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ABSTRACT

Clinical trials are an essential part of the drug development life cycle. There are different

types of clinical trials, and in this dissertation, we focus on non-inferiority (NI) trials. In

NI trials the goal is to show that the effectiveness of a new treatment is not considerably

worse than of a standard one by an acceptable margin. Although, the new treatment

could be slightly less efficacious, it can offer other benefits such as less severe adverse

reactions.

Several methodological challenges have been reported regarding the design, analysis

and interpretation of NI trials. These include incomplete data analysis, specification of

an acceptable margin, and overall benefit of the new non-inferior treatment. Therefore,

the aim of this dissertation was to address each of these challenges and provide practical

solutions for researchers involved with NI trials.

First, we focus on incomplete data. Specifically, we evaluate how different statistical

strategies perform under several NI scenarios and various types of missingness. We pro-

vide a set of recommendations for practitioners to use when confronted with incomplete
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data to avoid false non-inferiority conclusions. Second, while performing a thorough

investigation of proper statistical strategies for incomplete data analysis, we discovered

that combination rules of multiply imputed data when inference is done using a New-

combe’s method did not exist. As a result, we developed these combination rules. Third,

we proposed a new framework that allows for a transparent and objective justification

of an acceptable margin. The framework is based on combining results of NI study and

clinical experts survey data using multiple imputation (MI). Fourth, we developed a new

approach for a comprehensive benefit-risk assessment of a non-inferior treatment. We

focus on preference elicitation regarding benefits and risks from a small sample of NI

trial participants, and use MI to restore preferences of all study participants.

This dissertation provides an important contribution to the field of Statistics, and

drug development. The novel methods and techniques outlined in this dissertation fa-

cilitate practitioners involved with NI trails to make more efficient and transparent

evaluations of treatment effectiveness.
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Chapter 1

Introduction

1.1 Non-inferiority trials background

Non-inferiority (NI) clinical trials seek to demonstrate that efficacy of a new treatment is

not considerably worse than that of a standard treatment [FDA, 2016]. Such minimally

acceptable deviation is called margin. The margin is determined using historical data

for the standard treatment effect over placebo, and clinical expert opinions regarding the

clinically acceptable reduction of that effect. While a portion of a standard treatment

effect may be lost by a non-inferior agent, it offers other benefits, such as less severe ad-

verse events, improved drug adherence and/or lower costs [Piaggio et al., 2012]. NI trial

design is usually considered when the use of placebo is unethical, as delaying treatment

with standard care would cause irreversible health damage or death [ICH, 2000, FDA,

2016].

In the past, NI trials were relatively rare, however, the number of clinical trials using

this design increased significantly over time. Suda et al. [2011] evaluated 583 NI trials

published between 1989 and 2009, and reported a steadily increasing publication rates.

Murthy et al. [2012] perfomed a similar evaluation between 1999 and 2010, which led to
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a similar conclusion. Moreover, we searched PubMed in Oct-2019, and found that the

number of clinical articles mentioning non-inferiority in title or abstract was 296 in 2010

and reached 713 in 2017 (Figure 1).
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Figure 1: Number of published non-inferiority clinical trials

There are two different approaches to analysis of NI trials: fixed margin method

and synthesis method [Rothmann et al., 2016, FDA, 2016]. Both approaches rely on

historical data and the opinions of clinical experts, but in a different way. The fixed

margin method could be seen as a two step approach. At the first step, one needs

to determine the standard treatment effect over placebo (M1), which is usually done

through a meta-analysis of historical data. Then, a clinically acceptable margin (M2),

which has to be strictly lower than M1 is chosen by clinical experts. The comparison

between a standard and a new treatment from an NI trial is done with respect to the

pre-defined margin M2, as if it was a fixed constant. In the synthesis method, the
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historical data are “combined” with the NI trial data, so that the new treatment is

compared to putative placebo using a clinically acceptable threshold. A recent FDA

guideline for NI trials recommends using fixed margin over synthesis method [FDA,

2016]: “Notwithstanding that the interpretation of an NI study is fundamentally a

synthesis, we recommend a statistical method, the fixed-margin method, that treats the

problem in two separate steps.” Following FDA’s recommendation, the fixed margin

approach was used throughout this dissertation along with a “commonly used” method

of 95%-95% confidence interval (CI) [FDA, 2016]. The first 95% CI refers to the standard

treatment effect over placebo from historical studies, while the second 95% CI compares

the standard and new treatments in the current NI study. To determine NI of the new

treatment, the the lower/upper bound of the later CI is compared to M2.

Recent review articles of published NI trials reveal that a substantial improvement is

required for design, analysis and reporting of NI trials [Rehal et al., 2016, Aberegg et al.,

2017, Rabe et al., 2018]. Incomplete data analysis, as well as margin justification, were

among the issues discussed in these reviews. Moreover, several other authors indicated

that there is a need for proper assessment of the overall advantages of a non-inferior

treatment over a standard treatment [Garattini et al., 2003, Gladstone and Vach, 2015,

Evans and Follmann, 2016]. Following that, we have devoted this dissertation to these

topics, with the goal of improving current practices for design and analysis of NI trials.
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1.2 Incomplete data analysis in NI trials - current

practices

Like most clinical trials, NI trials are prone having incomplete data, which if not properly

analyzed might lead to bias results [Little and Rubin, 2014]. The importance of avoiding

missing data, and performing appropriate analysis of incomplete data in clinical trials

has been extensively discussed [Fleming, 2011, CMPH, 2010, NRC, 2011, Little et al.,

2012, Dziura et al., 2013]. However, missing data has received little attention in NI

trials. Wiens and Zhao [2007] describe missing data as one of “the biggest obstacles

to interpretation of NI studies” and state that more work on this topic is required.

Fleming [2008] briefly mentions missing data as a possible source for biased results which

might lead to apparent similarities between treatments. Gallo and Chuang-Steiny [2009]

provide some considerations in regards to analysis of incomplete data in NI studies.

A common framework for missing data is based on the following missingness mecha-

nisms: missing completely at random (MCAR), missing at random (MAR), and missing

not at random (MNAR) [Rubin, 1976, Little and Rubin, 2014]. MCAR essentially means

that the missing values in the study are completely independent of the data observed

or not observed in the study. MAR implies that missing values depend on observed

data. MNAR means that missing values depend on unobserved data. MCAR is un-

likely to hold in clinical trials [NRC, 2011], therefore, analysis based on this assumption

should be avoided, unless it is imposed by design (for example, randomly sampling trial
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participants for an ancillary study) [Graham et al., 2006, Little and Rhemtulla, 2013].

In addition to the missingness mechanism, distinctness between data model parameters

and parameter involved in generation of missing values plays a central role in incomplete

data analysis. For likelihood and Bayesian based inferences, ignorability is characterized

by both MAR and distinctness between the parameters mentioned above. As a result,

non-ignorability holds when at least one of these two assumptions is violated. For sim-

plicity, we will use MAR/ignorabile and MNAR/non-ignorabile terms interchangeably

throughout this dissertation.

Previously, only a handful of simulation studies have been conducted to assess the

impact of different analysis strategies on NI trials [Yoo, 2010, Wiens and Zhao, 2007,

Lipkovich and Wiens, 2017]. Yoo [2010] conducted a simulation study for longitudinal

continuous outcome to evaluate type-I error behavior under different amount and types

of missingness. Wiens and Rosenkranz [2013] reported a similar simulation study to

that by Yoo [2010]. Both papers concluded that mixed effect repeated measures con-

trolled type-I error under MAR mechanism. Following that, Lipkovich and Wiens [2017]

evaluated multiple imputation (MI) [Rubin, 2004] for binary response variables in the

NI setting and concluded that MI produces reliable inferences under the MAR assump-

tion. While these simulation studies demonstrate important results, they only consider

limited scenarios. Also, dealing with data MNAR remains an unresolved issue.

The lack of deliberation around the missing data problem is also evident in pub-

lished NI trials. Rehal et al. [2016] reported that over 50% of the published NI trials
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they reviewed between 2010-2015 did not mention any imputation methods used in the

statistical analysis. Similarly, Rabe et al. [2018] showed that 50% of NI and equivalence

articles they reviewed between 2015-2016 used complete case analysis (CCA), a method

that is generally known to produce biased results [Little and Rubin, 2014].

In terms of regulatory guidelines, there seems to be lack of consensus around this

issue as well [Rehal et al., 2016]. The International Conference on Harmonisation (ICH)

guideline for statistical principles for clinical trials [ICH, 1998] mentions missing data

issue and states that imputation methods from very simple to complex may be used for

analysis of incomplete data. The guideline, however, is very broad, and does not explic-

itly discuss analysis of incomplete data for NI design. The extension of Consolidated

Standards of Reporting Trials (CONSORT) 2010 statement [Piaggio et al., 2012] does

not refer to missing data at all. The Standard Protocol Items: Recommendations for

Interventional Trials (SPIRIT) 2013 guideline [Chan et al., 2013] recommends using MI

over single imputation and also to perform a sensitivity analysis for missing data. This

guideline is however general for any type of clinical trial and does not specifically refer to

the NI setting. A recent Food and Drug Administration (FDA) guideline for NI clinical

trials [FDA, 2016] includes a very brief statement about missing data: “Imputation of

missing data under the inferiority null hypothesis is one possible approach to countering

the bias due to attrition”. Regulatory guidelines that outline a general framework for

handling incomplete data for any type of clinical study are “Guideline on missing data

in confirmatory clinical trials” [CMPH, 2010] and ”The prevention and treatment of
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missing data in clinical trials” [NRC, 2011]. Both of these guidelines provide a com-

prehensive review of the missing data issue and present methods that could be used to

appropriately analyze incomplete data. However, since the scope of these guidelines is

general, they don’t focus on specific issues that might be relevant for NI trial design.

Also, according to the recent ICH E9(R1) guideline, handling of the intercurrent events,

such as treatment discontinuation is embedded in the estimand’s description [ICH, 2017].

Specifically, the guideline states that occurrence of the intercurrent events in the NI trials

using treatment policy strategy might falsely contribute to apparent similarities between

the treatment groups, and therefore requires “careful reflection” [ICH, 2017].

Following the above, Chapter 2 of this dissertation focuses on different analysis strate-

gies of incomplete data in NI trials under various missingness structures, as well as diverse

set of NI trial scenarios. Specifically, we evaluate the performance of several incomplete

data analysis strategies when assessing difference in binomial proportions. While in the-

ory any type of outcome could be assessed for NI treatment comparison (such as means,

binomial proportions, survival rates, etc.), binomial proportions were recently reported

as the most commonly used outcome in practice. Rabe et al. [2018] reported that (64%)

of the articles they assessed had a binomial outcome for primary analysis. In addition,

Aberegg et al. [2017] reported that 70% of the studies they evaluated, used absolute

risk difference as primary outcome measure. Although an absolute risk differences isn’t

necessarily based on binomial proportions, it is reasonable to assume that the majority

of the studies used it as difference in binomial proportions. According to our own review
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of 189 NI clinical studies published on PubMed between June 2017 and May 2018, we

found that binomial proportions were used in 71 (38%) studies. The difference between

our result and the previously conducted reviews may be due to the somewhat different

search criteria: Aberegg et al. [2017] looked at the high impact factor journals, while

Rabe et al. [2018] randomly selected papers from a bigger pool of publications. Further-

more, the majority (90%) of the studies with binomial outcomes we reviewed assessed

difference in proportions for primary analysis.

There is abundant statistical literature regarding CI construction for difference be-

tween binomial proportions and/or testing difference between two binomial proportions.

Some earlier work includes well known methods by Clopper and Pearson [1934], Fisher

[1935], Barnard [1945], and Pearson [1947], while later methods were developed by New-

combe [1998], Miettinen and Nurminen [1985], Farrington and Manning [1990], Agresti

and Caffo [2000] and many others. In line with previously mentioned FDA recommen-

dation to use CI for NI evaluation, as well as, the variety of the methods available for CI

construction, we first evaluated what are the most commonly used methods for NI trials

in practice. According to our review of 71 NI studies, we found that the most common

methods were Newcombe [1998] (NW) method (13%), generalized linear model (GLM)

approach (11%), Farrington and Manning [1990] (FM) method (10%), and Wald [1943]

method (8%). We also found that 25 (35%) of the reviewed papers didn’t explicitly

specify what method was used for CI construction. It is reasonable to assume that the

majority of these 25 papers used Wald due to its simplicity. Following that, we decided
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to use NW, FM and Wald methods in Chapter 2. GLM approach was not considered,

because unadjusted GLM using the delta method [Reeve, 2018] to estimate the standard

deviation of the difference in proportions has the same form as Wald.

Evaluation of the above methods in NI trials was previously carried out by Dann

and Koch [2008]. The authors concluded, that in terms of type-I error, the choice of the

method would depend on the allocation ratio between the treatment groups. Similar

methods comparison involving Wald CI for difference in binomial proportions for NI

trials was done by Li and Chuang-Stein [2006] and by Almendra-Arao [2009]. In addition,

Brown and Li [2005] who evaluated performance of several methods for constructing CIs

for difference in proportions, which included Wald and NW irrespective of the NI trials

setting, concluded that “all the CIs are doing well” when sample size per arm is at

least 50. Nevertheless, all of the above evaluations were done for fully observed data.

Therefore, comparison between the above methods for incomplete data analysis provides

an important addition to the current literature.

For the analysis strategies in Chapter 2, we used best and worst case scenario im-

putation, CCA and two-stage MI [Shen, 2000, Siddique et al., 2012, 2014]. We provide

a thorough explanation for the choice of the strategies in Chapter 2. Briefly, MI is a

principled, commonly used approach, which could be used for both ignorable and non-

ignorable missingness structures [Rubin, 2004, Sidi and Harel, 2018]. Both, conventional

MI and two-stage MI comprise of imputing the incomplete data several times, analyzing

each complete dataset using a standard statistical procedure and combing the results
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for a final inference [Shen, 2000, Rubin, 2004]. These steps could be easily implemented

for Wald and FM methods as shown in Chapter 2. However, it is not the case for NW

method, for which there were no proper combination rules found in the literature. Fol-

lowing that, we developed proper combination rules for both conventional and two-stage

MI for NW method in Chapter 3.

1.3 Challenges with NI margin choice

As previously mentioned, one of the challenges of NI trials is the choice of clinically ac-

ceptable margin (M2). Although the determination of the margin has been extensively

discussed in the literature [Hung et al., 2003, 2005, 2007, Ng, 2008, Hung et al., 2009,

Hung and Wang, 2013, Liu et al., 2015], the reasons for choosing a specific margin still

remain poorly reported in practice. According to systematic reviews of published NI and

equivalence trials, margin justification was mentioned by 45.7%, 23%, 45%, 42.1% and

38% as reported by Wangge et al. [2010], Schiller et al. [2012], Rehal et al. [2016], Althu-

nian et al. [2017] and Rabe et al. [2018] respectively. These findings underline challenges

associated with the choice of a margin for NI trials. Obviously, just determination of M1

is very complex, since historical data carries publication bias and previously observed

treatment effect embeds some level of uncertainty. However, even if the standard treat-

ment effect is maintained in the current NI study and the study has assay sensitivity,

it is not clear how to choose one number M2, so that it will be clinically acceptable. A
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legitimate question that arises here is the degree of subjectivity of the margin choice.

