mm.The temperature was monitored for 7.2 hours and the maximum fluctuation observed on 
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the hot side was 40±0.5˚C and that on the cold side was 37±0.5˚C. This shows that the temperature 

was consistent on hot and cold sides and the gradient was effectively maintained for 7.2 hours. In 

other words, this device can be used to perform cell experiments that last for hours.  

Fig 33 shows the sensor output when the temperature on the hotside was maintained at 37 ˚C and 

coldside at 34˚C. The gradient in temperature was monitored for about 7 hours. 

 

Fig 33: shows the output of the sensors in case 2 (Ki = 0.001[V/ (ºC.s)] and Kp [V/ ºC] = 1, 

Δt=100 milliseconds) 

The graph shows the temperature on the hotside maintained at 37 ˚C and on the coldside at 34 ˚C. 

Initially, when the power is turned on, the temperature rises from ambient level i.e. 25 ˚C and 

reaches 37 ˚C on the hot side and 34 ˚C on the cold side. The PI control loop helps maintain the 

temperature gradient of 3 ˚C across a width of 6mm.The temperature was monitored for 7.2 hours 
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and the maximum fluctuation observed was ±0.5˚C on both hot and cold sides. This shows that the 

temperature was consistent on hot and cold sides and the gradient of 3 ˚C was effectively 

maintained for 7.2 hours.                 

3.4 Cell experiment: 

A cell experiment was performed in order to test the compatibility of cells in the fabricated device 

with the set conditions.  The system was allowed to stabilize with temperature at 37˚C on the hot 

side and 34 ˚C on the cold side. 

The inlet of the microchannel was connected to a 1ml syringe filled with DMEM media and the 

outlet to another 1 ml syringe with PBS. A pump was used at the outlet syringe to draw in the 

medium.MCF-7 breast cancer cells were acquired from (Dr. K. Claffey’s lab, University of 

Connecticut Health Centre). The concentration of the obtained cells was at 1 million cells/ml. 

Considering 80,000cells/cm2, 250,000 cells (0.025ml) were resuspended in 50 µl of media 

containing 25mM HEPES.  The channel was initially filled with sterile Phosphate Buffer Saline 

(PBS) solution. The cells were then introduced into the channel using a pipette, under the hood. 

The microdevice was then placed on the custom build hotplate and after two hours, the media was 

flown through the microchannel at a rate of 100 µL/hour, for about 4 hours.  

Fig 34(a) shows the microchannel filled with culture medium and 34(b) shows the microscopic 

image of the microchannel. 
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Fig 34: (a) Microchannel with cells (b) Microscopic image of the cells in the microchannel  

The above test proved that the cells were compatible with the fabricated device since there was no 

visible difference in the cells at the end of 6 hours, and long term cell experiments can be performed 

in order to study the effects of temperature gradient on cancer cells.  

3.5 Integration of the fabricated device with an imaging setup:  

The fabricated device can be integrated with an imaging setup to perform live cell imaging. This 

helps to observe the effect of temperature gradient on cells and the changes that they undergo. Fig 

35 shows an illustration of the cell culture device with an imaging objective.  

 

 

 

(a) (b) 
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Fig 35: Fabricated device can be integrated with an imaging setup 
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Chapter-4 

Conclusion 

A microfluidic cell culture device was fabricated that can help study the effect of temperature 

gradient on cell cells. The device consisted of a microchannel that can hold cells suspended in 

culture medium, and integrated temperature sensors which can provide localized temperature 

measurements from within the channel. A custom built hot plate was designed in order to provide 

a temperature gradient.  Chromium metal was used to fabricate temperature sensors since it is easy 

to fabricate, inexpensive and highly resistive. PDMS was used to fabricate the microchannel 

because of its non-toxicity, bio-compatibility, and optical compatibility. 

The device was evaluated by monitoring a temperature gradient of 3˚C across the microchannel of 

width 6mm for about 7 hours. The results showed that the thermal gradient was consistent 

throughout the course of 7 hours with a fluctuation of ±0.5 ˚C. This proves that the device was 

efficient in maintaining the thermal gradient. The device was also tested to check if the cells were 

able to survive in the set conditions. Comparing images taken at the beginning and end of a 6 hour 

experiment, there was no visible difference in the cells. This shows that the cells will be able to 

survive in the fabricated device with the provided conditions for hours and effect of thermal 

gradient can be studied.  
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