Would it be sufficient to discuss the margin with only one clinical expert? What if an

investigator who conducts an NI study reaches out to five clinical experts and they all

provide different opinions? How should these opinions be incorporated into the current

practices of design and analysis of the study?

Since knowing the “true”, objective M2 would be extremely helpful for design and

analysis of NI trials, but the “true” margin cannot be observed, we propose to treat it

as missing information. We believe that in order to make proper inferences regarding

non-inferiority of the new treatment compared to a standard of care, while minimizing

subjectivity of the margin choice, it is imperative to conduct a survey upon clinical

experts in this regard. Such survey data can be used to make an informed decision

regarding NI of the new treatment. As a result, the reasons for the margin choice could

be easier communicated to both regulatory authorities and patients who are seeking

alternative treatment options. Moreover, using such survey data regulatory authorities

and public health officials will have a better set of tools to justify or disapprove NI of a

new treatment.

In Chapter 4, we present a general framework for combining results from a clinical

experts survey and NI study. Ideally, the clinical experts survey should consists of a

representative sample of clinicians. Obviously, such an assumption could be violated

in practice by either surveying a very small number of clinicians, and/or by obtaining

opinions of, for instance, more conservative experts. If clinicians conservatism, or lack
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of thereof, in respect to a clinical margin is related to other data for the representative

sample (professional or demographic characteristics of the clinicians), such data could

then be utilized to achieve an objective NI decision. In order to reach this goal, we

propose to use MI approach within the above framework.

1.4 Overall benefit of the new non-inferior treat-

ment

As discussed above, to outweigh a decreased effectiveness, the new non-inferior treat-

ment needs to offer advantages over the standard of care [Piaggio et al., 2012, Wangge

et al., 2013]. Several authors have recommended formal statistical procedures to simul-

taneously evaluate efficacy and safety in NI trials [Bristol, 2005, Röhmel et al., 2006,

Nishikawa et al., 2009]. Bristol [2005] discussed testing simultaneously non-inferiority

of an efficacy endpoint and superiority of a safety endpoint, and recommended using

Max Test defined by the authors. Röhmel et al. [2006] considered a problem with two

primary endpoints, where it was desired to demonstrate non-inferiority of both end-

points with superiority of at least one of them. The authors suggested using a hierarchal

type procedure comprising of the following three steps: 1) test all the endpoints for

non-inferiority, 2) show overall superiority, 3) perform one-sided superiority test of each

endpoint separately. Nishikawa et al. [2009] proposed the union-intersection test of a
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composite endpoint which was defined based on assessing non-inferiority in one end-

point and superiority in another. Also, Gladstone and Vach [2015] introduced a new

concept: advantage deficit assessment, where efficacy reduction is compared to gain in

safety using the advantage deficit ratio.

A shared feature of the above articles is the consideration of two endpoints. However,

during any clinical trial, data on multiple endpoints are being collected and compared

between the therapies under evaluation. A question that arises here is: how can benefits

and risks from a group of endpoints be evaluated, so that the new treatment is beneficial

overall? This question resembles the benefit-risk (BR) topic, which continues to receive a

lot of attention [EMEA, 2009, FDA, 2014, Thokala et al., 2016, Marsh et al., 2016, FDA,

2018, Eichler et al., 2009]. According to “Structured approach to benefit-risk assessment

in drug regulatory decision-making” draft Prescription Drug User Fee Act (PDUFA) V

implementation plan [FDA, 2014], the agency states that for any new treatment to be

approved, it needs to show that its benefits outweigh the risks. Moreover, in “Benefit-risk

assessment in drug regulatory decision making” draft PDUFA VI implementation plan,

the FDA [2018] states not only agency’s intention to conduct a structured BR assessment,

but also mentions importance of incorporating “patient’s voice in drug development and

decision-making in the human drug review program”. The European Medicines Agency

(EMEA) also mentioned the need to shift towards a quantitative BR assessment [Eichler

et al., 2009]. Efforts towards implementation of such assessment are evident from “The

benefit-risk methodology project” by EMEA [2009], that led to publication of several
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working packages [EMEA, 2011, Phillips et al., 2011a,b, 2012, 2014].

Various methods exist for structured BR assessment. Mt-Isa et al. [2016] provides

a summary of systematic reviews in this regard. The authors report on quantitative

methods that were previously reviewed by the following authors: Guo et al. [2010],

Phillips et al. [2011a], Puhan et al. [2012], TORPA [2012], and Mt-Isa et al. [2014]. The

multi-criteria decision analysis (MCDA) was reported as the only method, which was

both reviewed by each of the above authors, and recommended by two, including EMEA

[Phillips et al., 2011a]. The International Society for Pharmacoeconomics and Outcomes

Research (ISPOR) issued a two-part report for “MCDA Emerging Good Practices Task

Force” [Thokala et al., 2016, Marsh et al., 2016]. The ISPOR report described MCDA

as a “useful tool” for BR assessment. Moreover, it provided examples of various types

of health care decisions that were supported using MCDA [Thokala et al., 2016], which

underlines the flexibility and generality of this approach.

MCDA for BR assessment of medicines was first introduced by Mussen et al. [2007].

MCDA allows to combine benefit and risk criteria evidence into one overall assessment

measure using scoring and weighting of thereof [Mussen et al., 2007]. The scoring in

MCDA transforms each criteria (outcome value) into a common scale, while weighting

of the criteria specifies a relative importance of each criterion. For NI trials, such overall

assessment measure (MCDA score) could be very useful, since it would allow researchers

to claim overall benefit of a new treatment over a standard of care in spite of decreased

effectiveness in the primary endpoint.
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In Chapter 5, we develop a simple MCDA approach for structured BR assessment

of the new non-inferior treatment when compared to the standard of care using patient

level data from the NI study. With the growing recognition of the importance of pref-

erence elicitation by the patients [Marsh et al., 2017, FDA, 2018] we propose carrying

out such elicitation at the beginning of NI trials. Since patients demographic charac-

teristics and baseline disease status are likely to influence patients outcomes, as well as

patients preferences, we believe that it would be beneficial to study these within the

same trial. The introduction of any questionnaire is likely to increase the burden on the

study participants, and investigators, as well as, on the sponsor conducting the study.

Therefore, we suggest gathering preferences information only on a random sample of the

trial patients, and using MI analysis to create an overall BR assessment. It should be

noted that up to now there is limited evidence regarding the actual use of the patient

preference in the decision-making process for medical product lifecycle [van Overbeeke

et al., 2019].

1.5 Contribution of this dissertation

The main goal of this dissertation is to present innovative methods and practical solutions

to issues faced in the design, analysis, and interpretation of NI clinical trials. Each

Chapter presented here contributes to this goal. In Chapter 2, we provide a set of

recommendations for incomplete data analysis along with a novel approach for analysis
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of data under MNAR. This contributes towards better analysis practices of NI trials.

In Chapter 3, we introduce MI combination rules for difference in binomial proportions,

when the NW method is used. Although we use this method for analysis of NI trials and

therefore contribute towards better analysis of such trials, it is a general methodology

which is useful for other applications as well. In Chapter 4 we present a new framework

for incorporating different clinical experts opinions regarding NI margin into design and

analysis of NI trials. While in Chapter 5, we develop a simple BR assessment approach

for evaluation of overall benefit of non-inferior treatment. Both Chapter 4 and 5 advance

design, analysis and interpretation of NI clinical trials. We hope, that practitioners who

are involved with NI trials would find the research done in this dissertation helpful for

their own work.
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Chapter 2

Incomplete data analysis of NI

clinical trials: difference in binomial

proportions case

2.1 Background

In this Chapter, we focus on incomplete data analysis for NI clinical trials. We assess

the difference in binomial proportions case due to the reasons stated in Chapter 1.

We evaluate best and worst-case scenario imputation, CCA and two-stage MI. Best

and worst-case scenario imputations and CCA strategies were chosen because these are

frequently used in practice for analysis of incomplete NI and equivalence clinical trials

data [Rabe et al., 2018].

Both best-case and worst-case scenario strategies were employed only for the MCAR

missingness mechanism. It was expected that these two strategies would inflate type-I

errors, since they make the two treatment groups more alike, which is anti-conservative in



18

NI trials. It is well known that while CCA generates unbiased estimates under MCAR,

it is generally not the case for MAR [Little and Rubin, 2014]. Conventional MI, on

other hand, produces unbiased results under both MCAR and MAR [Little and Rubin,

2014], and therefore is usually recommended over CCA. Despite this, there are still

certain conditions under which CCA would result in unbiased estimates under MAR

and therefore could be safely used [Bartlett et al., 2015]. The advantage of conventional

MI over CCA for NI trials assessing difference in binomial proportions under MAR was

previously shown by Lipkovich and Wiens [2017] in terms of unbiasedness and control of

the type-I error. The authors, however, did not evaluate cases in which CCA provides

unbiased estimates of the treatment effect. Therefore, we explore such conditions here.

In addition, conventional MI may result in biased estimates under MNAR unless relevant

auxiliary variables are included in the imputation model [Collins et al., 2001, Demirtas

and Schafer, 2003]. The inflation of type-I error for NI trials under MNAR, when

analyzed with conventional MI was reported by Lipkovich and Wiens [2017]. To resolve

the issue of type-I error inflation for NI trials under MNAR, we propose using the two-

stage MI procedure described in Section 2.2.
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2.2 Methods

2.2.1 Confidence intervals for difference in proportions

Let Yij ∼ Bernoulli(pi) be an occurrence of a favorable event (such as healing from

a disease) for subject j, in a treatment group i. j = 1 . . . ni, where ni is a sample

size of group i and i = Con, Trt represents control (or standard), and new treatment

respectively. pi is the true proportion of favorable events in group i.

The hypothesis we are interested in testing is of the following form:

H0 : pCon − pTrt ≥M2 vs H1 : pCon − pTrt < M2 , (2.1)

where M2 represents a pre-defined margin as described in Chapter 1, which is assumed

to be positive M2 > 0. H0 will be rejected at the pre-specified α level if the upper bound

of the 100(1 − α)% CI for pCon − pTrt is below M2. As described in Chapter 1, Wald,

FM and NW methods for CI construction were used, since these are the most commonly

used methods in practice.

Let p̂Con = 1
nCon

nCon∑
j=1

YCon,j, p̂Trt = 1
nTrt

nTrt∑
j=1

YTrt,j be maximum likelihood estimates

(MLEs) for pCon, pTrt respectively, and let zα/2 be the upper α/2 quantile of a standard

normal distribution. The approximate 100(1 − α)% CI for pCon − pTrt using the Wald
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method has the following form:

p̂Con − p̂Trt ± zα/2

√
p̂Trt(1− p̂Trt)

nTrt
+
p̂Con(1− p̂Con)

nCon
. (2.2)

The FM method has a similar form to that of Wald’s CI, with the only difference

at the variance term estimation, where p̃Con, p̃Trt are maximum likelihood estimates of

pCon, pTrt respectively under the restriction of the null hypothesis in (2.1) [Farrington

and Manning, 1990]:

p̂Con − p̂Trt ± zα/2

√
p̃Trt(1− p̃Trt)

nTrt
+
p̃Con(1− p̃Con)

nCon
. (2.3)

Finally, the NW method is based on the Wilson’s score method for a single proportion

[Wilson, 1927, Newcombe, 1998]. Let LB,UB be a lower and an upper 100(1− α)% CI

bounds for pCon − pTrt respectively, defined as:

LB = p̂Con − p̂Trt −
√

(p̂Con − lCon)2 + (uTrt − p̂Trt)2 , (2.4)

UB = p̂Con − p̂Trt +
√

(uCon − p̂Con)2 + (p̂Trt − lTrt)2 , (2.5)

where

[lCon, uCon] =
(
p̂Con +

z2
α/2

2nCon
± zα/2

√
p̂Con(1− p̂Con)

nCon
+

z2
α

4n2
Con

)
/
(

1 +
z2
α/2

nCon

)
, (2.6)
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[lTrt, uTrt] =
(
p̂Trt +

z2
α/2

2nTrt
± zα/2

√
p̂Trt(1− p̂Trt)

nTrt
+

z2
α

4n2
Trt

)
/
(

1 +
z2
α/2

nTrt

)
. (2.7)

2.2.2 Multiple imputation

As mentioned in Chapter 1, MI is a principled approach, which could be applied for

both ignorbale and non-ignorable missingness processes. When the missingness is non-

ignorable, a missingness model needs to be specified. In practice, an exact specification

of such a model is difficult, if not impossible, as it relies on a set of unverifiable assump-

tions. Thus the imputation model could be considered missing, and be multiply imputed

together with subject-level data using two-stage MI [Siddique et al., 2012, 2014]. This

approach incorporates uncertainty associated with both the imputation model and the

imputed subject-level data into the final inference using simple arithmetic combination

rules [Shen, 2000, Reiter and Raghunathan, 2007, Siddique et al., 2012, 2014].

We will drop treatment and patient related indexes for the following description of MI

procedure for simplicity. Let Ycom represent completely observed data, which could be

decomposed into Ycom = (Yobs, Ymis) observed and missing data respectively, and let R be

an indicator specifying when the data are observed/missing. Also, let θ be a parameter

of interest, and φ be a nuisance parameter which characterizes the distribution of the

missing data mechanism (R). The goal is to make inferences about P (Ycom|θ), however,

because some data are incomplete, a missing data mechanism needs to be considered as

well. As a result we have the following joint model:
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P (Ycom, R, θ, φ) = P (Ycom|θ)P (R|Ycom, φ)P (θ, φ) . (2.8)

When using MI, the general imputation model is based on the predictive distribu-

tion of Ymis given observed data Yobs, and missingess indicator (R) using the following

integration of the unknown parameters θ and φ as follows:

P (Ymis|Yobs, R) =

∫∫
P (Ycom, R, θ, φ)

P (Yobs, R)
dθdφ . (2.9)

Replacing the numerator in (2.9) by (2.8), (2.9) becomes:

P (Ymis|Yobs, R) =
1

P (Yobs, R)

∫∫
P (Ycom|θ)P (R|Ycom, φ)P (θ, φ)dθdφ . (2.10)

As described in Chapter 1, under ignorability assumption we have MAR and dis-

tinctness as follows:

P (R|Ycom, φ) = P (R|Yobs, φ) , (2.11)

P (θ, φ) = P (θ)P (φ) . (2.12)
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Substituting (2.11) and (2.12) into (2.10) results in:

P (Ymis|Yobs, R) = P (Ymis|Yobs) . (2.13)

Thus, under the ignorability assumption, instead of imputing from P (Ymis|Yobs, R),

one needs to impute from P (Ymis|Yobs), and “ignore” R. Since, MI commonly imple-

mented using ignorability assumption we will call it “Conventional MI” throughout the

dissertation.

However, if the incomplete data follows a MNAR mechanism, then (2.11) does not

hold and the ignorability assumption is violated. While the violation of ignorability could

also arise from non-distinctness between θ and φ, we will assume that ignorability is vio-

lated by MNAR throughout this dissertation. In this case, the missingness P (R|Ycom, φ)

needs to be modeled. Methods, which were developed specifically for non-ignorable

missingness include: selection models [Heckman, 1976, Amemiya, 1984], pattern mix-

ture models [Little, 1993], and shared parameters models [Daniels and Hogan, 2008].

The main difference between these methods is the factorization of the joint distribution

of (Ycom, R).

In addition, a simple way to generate non-ignorable imputed values (Y nonign) from

ignorable imputed values (Y ign) is using the following transformation as presented by

Rubin [2004]:
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Y nonign = a× Y ign . (2.14)

For example, if a = 1.1, we assume that conditioning on all other observed information,

missing values are still 10% greater than the observed values. Since, in our case the

sample space of Y is (0, 1), instead of using (2.14), we will adjust the probability of

ignorable imputed probability of event (p̂ign), to a non-ingorable imputed probability of

event (p̂nonign) as follows:

p̂nonign = a× p̂ign . (2.15)

As described by Siddique et al. [2012, 2014], in practice it is impossible to know the

exact imputation model, and therefore it makes sense to take into account uncertainty

associated with the choice of the model. Therefore, following previous work by Siddique

et al. [2012, 2014], we suggest specification of a distribution for a, which corresponds to

specifying a distribution of the imputation model. Such specification needs to be done

by either a study team, or by experts who collect the data.

The imputation model distribution represents the study team’s belief regarding the

magnitude of the bias in the observed rate in treatment group i, and how confident

the team is about this belief. These two values could be seen as the center of the
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missingness model distribution (µai) and its variance (σ2
ai) respectively. For example,

if the team believes the study participants were more likely to drop-out due to lack of

efficacy in the new treatment, then the team will anticipate that the observed rate in

the new treatment is greater than the actual rate. As a result µa,Trt below 1 for the new

treatment will be chosen, so that the ignorably imputed rate is closer to it’s true value.

If, for the same study, the team believes that the observed rate in the control treatment

is unbiased, then µa,Con = 1 would represent such belief. As a result, there is a separate

imputation model distribution for each treatment group: aCon ∼ N(µa,Con, σa,Con) and

aTrt ∼ N(µa,Trt, σa,Trt) for control and new treatment respectively. We chose to use a

normality assumption on the ai distributions for simplicity, although other distributions

can easily replace the normal distribution. After the imputation model distribution is

specified, we can randomly draw D models from it. Within each of the imputed models,

patient-level data can be imputed L times, resulting in D × L complete datasets.

Using either conventional MI with L complete datasets or two-stage MI with D× L

complete datasets, each of the complete datasets is then analyzed using a standard sta-

tistical method, such as methods presented above. Results from the L, or D×L analyses

are then combined using Rubin’s [Rubin, 2004] or Shen’s [Shen, 2000] combination rules

respectively, as described in the following sections.

Conventional multiple imputation combination rules

Let Q be a quantity of interest, that approximately follows a Normal distribution:
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(Q− Q̂) ∼ N(0, U) , (2.16)

where Q̂ is a complete data statistic estimating Q, and U is a complete data statistic

for the variance of Q− Q̂. We will further assume, that the dataset is imputed L times,

so that (Q̂(l), U (l)) represent the estimate and variance of Q respectively from the lth

imputed dataset (l = 1, . . . , L). Using Rubin’s combination rules [Rubin, 2004], the L

pairs of estimates are then combined as described below.

Let Q̄ be the overall mean of the L estimates:

Q̄ =
1

L

L∑
l=1

Q̂(l) . (2.17)

Also let Ū , B be the sources of variability, defined as the overall mean of the associated

variance estimates, and between model variance terms respectively. Specifically:

Ū =
1

L

L∑
l=1

U (l) , (2.18)

B =
1

L− 1

L∑
l=1

(Q̂(l) − Q̄)2 . (2.19)
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The overall variance T is then defined as:

T = Ū + (1 +
1

L
)B . (2.20)

The final inferences of the multiply imputed data are based on Student’s t distribu-

tion:

Q− Q̄√
T
∼ tν , (2.21)

where ν = (L− 1)(1 + Ū
B(1+1/L)

)2.

Two-stage multiple imputation combination rules

The premise specified in (2.16) still holds for the two-stage MI, with the only differ-

ence being that, following D × L imputations, we now have D × L pairs of estimates

(Q̂(d,l), U (d,l)) (d = 1, . . . , D, l = 1, . . . L) of Q and variance of Q̂−Q respectively. Using

Shen’s combination rules [Shen, 2000], these pairs of estimates are then combined as

described below.

Let Q̄2 be the overall mean of the D × L estimates:

Q̄2 =
1

DL

D∑
d=1

L∑
l=1

Q̂(d,l) . (2.22)
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Also let Q̄d be the mean of the estimated from the dth model:

Q̄d =
1

L

L∑
l=1

Q̂(d,l) . (2.23)

Let Ū2,W,B2 be the three sources of variability, defined as the overall mean of the

associated variance estimates, within-model and between model variance terms respec-

tively. Specifically:

Ū2 =
1

DL

D∑
d=1

L∑
l=1

U (d,l) , (2.24)

W =
1

D(L− 1)

D∑
d=1

L∑
l=1

(Q̂(d,l) − Q̄d)
2 , (2.25)

B2 =
1

D − 1

D∑
d=1

(Q̄d − Q̄2)2 . (2.26)

Finally, the total variance of Q− Q̂ has the following form:

T2 = Ū2 + (1 +
1

D
)B2 + (1− 1

L
)W . (2.27)

The final inferences of the multiply imputed data are based on Student’s t distribu-

tion:
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Q− Q̄2√
T 2

∼ tν2 , (2.28)

where ν−1
2 =

[
(1+ 1

D
)B2

T2

]2
1

D−1
+
[

(1− 1
L

)W

T2

]2
1

D(L−1)
.

As stated previously, in this part of the dissertation, two-stage MI was used for

MNAR. Therefore, we set Q̂(d,l) = p̂(d,l), where p̂(d,l) is the estimated proportion of

difference between control and new treatment from lth imputation and dth model. For

Wald and FM, the value of U (d,l) was set to the corresponding variance term used in

the method as presented under the square root in (2.2) and (2.3). For NW, Q̄2 for each

treatment group was plugged into (2.4 - 2.7). It should be noted, that in Chapter 3 we

develop a proper method for combining MI results for the NW method.

2.2.3 Simulation study

Simulation of fully observed data

In total, 30 NI clinical trials scenarios were considered. The pCon values were set to

the range between 0.6 and 0.95 by increments of 0.05. The M2 values were set to:

0.05, 0.075, 0.1, 0.15 and 0.2. All possible combinations of the above margins (M2) and

probabilities (pCon) were used, excluding cases where margin was greater or equal to

the corresponding failure rate (1 − pCon). A margin equal to the corresponding failure

rate would mean that the usage of a new treatment doubles a failure rate of the treated
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condition. Therefore, a margin greater or equal to the corresponding failure rate, was

redefined as half of the original margin. Due to the high volume of the results, we present

here only 9 of the 30 scenarios, which are representative of the rest of the results. In

addition, we assumed a one-sided type-I error of 2.5%, power of 90%, and 1:1 group

allocation ratio.

Since different methods for comparison of binomial proportions might require differ-

ent sample sizes [Julious and Owen, 2011], sample sizes were calculated for each method

separately using assumptions of the scenarios above. For Wald and FM methods, the

sample size calculations were performed by inversion of the corresponding CI formulas

[Julious and Owen, 2011], while sample sizes for WN were estimated based on 5000

simulations. As a result the sample size per arm (n) ranged between 98 to 2017 patients

(Appendix A, Figure A1).

The outcome variable Y (subscripts are omitted for simplicity) was simulated for each

subject using a logistic function of treatment group (Grp = 0 for control treatment,

Grp = 1 for the new treatment) and two continuous baseline covariates (X1, X2) as

follows:

P (Y = 1) = [1 + e−(αy+β1∗X1ij+β2∗X2ij+βGrpout∗Grpij)]−1 . (2.29)

Further details regarding parameters setting in the above model are provided in
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(Appendix A, Section A.2). The total number of simulated trials per scenario and

method under each hypothesis was set to 10,000 repetitions. It should be noted, that

increasing the number of repetition did not alter the results.

Simulation of incomplete data

Let Rij be a missing indicator variable for outcome Yij, such that Rij = 1 indicates

that the outcome for patient j in group i is missing while Rij = 0 means that the

outcome for that patient is observed. Upon a generation of the complete datasets, the

missing outcome values were imposed using the following logistic function (subscripts

are omitted for simplicity):

P (R = 1) = [1 + e−(α+βGrp∗Grp+βY ∗Y+βGrpY ∗Grp∗Y+βX2
∗X2)]−1 . (2.30)

Parameters βGrp, βY , βGrpY , βX2 represent effects of treatment group, outcome, treat-

ment group by outcome interaction and baseline covariateX2 on missingness respectively.

In order to impose a specific missingness mechanism (MCAR, MAR and MNAR), dif-

ferent parameter values were used. The overall drop-out rates were set to 5%, 10%, 15%

and 20%.

For MCAR, all model parameters but α were set to 0 (α = −log( 1
DO
− 1), DO is a

target drop-out rate). For MAR, βX2 was set to βX2 = 1.5, while βGrp ranged between

-0.9 to 0.9 in order to assess unbalanced levels of drop-out rates of 5-15% between the
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treatment groups. MNAR was set up to implement scenarios where dropping out of the

study is associated with either lack of efficacy in the new treatment or with overwhelming

efficacy in the control treatment, therefore both βY , βGrpY were set to non-zero values.

These two conditions were considered for MNAR, as both would lead to the observed

difference between the treatments appearing smaller than it actually is, which leads to

an incorrect study conclusion.

2.2.4 Analysis Strategies for Incomplete Data

As discussed in Section 2.1, the following strategies were considered for the incomplete

data analysis: best-case and worst-case scenario imputation, CCA and two-stage MI us-

ing multiple imputation chained equations (MICE) [Buuren and Groothuis-Oudshoorn,

2010].

Both best-case and worst-case scenario strategies were employed only for the MCAR

missingness mechanism. It was expected that these two strategies would inflate type-I

errors, since they make the two treatment groups more alike, which in turn makes it

easier to reject the null hypothesis presented in (2.1).

Due to the results provided by Bartlett et al. [2015], it was expected that a CCA

strategy would lead to unabised estimates of pCon and pTrt under MAR, as specified

below (for simplicity we drop the indexes):
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P (Y = 1|X1 = x1, X2 = x2, Grp = i, R = 0) =

P (R = 0|x1, x2, Grp = i, Y = 1)

P (R = 0|x1, x2, Grp = i)
P (Y = 1|x1, x2, Grp = i) .

(2.31)

It is easy to see that if P (R = 0|x1, x2, Grp = i, Y = 1) = P (R = 0|x1, x2, Grp = i),

i.e., if missingness of the outcome variable follows MAR process, then:

P (Y = 1|X1 = x1, X2 = x2, Grp = i, R = 0) = P (Y = 1|x1, x2, Grp = i) . (2.32)

For MNAR missingness process, it was expected that single value imputation meth-

ods, or CCA would produce biased results with inflated type-I error rates. Although,

conventional MI might produce unbiased estimates when relevant auxiliary variables are

used [Collins et al., 2001, Demirtas and Schafer, 2003], our simulation set-up did not

address such a situation and therefore we anticipated that conventional MI would not

be able to provide unbiased estimates for MNAR. In order to properly analyze the in-

complete data that follows such missingness process, we used tthe two-stage MI method

described above. Two-stage MI was compared to CCA rather than to conventional MI,

due to the fact that both CCA and conventional MI ought to produce biased estimates

and because CCA is an easy and dominant approach in clinical trials.

As specified in the previous section, two MNAR situations were simulated: drop-out
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due to lack of efficacy in the new treatment and drop-out due to overwhelming efficacy

in the control treatment.

For the first situation, it was expected that the observed rate in the new treatment

group will be higher than it actually is, while the observed rate in the control group will

be unbiased, therefore we specified aTrt ∼ N(µaTrt, 0.05) where µaTrt was chosen below

1 and aCon ∼ N(1, 0). In contrast, in the second situation, it was expected that the

observed rate in the control group was lower than it actually is, while the observed rates

in the new treatment will be unbiased, therefore we set aCon ∼ N(µaCon, 0.05), where

µaCon was chosen above 1 and aTrt ∼ N(1, 0).

Similar to Siddique et al. [2014], L was set to 2, and D was set to 100. The multiple

imputation of the subject-level data within each imputed missingness model (randomly

drawn values of aTrt, aCon) was performed using MICE with the two baseline covariates

specified above. We also performed sensitivity analysis for a, by specifying different

values for µaTrt, µaCon and doubling the standard deviation.

2.2.5 Evaluation Criteria

The Wald, FM and NW performances, along with the analysis strategies used to handle

incomplete data, were assessed using empirical type-I error, empirical power, and mean

relative bias. Type-I error was estimated by the proportion of trials that reject H0

in (2.1) out of the trials simulated under H0 : pCon = M2 + pTrt, and was considered

appropriately controlled if it fell within [0.9α, 1.1α] = [0.0225, 0.0275] bounds [Roebruck
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and Kühn, 1995, Dann and Koch, 2008]. Power was estimated by the proportion of trials

that reject H0 in (2.1) out of the trials simulated under H1 : pCon = pTrt. A relative bias

was defined under H0 : pCon = M2 + pTrt as (p̂Con − p̂Trt −M2)/M2 per repetition. A

result was considered unbiased if the mean relative bias fell within [−0.1, 0.1] bounds.

The negative bias implies that the new treatment (Trt) is worse than it appears, thus a

non-inferiority of the new treatment may be incorrectly inferred.

The simulations presented in this Chapter, as well as in the following Chapters of the

dissertation were done using R with reproducible code available on the author’s github

page.

2.3 Results

2.3.1 Missing completely at random

Table 1 presents empirical type-I errors, and mean relative bias for MCAR data under

different study scenarios, as well as empirical type-I errors for fully observed data. Re-

sults presented in this table correspond to overall drop-out rate of 20%, as these are

representative for lower drop-out rates. Also, since the three CI methods showed very

similar results, only the Wald method is presented for MCAR. Columns “Full”, “Worst”,

and “CCA” under “Type-I” in the Table 1 correspond to the empirical type-I error re-

sults for fully observed data, incomplete data analyzed using worst-case imputation, and

CCA strategies respectively. Also columns “Worst”, and “CCA” under “Bias” in the
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Table 1 correspond to the mean relative bias results for incomplete data analyzed using

worst-case imputation and CCA strategies respectively. For example, the first row of

Table 1 corresponds to the scenario in which pCon is 0.65, M2 is 0.05, the type-I error of

the completely observed data is 0.026, while the type-I error for incomplete data ana-

lyzed using worst-case imputation is 0.103 with mean relative bias of -0.214, and type-I

error for CCA is 0.029 with mean relative bias of -0.019. As can be seen across different

scenarios in Table 1, the worst-case scenario imputation strategy produced inflated type-

I error rates that were more than double that of the completely observed data, along

with significantly biased estimates. In contrast, CCA produced unbiased estimates with

type-I errors being either within the pre-specified range of [0.0225, 0.0275] or very close

to it.

Table 1: Empirical type-I errors and mean relative bias for MCAR, DO=20%, worst-case
imputation scenario and CCA strategies, Wald method

Type-I Bias
pCon M2 Full Worst CCA Worst CCA
0.65 0.05 0.026 0.103 0.029 -0.214 -0.019
0.65 0.10 0.027 0.093 0.028 -0.210 -0.016
0.65 0.15 0.025 0.090 0.026 -0.211 -0.015
0.75 0.05 0.025 0.079 0.026 -0.201 -0.002
0.75 0.10 0.026 0.087 0.029 -0.205 -0.004
0.75 0.15 0.023 0.084 0.025 -0.209 -0.009
0.80 0.15 0.024 0.074 0.026 -0.212 -0.011
0.85 0.05 0.023 0.066 0.024 -0.194 0.008
0.85 0.10 0.028 0.067 0.026 -0.198 0.003

Due to the significant inflation of type-I error for worst-case imputation method,

empirical power was calculated for the CCA strategy only. As expected, the power
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decreases with higher drop-out rates, dropping to 81.5% (Appendix A, Figure A2).

Results for best-case scenario imputation were very similar to the worst-case scenario

and therefore are omitted.

2.3.2 Missing at random

Figure 2 presents results from 9 scenarios for empirical type-I errors under MAR with

balanced drop-out rates, analyzed using CCA. Each box in the Figure corresponds to a

different scenario as specified in the grey title at the top of the box. For instance, the

top right box corresponds to the scenario with M2 = 0.05, pCon = 0.85, and n = 1071.

In addition, the dashed lines in each box represent bounds for contorlled type-I error,

as specified in Section 2.2, and different dot colors represent different CI construction

methods. If a dot lies within the dashed lines, it means that the type-I error is controlled.

As can be seen in Figure 2, empirical type-I errors were well controlled in most of the

scenarios by the three methods. In addition, this strategy (CCA) resulted in unbiased

estimates, while the empirical power went down to 81.7% (Appendix A, Figure A3). For

unbalanced drop-out rates, as expected CCA showed slight deviations from the desired

level of the type-I error, with maximal empirical type-I error equal to 0.0419 for the

overall drop-out rate of 20%, when the drop-out rates between the treatment groups

differed by 15% (Appendix A, Figure A4). Nevertheless, the mean relative bias fall

within the specified bounds for all of the scenarios, methods, and drop-out rates (results

for balanced drop-out rates and overall 20% drop out rates are presented in Appendix
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A, Figures A5 and A6).
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Figure 2: Empirical type-I error CCA strategy for MAR: drop-out rates are balanced
between the treatment groups

2.3.3 Missing not at random

Figures 3 and 4 have a similar representation to that of Figure 2 above, and show

empirical type-I errors rates for incomplete data under MNAR due to lack of efficacy in

the new treatment analyzed using CCA and two-stage MI respectively. As can be seen

in Figure 3, empirical type-I errors were seriously inflated when analyzed using CCA.

However, as shown in Figure 4, this was not the case for two-stage MI, which produced

type-I errors either within the specified bounds or very close to them. In addition, for

two-stage MI, the NW method has shown less favorable results compared to the Wald

and FM approaches. To further demonstrate advantages of two-stage MI over CCA
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for MNAR, we present mean relative bias in Table 2 for drop-out rate of 20% when

using Wald method. The corresponding mean relative bias results for the other two

methods were similar to Wald and therefore are omitted here. The first two columns of

the Table (pCon and M2) correspond to the scenario assumptions, i.e. event probability

in the control treatment and clinically acceptable margin respectively. The later two

columns of the Table correspond to mean relative bias following analysis using CCA and

two-stage MI, with values below -0.10 indicated biased estimates as specified in Section

2.2. For example, when pCon is 0.65 and M2 is 0.05, the mean relative bias with CCA

strategy is -0.897, while it is only -0.032 with two-stage MI. Overall, as can be seen in

Table 2, the CCA strategy produced biased results for all the scenarios, while two-stage

MI resulted in unbised estimates. In addition, while the mean relative bias was of a

smaller magnitude for lower drop-out rates, CCA still resulted in biased estimates in

most cases, while two-stage MI showed unbiased estimates (Appendix A, Table A1).

The empirical power based on the two-stage MI was below the desired level of 0.9 with

a lowest rate of 65.8% for overall drop-out rate of 20% (Appendix A, Figure A7). This

is not surprising due to variability introduced through the MI procedure. Results from

MNAR due to overwhelming efficacy in the control treatment were similar in terms of

type-I errors, bias and power to the MNAR due to lack of efficacy in the new treatment

(Appendix A, Figures A8-A10, and Table A2).

In addition, it should be noted that the only scenario (out of 30), which produced

unfavorable results for MNAR when the drop-out rates are due to lack of efficacy in
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Figure 3: Empirical type-I errors, CCA strategy for MNAR due to lack of efficacy in
Trt
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Figure 4: Empirical type-I errors, two-stage MI strategy via MICE for MNAR due to
lack of efficacy Trt

the new treatment and the analysis strategy is two-stage MI was the scenario with the

highest pCon and lowest M2 (pCon = 0.95, M2 = 0.025). The comparison between the
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Table 2: Mean relative bias for MNAR due to lack of efficacy in Trt, DO=20%, CCA
and two-stage MI strategies, Wald method

pCon M2 CCA MI
0.65 0.05 -0.897 -0.032
0.65 0.10 -0.453 0.015
0.65 0.15 -0.300 0.022
0.75 0.05 -0.852 -0.038
0.75 0.10 -0.458 0.000
0.75 0.15 -0.319 0.055
0.80 0.15 -0.328 0.019
0.85 0.05 -0.709 -0.068
0.85 0.10 -0.422 -0.001

type-I error rates, as well as mean relative bias between the two analysis strategies for

MNAR due to lack of efficacy in Trt using different methods and different drop-out rates

is presented in Table 3. For example, the empirical type-I error for 5% drop-out with FM

method was 0.086 when analyzed using CCA and 0.044 when analyzed with two-stage

MI. Overall, as can be seen in Table 3, the results from two-stage MI performed better

than CCA.

In Figure 5, we present a sensitivity analysis for the choice of distribution of imputa-

tion models specified by multiplier aTrt. Although type-I error rates are affected by the

choice of the imputation model distribution, in all the cases the type-I errors are much

smaller than the one observed for CCA strategy (solid black horizontal line).



42

Table 3: Empirical type-I errors and mean relative bias for scenario with pCon =
0.95, M2 = 0.025, MNAR due to lack of efficacy in Trt.

Method DO Strategy Empirical type-I error Mean relative bias
FM 5% CCA 0.086 -0.206
FM 5% MI 0.044 -0.106
Wald 5% CCA 0.090 -0.206
Wald 5% MI 0.044 -0.106
NW 5% CCA 0.086 -0.207
NW 5% MI 0.054 -0.108
FM 10% CCA 0.199 -0.392
FM 10% MI 0.051 -0.195
Wald 10% CCA 0.209 -0.392
Wald 10% MI 0.052 -0.195
NW 10% CCA 0.210 -0.395
NW 10% MI 0.096 -0.196
FM 15% CCA 0.359 -0.548
FM 15% MI 0.039 -0.252
Wald 15% CCA 0.360 -0.549
Wald 15% MI 0.042 -0.252
NW 15% CCA 0.363 -0.552
NW 15% MI 0.141 -0.256
FM 20% CCA 0.497 -0.678
FM 20% MI 0.027 -0.289
Wald 20% CCA 0.493 -0.676
Wald 20% MI 0.026 -0.284
NW 20% CCA 0.499 -0.681
NW 20% MI 0.168 -0.290

2.4 Conclusion

In this Chapter, we present a thorough simulation study assessing different strategies for

analysis of incomplete data when an NI design is employed and the outcome of interest

is difference in binomial proportions. We evaluated three commonly used methods for

construction of confidence intervals for the difference in binomial proportions: Wald,

NW and FM.
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Figure 5: Choice of different distribution parameters for aTrt. Empirical type-I error,
two-stage MI strategy via MICE for scenario with pCon = 0.85,M2 = 0.1 for MNAR due
to lack of efficacy in Trt using Wald.

We found that both best/worst-case imputation strategies perform poorly even when

the incomplete data follows MCAR. This is due to the fact that, by treating incomplete

cases similarly for both treatment groups, we make the estimated proportions simi-

lar, which leads to erroneous conclusion of NI. According to Rabe et al. [2018] 28% of

the reviewed articles that encountered some amount of incomplete data in the primary

analysis, used single imputation strategy, including best/worst-case imputation. The

simulation results we present here along with the review results reported by Rabe et al.

[2018] are concerning. We believe that such an imputation strategy should be abandoned

when dealing with NI analysis.

Similar to previous work by Bartlett et al. [2015], we found that CCA performs

well when incomplete data follows MAR, and both baseline covariates that affect the
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missingness and the corresponding drop-out rates are balanced between treatment arms.

In addition, when the drop-outs rates were higher in the new treatment, type-I errors

might be inflated, depending on the scenario. Among cases with unbalanced drop-out

rates, the highest type-I error rate that was seen is 0.0419% for overall drop-out rate of

20% with 15% higher drop-out in the new treatment. Considering the levels of inflations

seen for MNAR and the fact that the 0.0419% rate was reached by a relatively extreme

missingness scenario, we believe that CCA could still be considered as a safe choice

for MAR incomplete data. It should be noted that if researchers assume that MAR

is affected by variables that have different levels between the treatment groups, then

a conventional MI strategy is recommended over CCA, as suggested by Lipkovich and

Wiens [2017]. The importance of the findings for MAR presented here, is to demonstrate

when CCA could be used and what assumption needs to be made in order to have a

valid inference.

Importantly, we demonstrate that while CCA performs poorly for incomplete data

under MNAR, which is also the case for conventional MI [Lipkovich and Wiens, 2017],

two-stage MI strategy produces favorable results. These results are of great importance

for practitioners who encounter incomplete data in NI clinical trials. The limitation of

this method is the specification of the distribution of the multiple imputation model,

or the multiplier. Nevertheless, according to the sensitivity analysis we performed, it is

clear that even if the parameters of the multiplier’s distribution are shifted, the type-I

error rates are still substantially lower than those seen with CCA strategy.
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The results of the empirical power were in line with our expectation. In general,

empirical power decreased with increasing drop-out rates. In terms of the difference

between the analysis methods considered here, we found that in most cases there was

no difference between the three. However, when the two-stage MI procedure was used,

NW performed worse than Wald and FM. This could be explained by the fact that we

used a plug-in method for NW, rather than a proper MI combination rules. In Chapter

3, we present a solution for this issue and show that once implemented the results of

NW become closer to the other two methods.

Although, we have looked at a variety of different scenarios, one the the limitations

of our work is that it does not cover all possible scenarios. Therefore, before finalizing

statistical analysis plan for NI trial, researchers should always consider a specific scenario

they are dealing with. Another limitation of our work it that the sample sizes that were

considered are moderate to large. We have not evaluated small sample sizes which

might require exact methods, such as a method due to Chan [1998], and thus might

have different implications when applying MI strategy.

In summary, we recommend employing the following analyses strategies when dealing

with incomplete data for NI trials assessing difference in binomial proportions: 1) if the

incomplete data follow MAR and it is reasonable to assume that the missingness is

caused by balanced baseline covariates only, then CCA could be used, 2) if the data are

MAR, but the missingness is caused by other unbalanced variables then following the

work by Lipkovich and Wiens [2017] conventional MI should be used, 3) if MNAR is
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a more reasonable assumption, then two-stage MI should be used, 4) worst/best-case

imputation should be avoided.

The main contribution of this Chapter lies within the above recommendations, which

advocate for better analysis practices of NI trials. We believe that these are useful for

practitioners who face incomplete data analysis of NI trials that assess difference in

binomial proportions.
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Chapter 3

Difference between binomial

proportions using Newcombe’s

method with multiple imputation

for incomplete data

3.1 Background

As discussed in Chapter 2, if one decides to use the NW method to analyze differences

in binomial proportions, and applies an MI procedure due to incomplete data, there are

no combination rules to properly estimate the final CI.

The NW method is an extension of the Wilson’s score method [Wilson, 1927] for CI

construction for one binomial proportion. A similar issue to the above proper combina-

tion rules following MI procedure was discussed by Lott and Reiter [2018] for Wilson’s

method. The authors presented simulation results for MCAR and MAR missingness
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mechanisms. Here, we present a proper MI procedure for the NW (MI-NW) method

for estimating CI for difference between two proportions, not only for MCAR and MAR

but also extend it for MNAR. We compare the NW-MI method developed here with the

methods used in Chapter 2, i.e., Wald, FM, and a plug-in NW method (NW-plug).

3.2 Methods

Similar to Chapter 2, Yij ∼ Bernoulli(pi) is an occurrence of a favorable event for subject

j, in a treatment group i (j = 1 . . . ni, i = Con, Trt), and pi is the true proportion

of favorable events in group i. Also, p̂Con, p̂Trt correspond to the MLEs of pCon, pTrt

respectively as defined in Chapter 2.

As mentioned above, the NW method is based on the Wilson score method for one

proportion [Wilson, 1927]. Specifically, it is assumed that the following large sample

approximation holds: p̂i|pi ∼ N(pi,
√
pi(1− pi)/ni), which in turn implies that:

P (−zα/2 <
p̂i − pi√

pi(1− pi)/ni
< zα/2) = 1− α . (3.1)

By squaring the term inside the probability in (3.1) and subsequently solving the

quadratic equation for pi, one can get the lower and upper bounds of the CI for pi as

presented in (2.6) and (2.7) for treatment Con and Trt respectively.

The derivation by Lott and Reiter [2018] is based on (3.1). The authors replaced
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the zα/2, p̂i, pi, and the denominator pi(1 − pi)/ni from (3.1) with t, Q̄i , Qi, and

Ti respectively. Q̄i , Qi, and Ti come from (2.21) after adding a subscript i for each

treatment group, and t is the upper α/2 quantile of tν distribution in (2.21). As a

result the authors presented the following formula for proper combination rules for one

binomial proportion using Wilson’s method after MI:

2Q̄i + t2

ni
+ t2ri

ni

2(1 + t2

ni
+ t2ri

ni
)
±

√√√√(2Q̄i + t2

ni
+ t2ri

ni
)2

4(1 + t2

ni
+ t2ri

ni
)2
− Q̄2

i

1 + t2

ni
+ t2ri

ni

, (3.2)

where ri = (1+1/L)Bi
Ūi

and Ūi, and Bi were previously defined in (2.18) and (2.19) respec-

tively.

3.2.1 Multiple imputation Newcombe interval - ignorable miss-

ingness

For ignorable missingness, we propose to construct CI for difference between two propor-

tions using a NW-MI method by first performing MI under ignorable assumption as de-

scribed in Chapter 2 for each group separately, and thus obtaining values Q̄Trt, rTrt, Q̄Con,

rCon, which can then be used in (3.2) to obtain lower and upper bounds (qli, qui re-

spectively) for each MI estimated proportion for pCon and pTrt. Similar to the origi-

nal Newcombe’s method for completely observed data [Newcombe, 1998], the resulting
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qlTrt, quTrt, qlCon, quCon are then used in (2.4) and (2.5) as lTrt, uTrt, lCon, uCon respec-

tively along with p̂i = Q̄i to estimate the CI for difference between two proportions

pCon − pTrt for the NW-MI method.

3.2.2 Multiple imputation Newcombe interval - nonignorable

missingness

For non-ignorable missingness, we propose to use two-stage MI described in Chapter 2.

Similar to the previous section, we perform two-stage MI for each group separately and

obtain CIs for pCon and pTrt. The lower and upper bounds of these CIs are then used to

construct a CI for the difference between proportions.

Let’s start by first introducing a properly constructed CI for one proportion using the

Wilson method with two-stage MI. It should be noted that our derivations are closely

related to, and use similar notation, as in Lott and Reiter [2018]. For simplicity we

drop subscript i in the following derivations. Based on the result of combination rules

of two-stage MI in (2.28), a (1− α)100% CI for Q is defined as:

P (−t2 ≤
Q− Q̄2√

T2

≤ t2) = 1− α , (3.3)

where t2 is an upper α/2 quantile of tν2 distribution in (2.28). Next we square the inside

probability terms in (3.3), and substitute T2 as defined in (2.27). As a result we obtain
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the following inequality:

(Q− Q̄2)2

Ū2 + (1 + 1
D

)B2 + (1− 1
L

)W
≤ t22 . (3.4)

Then by using the following: r2 = (1+1/D)B2

Ū2
and s = (1−1/L)W

Ū2
, we have:

(Q− Q̄2)2

Ū2(1 + r2 + s)
≤ t22 . (3.5)

According to Rubin [2004] it is reasonable to assume that Ū2 ≈ U . Since in the one

proportion binomial case we have U = p(1− p)/n = Q(1−Q)/n, (3.5) becomes:

(Q− Q̄2)2

(Q(1−Q)/n)(1 + r2 + s)
≤ t22 . (3.6)

By solving (3.6) for Q we get the following lower and upper bounds (q2l, q2u respec-

tively) for p:

2Q̄2 +
t22
n

+
t22r2
n

+
t22s

n

2(1 +
t22
n

+
t22r2
n

+
t22s

n
)
±

√√√√(2Q̄2 +
t22
n

+
t22r2
n

+
t22s

n
)2

4(1 +
t22
n

+
t22r2
n

+
t22s

n
)2
− Q̄2

2

1 +
t22
n

+
t22r2
n

+
t22s

n

. (3.7)
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As a result, (3.7) represents a proper CI for one proportion using the Wilson method

with two-stage MI. Based on this equation, one can construct a CI for NW-MI method

for difference between two proportions using (2.4) - (2.8). Specifically, let’s assume two-

stage MI is used to estimate CIs for pCon and pTrt separately using (3.7). Thus, we

obtain lower and upper CI bounds for pCon (q2lCon and q2uCon respectively) and pTrt

(q2lTrt and q2uTrt respectively). The values q2lTrt, q2uTrt, q2lCon, q2uCon are then used

as lTrt, uTrt, lCon, uCon in (2.4) and (2.5), respectively to obtain lower (LB) and upper

bound (UB) of CI for difference between two proportions pCon − pTrt.

It should be noted that for NW, MI prefix indicates that a multiple imputation

procedure based on either ignorable or non-ignorable assumption was implemented.

3.2.3 Simulation studies

In order to assess the performance of NW-MI method developed here and compare it to

the other three methods used in Chapter 2 we used simulation studies with the following

set-up: pCon ∈ {0.65, 0.9}, pTrt = pCon −M2, M2 ∈ {0.025, 0.1}, ni ∈ {100, 500}, and it

was assumed that nTrt = nCon. The values of pCon and M2 were chosen to represent both

mid-range and high value probabilities with small and moderate differences between the

two proportions. The sample size values where chosen to assess the impact of moderate

and large samples per group. In addition, drop-out (DO) rates were assumed to be

balanced between treatment groups and were set to induce both low (10%) and moderate

(30%) rates. As a result, we had 16 different scenarios for all possible combinations of
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the above specifications. The α level was set to 5%. Simulations were repeated 10,000

times for each scenario. It should be noted, that increasing the number of repetition did

not alter the results.

Let Rij be a missingness indicator with Rij = 1, when Yij is missing and Rij = 0,

when Yij is observed. In the following sections we explain how MCAR, MAR and MNAR

were specified and analyzed.

MCAR - simulation and analysis

MCAR missingness structure was imposed by randomly masking the values of Y to

achieve P (Rij = 1) = DO. The incomplete data were multiply imputed based on

the ignorability assumption. In other words, it was sufficient to use only observed

values of Yij in order to determine the distribution of the incomplete values of Yij, and

thus properly impute them. It should be noted that in our case the determination of

the distribution of incomplete values of Yij essentially means specifying p∗i = P (Yij =

1|Rij = 1) correctly, so we can impute these values based on Bernoulli(p∗i ) distribution.

We assumed a non-informative prior for pi ∼ U(0, 1), so that the posterior distribution

of pi was Beta(ai, bi), where ai is number of ones in group i plus one and bi is a number

of observed zeros in group i plus one. The value of p∗i was then randomly drawn from

Beta(ai, bi), and was used to determine the values of Yij for incomplete observations

using Bernoulli(p∗i ) distribution. Within each imputation, we used 1000 iterations of

Gibbs sampling to achieve convergence to a stable stationary distribution of p∗i . In total



54

we repeated this procedure L = 10 times, which resulted in 10 complete datasets, similar

to the number of imputations used by Lott and Reiter [2018]. As part of the sensitivity

analysis, we increased the number of imputations to 20, which did not alter the results.

Following the MI procedure, CI’s for different methods were constructed as described

above for NW-MI and in Chapter 2 for the other three methods.

MAR - simulation and analysis

In order to impose MAR, an additional categorical variable X was defined. Similar to

Lott and Reiter [2018], we used two types of MAR, first we assumed strong association

between X and Y , specified as follows (subscripts are dropped for simplicity): P (X =

1|Y = 1) = 0.2, P (X = 1|Y = 0) = 0.6. Then we assumed independence between X

and Y by specifying: P (X = 1|Y = 1) = P (X = 1|Y = 0) = 0.6. Due to the ignorable

missigness imposed here, MAR was imputed using the same procedure as describe for

MCAR for each value of X separately. Also, the construction of CIs was done similarly

to those done for MCAR imputed data.

3.2.4 MNAR - simulation and analysis

For MNAR, missingness was specified by making probability of missingness depend on

the outcome values for group Con as following:
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P (RCon,j = 1|YCon,j = 0) =
P (RCon,j = 1)− P (RCon,j = 1|YCon,j = 1)P (YCon,j = 1)

P (YCon,j = 0)
,

where P (RCon,j = 1|YCon,j = 0) was set to be smaller than P (RCon,j = 1|YCon,j = 1),

and P (RCon,j = 1) = DO. The probability of missingness for group Trt was set to

be independent of the Y values, i.e. P (RTrt,j = 1) = DO. As a result, the observed

difference between the estimated proportions would appear to be smaller than it actually

is.

In the situation presented here, it is clear that MI using the ignorable assumption

would not result in proper inferences. This is due to the fact that the observed difference

between the proportions would be biased as described above, whereas the unobserved

information is the source of such bias. To demonstrate this we performed MI using both

ignorable and non-ignorable assumptions. For the ignorable assumption, we simply

followed the procedure described in Section 3.2.3, since the missingness was generated

only using values of Y . For non-ignorability, we used a two-stage MI procedure as

follows.

As presented in (2.15), we can adjust an event probability estimated under ignorable

assumption (p̂igni ) by using some constant multiplier a, so that p̂nonigni will represent

probability estimated under non-ignorable assumption. The incomplete data is again

imputed for each group separately, therefore we specify ai as multiplier for group i. In
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general, specifying different multipliers per group separately allows us to assume different

missingness models for the groups, a situation that is not uncommon in practice. First we

set a distribution for ai as ai ∼ N(µi, σi). Since missingness for group Trt is essentially

ignorable we specify aTrt ∼ N(1, 0). For group Con, based on (2.15) µCon can be defined

as a link between a probability of a favorable event based on observed and non-observed

values as (the subscripts are omitted for simplicity):

P (Y = 1|R = 1) = µCon × P (Y = 1|R = 0) .

Moreover, it is easy to see that:

P (Y = 1|R = 1) =
P (Y = 1)− P (Y = 1|R = 0)P (R = 0)

P (R = 1)
, (3.8)

and

P (Y = 1) =
P (R = 0)P (Y = 1|R = 0)

P (R = 0)
. (3.9)

inserting (3.9) into (3.8) gives us:

µCon =
P (Rij = 0)

P (Rij = 1)P (Rij = 0|Yij = 1)
− P (Rij = 0)

P (Rij = 1)
. (3.10)
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The value of σCon ranged between 0.03 to 0.26 and was calibrated through simulation

of the 10,000 repeated samples that were generated for MNAR missingness process.

Specifically, within each repeated sample, we calculated the expression that appears in

(3.10), and σCon was set to be a standard deviation for these 10,000 values within each

scenario.

The values of ai’s were then randomly drawn D times from the distribution specified

above. In addition, we estimated p̂igni L times using the MI procedure presented in

Section 3.2.3, so that p̂igni = p∗i . Then, L values of p̂igni were multiplied by D values

of ai’s, so that we received D × L p̂nonigni values. Incomplete values of Yij were then

determined by Bernoulli(p̂nonigni ) distribution. As a result we received D × L complete

datasets and used two-stage MI combination rules described in Chapter 2 to summarize

them. Similar, to Siddique et al. [2012], two-stage MI for MNAR was performed using

D = 100, L = 2.

3.2.5 Evaluation criteria

The initial evaluation criteria included coverage probability, average interval width, per-

cent of cases where the interval fell outside the range of [−1, 1], and percent of cases with

zero width. Since, after completing all the simulations, we did not encounter any cases

where the interval either fell outside [−1, 1] or had zero width intervals, these evaluation

criteria are not be presented. A procedure was considered as favorable if it’s coverage

probability achieved the desired α level. Among favorable procedures, a procedure with
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the shortest CI width would be considered more advantageous. Coverage probability

was calculated as the number of times the true difference M2 fell inside the 95% CI

divided by 10,000 repetitions.

3.3 Results

Table 4 presents coverage probabilities for fully observed data for each simulation sce-

nario and method. For example, for pCon = 0.65, M2 = 0.025 and n = 100, the coverage

probability for Wald was 0.9476. As can be seen in Table 4, the coverage probability

of the fully observed data reached the desired rate of 95% for all the methods. Table

5 presents average widths of the 95% CIs for fully observed data for each simulation

scenario and method. For example, for pCon = 0.65, M2 = 0.025 and n = 100, the

average width for Wald was 0.265. As can be seen in Table 5, the average width of the

95% CIs were similar between the methods for the fully observed data.

Table 4: Coverage probability for fully observed data

pCon M2 n Wald FM NW
0.65 0.025 100 0.9476 0.9502 0.9502
0.90 0.025 100 0.9455 0.9483 0.9541
0.65 0.10 100 0.9475 0.9489 0.9489
0.90 0.10 100 0.9478 0.9481 0.9513
0.65 0.025 500 0.9526 0.9530 0.9528
0.90 0.025 500 0.9501 0.9507 0.9515
0.65 0.10 500 0.9478 0.9495 0.9495
0.90 0.10 500 0.9479 0.9482 0.9488

Figure 6 shows coverage probabilities for all the scenarios and methods under MCAR.



59

Table 5: Average width of 95% CI for fully observed data

pCon M2 n Wald FM NW
0.65 0.025 100 0.265 0.266 0.261
0.90 0.025 100 0.174 0.174 0.180
0.65 0.100 100 0.269 0.270 0.264
0.90 0.100 100 0.194 0.195 0.198
0.65 0.025 500 0.119 0.119 0.119
0.90 0.025 500 0.078 0.078 0.079
0.65 0.100 500 0.121 0.121 0.120
0.90 0.100 500 0.087 0.088 0.088

The dashed line on the Figure represents the desired coverage probability of 0.95, and

the dotted line represents coverage probability of 0.90. The drop-out rates correspond

to different colors, and sample size is represented by different shapes. A method is

considered to perform well, if its coverage probability is on the dashed line or close to

it. As can be seen on Figure 6, NW-MI, Wald and FM show coverage rates close to the

desired level. Importantly, the three methods outperform NW-plug, which has coverage

rates between 89.2% to 90.4% for drop-out rate of 30%, and between 93.3% to 94.3% for

drop-out rate of 10%. Average CI widths for MCAR are presented in Figure 7, as can be

seen NW-plug had a shorter CI width than the other methods across all the scenarios.

Figure 8 has a similar presentation as Figure 6, and shows coverage probabilities for

MAR with highly correlated X and Y . As can be seen in Figure 8, NW-plug showed

coverage rates below 90% for drop-out rates of 30% for most of the scenarios, while the

coverage rates for drop-out of 10% were between 92.8% and 94.1%. In contrast, NW-MI,

Wald and FM demonstrated coverage probabilities which either achieved or were above
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Figure 6: Coverage probability for MCAR (Dashed line represents the desired coverage
probability of .95, dotted line represents covarage probability of .90.)
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Figure 7: Average width of 95% confidence intervals for MCAR

the desired level of 95%. Average CI widths for MAR with highly correlated X and Y

are presented in Figure 9. As can be seen in Figure 9, similarly to MCAR, the average

CI widths were shorter with MI-plug than with the other methods. Results for MAR
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with independent X and Y are similar to the results for MAR with highly correlated X

and Y , and therefore are presented in Appendix B (Figures B1, B2).
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Figure 8: Coverage probability for MAR with highly correlated X and Y (Dashed line
represents the desired coverage probability of .95, dotted line represents coverage probability
of .90.)

As stated previously, MNAR data were analyzed using the non-ignorable assumption.

Figure 10 has similar presentation to that of Figure 6, and shows coverage probabilities

for MNAR. As can be seen in Figure 10, the coverage rates for the drop-out of 10%

were at or close to the desired level of 95% for NW-MI, Wald, and FM methods, while

these were between 92.7% and 94.3% for NW-plug. For the 30% drop-out, the coverage

probability ranged between 92% and 94.5% for FM, between 92% and 94.2% for MI-

Wald, between 91.3% and 93.9% for MI-NW, and between 84.5% and 89.4% for MI-plug

(Figure 10). Average CI widths results were again similar to the ones produced for

previous missingness mechanisms (Appendix B, Figure B3).
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Figure 9: Average width of 95% confidence intervals for MAR with highly correlated X
and Y

In order to demonstrate advantages of non-ignorable NW-MI over the ignorable one

under MNAR, we present coverage rates of these approaches for all the simulation sce-

narios and drop-out rates in Table 6. In addition, the last column in the Table shows

differences between the coverage probabilities obtained from non-ignorable MI and the

coverage probabilities obtained from ignorable MI, so that a positive difference indicates

a higher coverage for non-ignorable MI. For example, when pCon = 0.65, M2 = 0.10, n =

500, DO = 0.30, the coverage rate with non-ignorable MI is 74.2% higher than the cor-

responding coverage rate with ignorable MI. As can be seen in Table 6, the coverage

rates obtained from non-ignorable MI were closer to the nominal coverage of 95% than

those based on ignorable MI for all scenarios.
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Figure 10: Coverage probability for MNAR analyzed based on non-ingorable assumption
(Dashed line represents the desired coverage probability of .95, dotted line represents coverage
probability of .90.)

Table 6: Comparison of coverage probabilities estimated under non-ignorability and
ignorability assumption for MNAR using NW-MI method

pCon M2 n DO CP non-ignorable MI CP ignorable MI CP difference
0.65 0.025 100 0.10 0.9442 0.9330 0.0112
0.65 0.025 100 0.30 0.9187 0.7451 0.1736
0.65 0.025 500 0.10 0.9414 0.8777 0.0637
0.65 0.025 500 0.30 0.9131 0.1640 0.7491
0.65 0.10 100 0.10 0.9432 0.9317 0.0115
0.65 0.10 100 0.30 0.9259 0.7449 0.1810
0.65 0.10 500 0.10 0.9486 0.8815 0.0671
0.65 0.10 500 0.30 0.9197 0.1776 0.7421
0.90 0.025 100 0.10 0.9535 0.9530 0.0005
0.90 0.025 100 0.30 0.9331 0.9263 0.0068
0.90 0.025 500 0.10 0.9455 0.9358 0.0097
0.90 0.025 500 0.30 0.9209 0.7680 0.1529
0.90 0.10 100 0.10 0.9520 0.9505 0.0015
0.90 0.10 100 0.30 0.9394 0.9253 0.0141
0.90 0.10 500 0.10 0.9488 0.9418 0.0070
0.90 0.10 500 0.30 0.9354 0.7956 0.1398
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3.4 Conclusion

In this Chapter, we extended the previously developed proper combination rules for

estimating CI for one binomial proportion using the Wilson method with MI [Lott and

Reiter, 2018] to estimate CIs for difference between two proportions. Moreover, we

developed a proper two-stage MI procedure for constructing CIs using the NW method

when the incomplete data follows a MNAR missingness mechanism. We compared the

performance of our method to NW-plug, Wald and FM methods in terms of coverage

probability and CI width using several simulation scenarios. We showed that the NW-

plug method had coverage rates below the desired rate, and lower than the other three

methods. The results for NW-MI, Wald and FM were comparable. For MCAR and

MAR, we showed that the coverage probabilities for NW-MI, Wald, and FM were at the

desired level of 95% for pC = 0.6. Moreover, for pC = 0.9, we observed that for both

MCAR and MAR, the coverage probabilities for NW-MI, Wald and FM were either

at or above 95%. Importantly, we showed the advantage of using two-stage MI over a

conventional MI in terms of the coverage rates. In terms of the average width, NW-

plug showed the shortest CIs, while the other three methods had comparable average

CI widths.

As a result of the above evaluation, NW-MI, Wald and FM are recommended over

NW-plug. Following this, we implemented NW-MI for one of the scenarios from Chapter

2 (M2 = 0.05, pCon = 0.85, n = 1071) for MNAR due to lack of efficacy in Trt. As can
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be seen in Figure 11 the results of NW-MI are now comparable with Wald and FM as

expected.
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Figure 11: Empirical type-I errors, two-stage MI strategy via MICE for MNAR due to
lack of efficacy in Trt, following NW-MI implementation

The limitation of our evaluation is that we could only assess a set of scenarios, which

although are representative of many applied research problems, do not cover all possible

scenarios. In addition, we did not assess performance of the methods presented here for

small sample sizes. The reason for that is that all the methods we used here are based on

Normal approximation, and in general are known to perform well for completely observed

data for sample sizes above 50 [Brown and Li, 2005]. Nevertheless, for smaller sample

sizes exact CI construction methods, e.g. Clopperr-Pearson [Clopper and Pearson, 1934]

could be more favorable, however the exact methods are outside of the scope of this work.

We believe that the new methods presented here could be very useful in practice.
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First of all, in many areas of applied research the outcome of interest is the difference

between two proportions. Second, many studies encounter incomplete observations and

have to make inferences given the data they observe. While it is impossible to test the

incomplete data for ignorable vs non-ignorable missingness assumption, the ignorability

assumption needs to be explicitly stated and consequently translated into a proper type

of analysis [Sidi and Harel, 2018]. The contribution of the Chapter is two-fold: first we

extend on the previous research conducted by Lott and Reiter [2018], second we propose

a relatively simple method which can be used for non-ignorable missingness.
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Chapter 4

Non-inferiority clinical trials:

treating margin as missing

information

4.1 Background

As described in Chapter 1, the choice of clinically acceptable margin (M2) continues to

be a major issue for the design and interpretation of NI trials. The fixed margin approach

described in Chapter 1 is illustrated in Figure 12. The upper part of this Figure presents

a historical comparison of the standard treatment to placebo to determine the value of

M1, which is the entire effect of the standard treatment over placebo. Following that,

M2 is chosen by clinical experts, its value is presented in the bottom part of the Figure.

It should be noted that M2 is lower than M1. In order for the new treatment to be

non-inferior, the CI in NI trial needs to be below M2. In addition, several scenarios for

the NI trial comparing the standard treatment to the new test treatment are presented
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in the bottom part of Figure 12. In those scenarios NI is concluded for the CIs with

blue point estimates, while the CI with a red point estimate corresponds to inferiority

of the new test treatment. Since different values of M2 can lead to different conclusions,

a proper determination of the clinically acceptable margin is essential for NI trials.

In this Chapter, we propose to treat M2 as missing information. We propose a survey

among clinical experts in order to determine the objective value of the margin, as well as

variability associated with it. Following our novel framework, the information obtained

from such a survey can then be combined with the NI trial results, which would lead to

an objective decision regarding the new potentially non-inferior treatment.

We mentioned in Chapter 1, that while the goal is to survey a representative sample

of clinicians, this might be hard to achieve in practice. Therefore, if clinical experts’

opinions regarding M2 are influenced by the experts’ professional or demographic char-

acteristics, surveying a small number of clinicians about M2, while obtaining general

characteristics for representative sample is sufficient when utilizing MI.

4.2 Methods

Similar to Chapters 2 and 3, Yij ∼ Bernoulli(pi) is an occurrence of a favorable event

for subject j, in a treatment group i (j = 1 . . . ni, i = Con, Trt), and pi is the true

proportion of favorable events in group i. Also, p̂Con, p̂Trt correspond to the MLEs of

pCon, pTrt respectively as defined in Chapters 2 and 3.
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Favors Control 
drug 

Favors Test 
drug 

Non-inferiority trial 

M1 M2 0 

0 

Favors Placebo Favors Test drug 

M1  

Historical superiority trial 

Test drug becomes a 
standard of care, i.e. 

control for NI trial 
Þ 

Figure 12: NI clinical trial design with possible outcomes when compared to the standard
of care using fixed margin approach. The upper part of the graph presents historical
comparison of the standard of care to placebo, while the bottom graph corresponds to
the comparison of the new treatment to the standard of care in the non-inferiority trial.
NI is concluded for the CIs with blue point estimates, while the CI with a red point
estimate corresponds to inferiority of the new test treatment.

As discussed above, M2 is defined after M1’s determination, which is the previously

observed control treatment effect over placebo. Thus, M2 is commonly seen as a frac-

tion (λ) of the control treatment effect, which clinical experts consider justifiable, i.e.,

M2 = (1− λ)M1. We assume that M1 has been determined based on historical studies

and is fixed at the time the non-inferiority trial is being designed, and λ follows some
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distribution F with mean µλ and variance σ2
λ. While for a known distribution F , any

function of random variable λ can be used to construct the null and alternative hy-

potheses to test non-inferiority, we will focus on µλ throughout this article, since the

population mean is a commonly used parameter of interest in many practical situations.

Following the notation above we can re-write the hypothesis in (2.1) as:

H0 : pCon − pTrt ≥ (1− µλ)M1 vs H1 : pCon − pTrt < (1− µλ)M1 . (4.1)

For a known population distribution F , we demonstrate how the value of the margin

could significantly impact study design in terms of sample size calculation. A sample

size per treatment arm (n) can be calculated using the following formula [Blackwelder,

1982, Dann and Koch, 2008, Julious and Owen, 2011], while assuming 1:1 allocation

ratio:

n =
(z1−α + z1−β)2(pCon(1− pCon) + pTrt(1− pTrt))

(pCon − pTrt − (1− λ)M1)2
, (4.2)

where z1−α, z1−β are 1 − α, 1 − β quantiles of standard normal distribution re-

spectively. Specifically, α, 1 − β represents desired levels of target type-I error and

power respectively. Assuming under the alternative hypothesis in (2.1) equality between
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the proportions pCon = pTrt, given the same type-I error and power, the difference be-

tween sample size calculations for some value of λ = λ∗ and µλ will be proportional

to 1
(1−λ∗)2M2

1
− 1

(1−µλ)2M2
1
. This means that, for example, if pCon = pTrt = 0.8, α =

2.5%, 1− β = 85% and µλ = 0.7, the sample size per arm using (4.2) for λ = µλ is 593,

while for λ = 0.71 it would be 634. Thus, a change of just one percent in the amount

of the original standard treatment effect to be preserved corresponds in additional 82

subjects to be recruited to an NI study.

The scenario presented here, where the F and its parameters are known is of-course

hypothetical and cannot happen in practice. We use it in order to motivate the readers

to think about the fraction of the standard treatment effect as of a random variable.

Next we discuss how F and it’s parameters could be estimated from a survey of clinical

experts.

4.2.1 Estimating fraction preservation though a survey

The distribution F and it’s parameters µλ, σ
2
λ are considered unknown and ought to be

estimated, ideally from a clinical experts survey conducted at the design stage of the

trial. We assume that in total K values of λ were collected from clinicians: λ1, . . . , λK .

Let µ̂λ = 1
K

K∑
k=1

λk be MLE of µλ. Given a sufficiently large clinical experts survey,

the following approximate result holds:

µ̂λ ∼ N(µλ,
σ2
λ

K
) , (4.3)
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where the variance term can be estimated by σ̂2
λ = 1

K−1

K∑
k=1

(λk − µ̂λ)2.

We assume further that the primary analysis of the NI trial is based on Wald’s CI as

defined in (2.2). Given a sufficiently large sample size per treatment arm, and assuming

independence between the NI trial and the clinical experts survey, one can test the

hypothesis in (4.1) at α level, by comparing the following upper (1 − α)100% CI with

zero:

p̂Con − p̂Trt − (1− µ̂λ)M1 + z1−α

√
p̂Con(1− p̂Con)

nCon
+
p̂Trt(1− p̂Trt)

nTrt
+
M2

1 σ̂
2
λ

K
. (4.4)

If the quantity in (4.4) is smaller than zero, the null hypothesis in (4.1) will be

rejected and the new treatment will be declared non-inferior to the standard of care.

This approach is, in essence, a synthesis of the information between clinical experts

opinions and the data in a new non-inferiority trial. It corresponds to an objective

determination of a new treatment’s NI, as it takes into account opinions of the multiple

clinical experts and the variability associated with such opinions.

The apparent issue with the above approach is that, in practice, it is reasonable

to assume that K is small. Therefore the sample of the observed clinical experts re-

sponses might not be representative of the clinical experts population, and the normal

approximation in (4.3) may not hold.

Although it might be challenging to survey a large number of clinicians to obtain
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their opinion about λ, other information related to clinical experts opinions could be

more accessible (for example, number of years of treating a disease of interest or number

of patients treated), and will be determined as X for the rest of this Chapter. In

general, X can be a vector, here for simplicity we will assume that it contains only one

random variable. As a result we have a dataset which contains a fully observed X and a

partially observed λ. This resembles a missing data problem, which is discussed in the

next section.

4.2.2 Treating fraction preservation as missing data

Although observing all the values of λ from a representative experts sample would be

extremely helpful and will allow a proper use of (4.3), such observation is unlikely to

happen in practice. As a result, we propose to treat unobserved values of λ as missing

information. Given additional variable X, which is observed for all the experts from a

representative sample, we can use MI procedure to properly estimate µλ and σλ, which

can then be used in (4.4).

For MI purposes, we define a quantity of interest Qλ = µλ. Similar to the representa-

tion in (2.16), we assume that for completely observed values of λ, (Qλ−Q̂λ) ∼ N(0, Uλ),

where Q̂λ is an estimate of Qλ and Uλ is a variance of (Qλ − Q̂λ). Using a maximum

likelihood approach, we have: Q̂λ = µ̂λ and Uλ =
σ̂2
λ

K
.

Since it was assumed that demographic and professional characteristics of clinicians

affect their opinion about M2, we used completely observed values of X to multiply
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impute the incomplete data. The MI was utilized through classification and regression

trees (CART) imputation method [Burgette and Reiter, 2010]. CART is a nonparamet-

ric MI approach, where a conditional distribution of a variable is estimated from multiple

predictors by forming homogeneous subsets of a predictor space. CART was chosen over

a Bayesian linear regression imputation model [Rubin, 2004] due to its tendency to pro-

duce small mean squared errors [Akande et al., 2017]. As in Chapter 2, the imputations

were produced L times using MICE. The L pairs of estimates (Q̂
(l)
λ , U

(l)
λ ), (l = 1, . . . , L)

are then combined following the procedure outlined in (2.17)- (2.21). As a result, we

have (Qλ − Q̄λ)/
√
Tλ ∼ tνλ, where νλ has a similar form as ν in (2.21).

If the subject-level data is fully observed, the µ̂λ and
σ̂2
λ

K
in (4.4) are then replaced

with Q̄λ and Tλ respectively. In addition the z1−α in (4.4) is replaced with an appro-

priate cut-off value from a sum of normal and Student’s t-distribution using general

purpose convolution algorithm with Fast Fourier Transformation (FFT) [Kohl et al.,

2005, Ruckdeschel et al., 2006].

In case the subject-level data are incomplete, a separate MI procedure should be

applied for that data. For simplicity we assume that the incomplete data follow ignorable

missingness. Now, we define an additional quantity of interest QY = pCon−pTrt, so that

for completely observed data (QY − Q̂Y ) ∼ N(0, UY ), where Q̂Y = p̂Con − p̂Trt and

UY = UCon − UTrt with Ui = p̂i(1−p̂i)
ni

. Using a logistic regression model with MICE, and

observed covariates, the incomplete data is imputed D times. Similar to the margin

imputation described above, we will end up with D pairs of estimates (Q̂
(d)
Y , U

(d)
Y ), (d =



75

1, . . . , D), which can then be used in the procedure outlined in (2.17)- (2.21). As a result

we have: (QY − Q̄Y )/
√
TY ∼ tνY , where νY has a similar form as νλ above. Following

that, in addition to replacing µ̂λ and
σ̂2
λ

K
with Q̄λ and Tλ in (4.4) respectively, we will also

replace the p̂Con−p̂Trt and p̂Con(1−p̂Con)
nCon

+ p̂Trt(1−p̂Trt)
nTrt

in (4.4) with Q̄Y and TY respectively.

Also the z1−α is replaced with an appropriate cut-off value from a sum of two Student’s

t distribution using the FFT algorithm.

4.2.3 Rates of missing information

Schafer [1997] recommends calculating the rates of missing information, pointing out

that such quantities could be useful when evaluating the effect of the incomplete data

on the inferential uncertainty of the parameter of interest. In our case, the missingness

is due to unobserved clinical experts opinions regarding λ, as well as due to unobserved

subject-level data when the patient data are incomplete.

We estimated rates of missing information due to unobserved λ as: γλ = Bλ
Bλ+Ūλ

,

and rates of missing information due to unobserved subject-level data as γY = BY
BY +ŪY

[Harel, 2007]. Since, we assume that the two data sources are independent, and the MI

is done for each dataset separately, rather than conditionally, the total rate of missing

information was defined as γ = γλ + γY .
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4.2.4 Simulations details

Subject level information is fully observed

Suppose the overall population of physicians consists out of 1000 medical doctors (MDs),

who treat a specific condition. Further, we assume that 300 of these MDs, who are

representative of the overall population come to a clinical conference (K = 300), and

it is feasible for us to survey only 3% of them (9 MDs). Also, we assume that years of

experience treating the condition is known for all the MDs, who come to the conference.

Following the above notation, λk is a fraction preservation of the control treatment

effect over placebo for kth clinical expert, also let Xk be a number of years that clinical

expert has been treating a condition of interest. Without loss of generality we will drop

the index k from the following explanation. Assume that for any (λ,X) ∼ N2(µλ =

0.7, µX = 20, σλ = 0.12, σX = 7, ρ), where ρ ∈ (0.4, 0.7). The positive correlation

between X and λ indicates that more experienced clinical experts are prone to be more

conservative with respect to the clinical margin choice. For brevity, and due to similarity

between the results, we only present results for ρ = 0.4 in this Chapter, while the results

for ρ = 0.7 appear in Appendix C. Let Rλk be and indicator variable for whether λk

was observed (Rλk = 1 means that clinician k did not participate in the survey). Two

scenarios of participation were considered: i) more experienced clinicians are more likely

to participate in the survey; and ii) a random sample from the K clinicians above. For

the first scenario, the observed/unobserved values of λ were assigned using P (Rλk =
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1|X > 20) = 0.95 and P (Rλk = 1|X ≤ 20) = 0.99, while for the second scenario

P (Rλk = 1|X > 20) = P (Rλk = 1|X ≤ 20) = 0.97.

The value of M1 was set to be 0.23 which was assumed to be known from a meta-

analysis of the relevant historical trials. In addition, the subject-level data was gener-

ated using a combination of pCon = 0.8, pTrt ∈ (0.775, 0.8, 0.825) and nCon = nTrt ∈

(250, 500), which resulted in a total of 6 scenarios. The values considered for the sim-

ulation are partially based on completed NI trials [Eriksson et al., 2007, 2011]. Each

scenario was simulated 5000 times, i.e. both MDs population sample and NI trial data

were simulated 5000 times. It should be noted that higher number of simulations did

not alter the results.

As stated previously, non-inferiority of the new treatment was determined using the

confidence interval in (4.4). The NI decision was considered objective (OBJ) if it was

based on the representative sample of MDs (300 MDs). Other methods used for an NI

decision were: MI of the margin as described in the previous section with X and L = 20,

using only observed λ values from the survey (OBS) (only 9 MDs), as well as minimum

and maximum values of λ from the representative sample of the K clinicians (MIN and

MAX respectively) (one MD each). Minimum and maximum values were considered in

order to demonstrate how the NI decision could be affected by consulting only one MD

during the conference, who happens to be the least or the most conservative clinician in

that conference.

The performance of these methods was assessed by comparing the rates of the NI
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decision to the OBJ decision rate. A decision rate was calculated as a proportions of

times NI was inferred out of the 5000 simulations. The most favorable approach is the

approach for which the NI decision rate is the closet to the OBJ NI decision.

Subject level information is incomplete

After comparing NI decision rates as described in the previous section, where the subject-

level information was considered completely observed, we turn to evaluation of NI deci-

sion rates when such information is incomplete. For the purposes of this evaluation, we

only used survey data where the more experienced MDs were more likely to participate

in the survey, a situation that is likely to appear in practice. The incomplete primary

outcome data was assumed to follow ignorable missingness, including MCAR and MAR.

In order to impose both MCAR and MAR processes, a variable Z was added to the

NI trial simulation. Z was set to have higher values for control treatment group and have

higher values for subjects experiencing an event of interest in both groups. Specifically,

Z|Con, Y = 1 ∼ N(180, 20), Z|Con, Y = 0 ∼ N(100, 20), Z|Trt, Y = 1 ∼ N(130, 20),

Z|Trt, Y = 0 ∼ N(80, 20). Z could be seen as a patient reported outcome (PRO)

measured during the study, and is positively correlated with the outcome of interest.

Let RSij be and indicator variable for whether Yij was observed (RSij = 1 means that

outcome Yij was unobserved for patient j in treatment i). The following logistic function

was used to determine observed/unobserved values of Y in each treatment group:
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P (RSij = 1) =
1

1 + exp(−θ0 − θ1iZij)
, (4.5)

where θ0 = log( DO
1−DO ) − θ1iZ̄i, Z̄i =

ni∑
j=1

Zij, θ1i represents the effect of Z in group i

on the missingness, and DO stands for the overall drop-out rate, which was assumed

to be the same in both treatment groups and was set to 20% as a reasonable upper

bound for NI trials that encounter some level of missingness [Rabe et al., 2018]. The

following two sets of values were considered for θ1i: θ1,Con = θ1,T rt = 0, which means

that the PRO measure Z didn’t affect the drop-out of patient j in treatment group i,

and θ1,Con = −0.009, θ1Trt = 0.013, which means that patients with lower values in Z

were more likely to drop out in the control group, whereas the opposite effect was set in

the new treatment group. As a result, the first set of the values for θ1i specified above

constituted to MCAR process, while the latter represent an MAR process. Following

that, the difference between the two proportion pCon−pTrt, was unbiased when estimated

from the complete cases under MCAR, and biased under MAR with observed difference

being more profound than it actually is.

The incomplete subject-level data was multiply imputed D = 20 times as described

in Section 4.2.2, and consequently used for NI decision based on MI approach. For

OBS/MIN/MAX approaches, the complete cases from the NI trial were used. Similar

to Section 4.2.4, the performance of the methods was assessed by comparing the rates
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of the NI decision to the OBJ decision rate.

4.3 Results

Figures 13, and 14 demonstrate differences between OBJ NI trial decision and the other

four methods under consideration, based on the proportion of the simulated studies that

conclude NI when the subject-level data are completely observed. The results in these

Figures are presented in terms of the deviation from the OBJ decision. Therefore, the

method closest to 0 is considered to be the most favorable. The difference between the

Figures is that in Figure 13 MDs who participate in the survey are more likely to be

more experienced than MDs who do not participate in the survey, while in Figure 14 that

sample is random. As shown in Figures 13-14, the MI approach for NI decision was shown

to be the closest to the OBJ decision in most of the scenarios, with deviations between

0.14% and 4.8%. In general, the OBS approach was the second closet to the OBJ, with

deviations of between 5.8% and 24%. This was followed by the MIN, which resulted in

deviations between 3.4% and 65%. The MAX resulted in the highest deviations, that

ranged between 22% and 71%.

Figure 15 has a similar presentation as Figure 13 described above, it demonstrates

results for partially observed subject-level data with the MCAR assumption. As shown

in Figure 15, the MI-based decision was the closest to the OBJ decision in most of

the scenarios, and deviated by 2% to 7.2% from the OBJ rates. In the case where
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Figure 13: Deviation from objective NI decision, when more experienced MDs are more
likely to participate in the survey, subject-level data are fully observed.
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Figure 14: Deviation from objective NI decision, when MDs participation in the survey
is completely random, subject-level data are fully observed.

pT = 0.825, n = 500, the MIN approach performed similar to MI. To explain this result,

we present the NI decision rates (rather than deviations from OBJ) in Table 7. As
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show in Table 7, the decision rate for MIN was 100%, which means that all of the 5000

simulated studies concluded NI of the new treatment. This result is not surprising, since,

in this case, the new treatment is actually superior by 2.5% to a standard treatment,

which means that it would be easier to claim NI. Moreover, the MIN approach represents

the least conservative view of the margin, which again would make an NI claim easier

to make. For the rest of the scenarios, MIN had over 20% deviation from OBJ decision

rates. OBS decision rates deviated between 11% and 31%, while MAX deviation ranged

between 22% and 72%.
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Figure 15: Deviation from population based non-inferiority decision, subject-level data
are MCAR.

Figure 16 has a similar presentation as Figure 13 described above, it reveals results

for partially observed subject-level data with the MAR assumption. As shown in Figure

16, MI decision approach performed overwhelmingly better than the OBS and the MAX
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Table 7: Percent of studies concluding NI by method, when more experienced MDs are
more likely to participate in the survey, subject-level data are MCAR.

pTrt n OBJ MI OBS MIN MAX
0.775 250 22.6 20.6 12.1 78.5 1.1
0.775 500 39.4 35.7 17.2 97.5 0.9
0.800 250 49.1 43.5 29.0 92.6 4.8
0.800 500 77.7 70.5 46.4 99.8 6.1
0.825 250 76.9 70.3 53.4 98.7 15.1
0.825 500 96.6 93.0 77.9 100.0 26.5

approaches. Moreover, the deviations from the OBJ decision rates increased dramatically

for OBS and MAX. This is reasonable, since the apparent difference in proportions for

MAR is larger than it really is, which means that it is harder to claim NI. The MIN

approach, however showed similar results to MI for pTrt = 0.825 scenarios, as well as

pTrt = 0.8, n = 250.
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Figure 16: Deviation from population based non-inferiority decision, subject-level data
are MAR.

The rates of missing information due to unobserved λ were between 30% and 35%
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for both ρ ∈ (0.4, 0.7) when more experienced MDs were more likely to participate

in a survey, and between 27% and 33% when the survey participation was completely

random. It should be noted that, as expected, in both cases higher rates of missing

information were observed for ρ = 0.4. For the incomplete subject-level data, the rates

of missing information due to unobserved patient data ranged between 5% and 6% for

both MCAR and MAR. As a result, the total rates of missing information were between

35% and 40%. As can be seen, the main contributor to the overall rates of missing

information is unobserved clinical experts opinions.

4.4 Conclusion

With NI trial design being more frequently used in recent years, it is imperative to

address concerns raised by several systematic reviews of such trials [Wangge et al.,

2010, Schiller et al., 2012, Rehal et al., 2016, Althunian et al., 2017, Rabe et al., 2018].

Specifically, one of the major issues that was raised is the apparent lack of justification

for the clinically acceptable margin. The choice of such a margin is critical as it directly

affects the design stage of an NI study, i.e., the anticipated sample size, as well as further

interpretation of the results once the study is complete. Even if, other common issues

related to the NI design, such as availability of the historical data and the consistency

of standard treatment effect over placebo are resolved, it is still not clear how to choose

a clinically acceptable margin.



85

In this Chapter we present a novel framework, in which we propose to treat the mar-

gin as missing information and estimate it through clinical experts survey. Using such

framework would allow objective estimation of clinical margin and provide justification

for its choice. Furthermore, within this framework we have evaluated the performance

of several methods while comparing the rates of NI decisions to the proportions of ob-

jective NI determination. Overall, we found that, out of the four approaches considered,

decision rates using MI was generally the closest to the objective decision rates. Al-

though, the least conservative margin approach had similar results to MI in several

cases, in general, it had high deviations from the OBJ in most of the scenarios. Also,

the most conservative choice of clinically acceptable margin deviated significantly from

the objective decision rates. Both the most and the least conservative margin choices

show the implication and risk of consulting with only one clinical expert, who might

have extreme views regarding such a choice. Thus, the determination of the clinically

acceptable margin should not be done using an opinion of one clinical expert.

In addition to CART MI, we have also looked at the performance of a more com-

monly used Bayesian linear regression MI procedure. This method resulted in higher

between-imputation variance than CART MI, which is not surprising due to the small

number of MDs participating in the survey. As a result, the rate of the simulated studies

concluding NI using Bayesian linear regression MI procedure was much further than OBJ

decision compared to CART MI. Following that, given the potentially small sample size

of the clinical experts survey, we recommend using a CART MI procedure to minimize
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subjectivity of the NI decision.

The rates of missing information due to the unobserved clinical experts opinions was

the main contributor to the overall rates of missing information. This result underlines

the importance of taking into account uncertainty associated with the choice of margin,

when it is observed for a small fraction of clinical experts. In addition, it has impli-

cations for the study design stage, when the allocation of the study-specific funds is

discussed. Following our results, given a limited study budget, an entity running the

study might consider allocating a considerable amount of study funds toward the design

stage, including margin determination through a clinical experts survey.

We would also like to point out several limitations of this work. First, we only con-

sidered a limited number of scenarios. If investigators have a specific scenario in mind

which differs from the ones presented here, they should assess it using the framework

outline. Second, the framework presented here is new and has not been applied pre-

viously, therefore we cannot comment on possible logistic issues that might arise from

such data collection besides the ones specified within the framework.

Given the ongoing challenges with respect to NI margin choice and justification, there

is a need for a new, more evidence-based, and transparent approach, which takes into

considerations variability in clinical experts opinions about such choice. The margin

choice has direct implication on the non-inferiority decision, which is important for both

drug approval and the public health policy process. However, an approach which allows

an objective choice of margin have not been developed prior to this work. Therefore,
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the contribution of this Chapter is the novel framework, which accounts for uncertainty

associated with non-inferiority margin choice and thus minimizes subjectivity of such

choice. Use of this framework will allow an empirical justification of margin choice, and

therefore help resolve current practical issues related to it.
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Chapter 5

Comprehensive benefit-risk of

non-inferior treatments using

multi-criteria decision analysis

5.1 Background

As stated in Chapter 1, a non-inferior treatment needs to show some benefit over stan-

dard one in order to outweigh decreased effectiveness. As discussed in Chapter 1, several

outcomes may be considered when assessing the overall benefit-risk (BR) of the new non-

inferior treatment. Various methods exist for structured BR assessment. We chose to

use multi-criteria decision analysis (MCDA) due to the reasons mentioned in Chapter 1.

One of the MCDA’s critiques has been it’s deterministic form, which does not take into

account variability of either criteria values, or preference weights. To overcome these

issues, Tervonen et al. [2011] proposed a stochastic multicriteria acceptability analysis
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(SMAA), that also allows BR assessment without explicit weight elicitation from deci-

sion makers. Wen et al. [2014] presented two approaches to incorporate clinical data

uncertainty into MCDA for BR assessement. Waddingham et al. [2016] presented a

Bayesian MCDA model, where outcomes uncertainty was taken into account. Wang

et al. [2016] proposed a simpler approach to SMAA, using discriminatory probabilities,

which allow comparison between treatments performance for unobserved or partially

observed weights. Saint-Hilary et al. [2017] presented an approach that unifies MCDA

and SMAA through the use of Direchlet prior.

While the above approaches made a substantial contribution to the structural BR

assessment toolkit, these were mainly based on aggregated clinical trial and preference

data. In the presence of individual patient-level data, such approaches may be subopti-

mal since benefits and harm experienced by patients could vary from patient to patient

[Evans and Follmann, 2016]. Li et al. [2019] were the first to develop an approach that

takes into account heterogeneous responses of the patients to the treatments, as well as

consider individual preferences. These authors used a Bayesian multicriteria decision

method; an extension of the original SMAA with latent trait models. The main draw-

back of this approach, however, is its complexity, as well as the lack of clarity how the

patient preference weights should be obtained.

The purpose of this work is to develop a simple MCDA approach for structured BR

assessment of the new non-inferior treatment when compared to the standard of care us-

ing patient-level data from an NI study. With the growing recognition of the importance



90

of preference elicitation by the patients [Marsh et al., 2017, FDA, 2018], we propose to

carry out such elicitation at the beginning of NI trials. Since patient demographic char-

acteristics and baseline (BL) disease status are likely to influence patient outcomes, as

well as patient preferences, we believe that it would be beneficial to study these within

the same trial. Also, since the introduction of any additional questionnaire is likely to

increase burden of the study participants, and investigators, as well as, on the sponsor

conducting the study, we suggest gathering preference information only from a random

sample of the trial patients, while using MI analysis to create an overall BR assessment.

5.2 Methods

5.2.1 MCDA patient-level indices

Let MCDAij be MCDA index for patient j (j = 1, . . . , ni, where ni is number of

patients assigned to treatment i) assigned to treatment i (i = Con, T tr). Also let uijc,

and wijc be a scored outcome/criteria and a preference weight respectively for patient j,

for criteria c (c = 1, . . . , C), in treatment group i. We assume that the scored outcomes

are calculated using a linear partial value function, which was previously used by several

authors [Tervonen et al., 2011, Waddingham et al., 2016, Li et al., 2019]. If ξijc is

an outcome value for patient j, for outcome c, in treatment i, and ξ′c, and ξ′′c are the

highest and the lowest value to be considered in preference elicitation for outcome c, then

uijc =
ξijc−ξ′′c
ξ′c−ξ′′c

when higher values are considered as more beneficial, and uijc =
ξ′j−ξijc
ξ′j−ξ′′j
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when higher values are considered as more harmful. As a result, all the score values

should range between 0 and 1, so that 1 represents the best state and 0 the worst state

for a given criteria.

Weight elicitation is assumed to be done using “swing weighting” [Mussen et al.,

2007, Marsh et al., 2016]. In a “swing weighting” approach, a subject is required to first

determine which criteria’s “swing ” is the most important to them, and assign 100%

to that criteria. “Swing” corresponds to a change from the worst to the best state, for

instance, a change from having pain to no pain. Then, the subject needs to provide

relative weights to the rest of the considered criteria using “swings” in those criteria.

For example, if only treatment response and adverse event (AE) are considered for BR

assessment, and a subject identified treatment response as 100%, while AE occurrence

as 50%, this means that, for this subject AE occurrence is only half as important as

responding to the treatment. It should be noted that in this example, a “swing” in

treatment response criteria means experiencing treatment response, while a “swing” in

AE criteria means occurrence of AE. After subject-specific weights are obtained, the

weights are normalized before they can be used in MCDA calculation.

Following the above, MCDA indices are calculated using:

MCDAij =
C∑
c=1

uijc(wijc/
C∑
c=1

wijc) . (5.1)

An MCDA index for a specific patient represents an overall score for BR trade-off
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using the patient’s personal preferences. Higher indices contribute to a more favor-

able BR assessment. Therefore, in order to evaluate overall benefit of a non-inferior

treatment, we can compare the MCDA indices between the treatment groups. Since,

in drug development, it is not uncommon to compare population means, we chose to

use the estimated MCDA means in order to claim whether on average the BR of the

new treatment is superior to the available therapy. Due the fact that MCDA indices

are constructed using a linear combination of random variables that may have different

distributions, it is hard to make a distributional assumption about them. Given the

goal of between-group mean comparison, and the central limit theorem (CLT), we chose

to make this comparison by constructing 95% CI for mean differences (control vs new

treatment) with unequal variances (Welch’s T-test). If the upper bound is below zero,

then the new treatment would be considered overall more beneficial than the standard

treatment. It should be noted that there has been increasing research into the advan-

tages of the simple Welch’s T-test over the Wilcoxon-Mann-Whitney test [Skovlund and

Fenstad, 2001, Fagerland and Sandvik, 2009, Fagerland, 2012].

5.2.2 MCDA of a random sample of a clinical trial participants

While, ideally, we would like to obtain patient preferences from all trial participants,

collecting such additional information might not be feasible as it introduces further

burden on patients, investigators and sponsors. We propose to collect patient preferences

from only a random sample of the trial participants at the beginning of a trial and use
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an MI approach to restore the preferences of all the trial participants. Following that,

we assume ignorable missingness throughout this Chapter.

5.2.3 MI for patient preferences

As described above, patient preferences are considered to be obtained using “swinging

weighting”, which means that the weights could range between 0 and 100. While it

is reasonable to require that an imputation procedure produces only values within the

plausible range, the ultimate goal of MI is to efficiently estimate a parameter of interest.

Therefore, it is not necessary to multiply impute values within a specified range. In

fact, Rodwell et al. [2014] performed a simulation study, where different MI approaches

were implemented for bounded incomplete variables. Specifically the authors evaluated:

the commonly used Bayesian linear regression with no truncation, post-imputation pro-

cessing (i.e. assign min/max if the imputed values falls outside the plausible range),

truncated regression and predictive mean matching. The authors concluded that, in

terms of bias of the point estimate, variance and coverage, the usual regression with no

truncation performed better than the other methods.

Given a variety of MI methods [Harel and Zhou, 2007], and results from Rodwell et al.

[2014] we decided to use Bayesian linear regression (NORM). Due to its simplicity, we

also evaluated Bayesian linear regression with post-processing (NORM TRUNCATED).

In addition, we assessed CART MI [Burgette and Reiter, 2010]. We chose to use CART

due to its ability to capture complex data structures [Burgette and Reiter, 2010], which
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might arise from patient preference elicitation. In addition, it should be noted, that

CART returns imputed values which are within the range of the observed values, there-

fore the weights range of 0 to 100 is satisfied.

Similar to the representation in (2.16), we assume that (Q − Q̂ ∼ N(0, U), where

Q is the mean difference in MCDA indices between the standard and new non-inferior

treatment. Specifically, in our case Q̂ = MCDACon −MCDATrt, where MCDAi =

1
ni

ni∑
j=1

MCDAij. Also, U =
S2
MCDACon

nCon
+

S2
MCDATrt

nTrt
, where S2

MCDAi
= 1

ni−1

ni∑
j=1

(MCDAij −

MCDAi)
2. Further, we assume that patient preferences are imputed L times, and within

each lth imputed dataset (l = 1, . . . , L) we obtain pairs of summaries defined above

(Q̂(l), U (l)). Using Rubin’s combination rules Rubin [2004] as described in Chapter 2,

the L pairs of estimates are then combined following the procedure outlined in (2.17)-

(2.21). As a result, we have (Q− Q̄)/
√
T ∼ tν , where ν has a similar form as ν in (2.21).

5.2.4 Simulation

Simulation set-up for clinical trial data

Simulation set-up is based on the information from recently published results of NI

HAWK study Dugel et al. [2019]. HAWK was one of the two NI pivotal studies, that

showed the NI of Brolucizumab 6mg when compared to Aflibercept 2mg for treatment

of neovascular age-related macular degeneration. The planned sample size for this study

was 297 patients per treatment arm, therefore we used 300 patients per arm for simplicity
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in our simulations.

We simulated the following efficacy outcomes for primary and a key secondary end-

point: best corrected visual acuity (BCVA) change from BL to week 48, and central

subfield thickness (CST) change from BL to week 16. It should be noted that, while

higher values of BCVA correspond to a better health, the opposite is true for CST. In

addition, we simulated the following safety variables, which were presented by Dugel

et al. [2019]: non-ocular adverse events (AEs), and ocular AEs.

According to Dugel et al. [2019], the analysis of primary endpoint was adjusted for

age and BCVA at BL, thus the primary endpoint (PE) outcome was generated as a

linear function of these two BL measures. The statistical analysis methods for the key

secondary endpoints (SEs) were not specified by the authors. Therefore, similar to the

primary outcome, the SE was generated as a linear function of age and CST value at

BL. For simulation purposes, it was assumed that all the outcome measures are more

likely to worsen for elder patients, as well as unfavorable events are more likely to appear

in elder patients. In addition, for efficacy variables, we assumed that patients who are

sicker at BL would have lower rates of disease worsening than patients who are healthier

at BL. Also, we assumed that patients with lower BCVA are more likely to experience

ocular AEs.

The simulated BL values included: BCVA, CST, subretinal fluid (SRF), intrareti-

nal fluid (IRF), sub presence of retinal pigment epithelium (sub-RPE), age and gender.

SRF, IRF and sub-RPE BL variables were added, because these were used in other key
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SEs, and thus should be considered as important. The BL variables were generated

using a multivariate normal distribution, with a vector of mean and standard deviation

values as reported in [Dugel et al., 2019], for binary variables the reported proportion of

events (p) was used as mean and
√
p(1− p)/n, where n is a sample size was used as stan-

dard deviation. Since the vision-related measures deteriorate with age, positive pairwise

correlations were assumed between age, and CST, SRF, IRF, sub-RPE, whereas nega-

tive pairwise correlation was assumed between age and BCVA. Also, negative pairwise

correlations between BCVA and CST/SRF/IRF/sub-RPE were assumed, while positive

pairwise correlations between CST and SRF/IRF/sub-RPE were set. For simplicity it

was assumed, that SRF, IRF and sub-RPE had zero pairwise correlations, and gender

was assumed uncorrelated with other variables.

Simulation set-up for patient weights

To assess the overall benefit of the new non-inferior treatment to a standard treatment,

preference weights were assigned using patients BL characteristics. Also continuous BL

characteristics (BCVA and CST) were categorized using cut-off values reported in [Dugel

et al., 2019]. The weights were generated using the following three scenarios:

1. In Scenario 1, we used three criteria: BCVA change from BL to week 48 (primary

endpoint (PE)), ocular and non-ocular AEs. It was assumed that, on average,

patients care more about non-ocular AEs than PE or ocular AEs. Preference

weights for PE were defined as a function of BCVA at BL as follows: mean weight
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of (70, 50, 30) were assigned to patients with lower, medium and high values of

BCVA at BL respectively. This indicates that a patient with worse vision status

at BL will be more likely to assign higher weights for improvement of the vision

status, than one with a better vision at BL. For ocular AEs, the mean weights of

(50, 80) were assigned for female and male patients respectively. For non-ocular

AEs, the mean weights of (70, 90) were assigned for female and male patients

respectively. Higher weights for AEs for male patients indicate that men care

more about experiencing AEs than women.

2. In Scenario 2, we used four criteria: PE, ocular AEs, non-ocular AEs, and CST

change from BL to week 16. In this scenario, patients on average care more about

PE, than the other three endpoints. The mean weights for PE were assigned as

(90, 60, 30) for low, medium and high values of BCVA at BL respectively. The

mean weights for ocular AEs, and non-ocular AEs were set to (50, 70) for female

and male patients respectively. Also, the weights for CST endpoint were defined

mean values of (30, 45) for patients with low and high CST at BL respectively.

This indicates that patients with low CST care less about changes in this outcome.

3. In Scenario 3, we used the same criteria as in Scenario 2 above. The weights for PE

were defined in the same way as in Scenario 2. For ocular AEs, the mean weights

of (70, 80) were assigned for female and male patients respectively, while the mean

weights of (30, 40) for females and male patients were assigned respectively for
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non-ocular AEs. For CST, the mean weights of (15, 30) were assigned for patients

with low and high CST at BL respectively. In this scenario, patients, on average,

care more about PE, and ocular AEs than non-ocular AEs and changes in CST.

We compared MCDA indices for all the enrolled patients, then we randomly masked

between 50% to 90% of the patients preference, and consequently MCDA indices (em-

ploying MCAR missingness structure) overall and made the same comparison using

CCA or MI. The idea here was to see whether MI would be as good as using all study

participants, so that performing preference elicitation as an ancillary study within an

NI study is advantageous. In addition, for Scenario 3, we have also evaluated masking

between 50% to 90% of patients preferences based on patients’ CST scores at BL (em-

ploying MAR missingness structure) so that patients with low CST at BL have higher

probability of being unobserved than patients with high CST at BL.

Patient weights were imputed using all available BL characteristics. It should be

noted that BCVA and CST at BL were used in their continuous form. Similar to the

previous chapters, all the MI methods were implemented using MICE. The number of

simulations was 1000, the number of imputations was 10, and CART MI was set for

a minimum of 10 leaves per split. It should be noted that increasing the number of

simulations or imputations, as well as decreasing the number of leaves per split, did not

alter the inferences.
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5.3 Results

Results of a single simulated study are presented in Figure 17. Each column of the graph

corresponds to a different criteria/outcome, with the top part of the column showing

descriptive statistics of the criteria at the end of the trial by treatment group, and the

bottom part of the column showing the distribution of the weights associated with that

criteria and assigned by the patients at BL. In addition, different colors on the bottom

part of each column correspond to the BL characteristics that affect patients’ preferences.

For example, the first column in Figure 17 corresponds to BCVA change from BL criteria

(which is the PE), the top part of the graph shows boxplot for PE by treatment. As

can be seen there is no difference between the treatments in terms of BCVA, which is in

accordance with the results reported in [Dugel et al., 2019]. The bottom part of the graph

shows the distribution of the weights assigned for the PE by the patients based on BCVA

at BL status (status can be low, medium or high, which mean severe, moderate and mild

vision impairment respectively). As specified above, we assume that patients with worse

vision at BL are more likely to assign higher weights for vision improvement. And this

is what is seen in the bottom part of the graph, i.e., patients with “low” (red) BCVA

at BL have higher weight values, while patients with “med” (green) and “high” BCVA

at BL assign lower weights. The second and third columns of Figure 17 correspond to

similar representation of ocular and non-ocular AEs, whereas the preferences for both

are affected by gender as specified in the previous Section. Overall, Figure 17 shows that
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the new treatment seems to be better than the control in non-ocular AEs, this criteria

also has higher weights than the other two. Following that, the new treatment might

have only a slightly better BR profile than the control overall.

Figure 18 presents results from the 1000 simulated studies, and percent of the time

the new non-inferior treatment was declared as favorable when compared to control using

the three outcomes as specified in Scenario 1 and their corresponding weights assigned

by the patients. The dashed line in the Figure represents a result when the weights

are obtained for all the study participants, while the columns show results produced by

the methods under evaluation when only using a sample of the trial participants. As

can be seen in Figure 18, the MI results are close to the fully observed weights, while

CCA results are not. For example, when only 10% of the trial participants provide their

preferences, then CCA will declare a new non-inferior treatment as favorable only 5.1% of

the time, while CART MI, NORM MI, and NORM TRUNCATED MI will do so 17.4%,

17.9%, and 16.2% of the times respectively. Given the fact that 17.6% correspond to

the fully observed weights (dashed line), the MI methods demonstrate favorable results.

Figure 19 has a similar presentation as Figure 17, and shows results of a single study

for Scenario 2. As shown in Figure 19, the patients care more about PE than the other

three outcomes. However given favorable results in CST outcome and non-ocular AEs,

there is a good chance that the new treatment has a better BR profile than a control.

This is demonstrated in Figure 20, which has a similar presentation as Figure 18, here

the % of the studies with a favorable BR for the new treatment is 93.1%. Also, the MI
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Figure 17: Outcome criteria values per treatment group (upper plots) and weights dis-
tribution (lower plots). Single study results. Scenario 1.

results are close to the fully observed weights, which is not the case for CCA. There is

also a minimal difference between the MI methods.

Figure 21 has a similar presentation as Figure 17, and shows results of a single study

for Scenario 3. As shown in Figure 21, the preferences for the change in CST, the

outcome that shows a clear advantage of the new treatment over the control, are lower

than in Scenario 2 (Figure 19). As a result, it is expected that the overall BR profile is

now worse than in Scenario 2 (Figure 20), which is shown in Figure 22. The % of the

studies with a favorable BR of the new treatment is now 32.1%. The results of MI and

CCA are consistent with the previous two scenarios.
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Figure 18: % of trials with beneficial BR profile for a new treatment. Scenario 1. The
dashed line represents a result when the preference weights are observed for all study
participants.

Figure 23 has similar presentation as Figure 18, and shows percent of the times the

new non-inferior treatment is declared as beneficial compared to the control, when MAR

structure is imposed in Scenario 3. As can be seen in Figure 23, the results from MI

were still favorable, with minimal differences between the imputation methods.

5.4 Discussion

In this Chapter, we present a novel approach for comprehensive BR assessment of new

non-inferior treatments which allows researchers to elicit patient preferences from an NI
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Figure 19: Outcome criteria values per treatment group (upper plots) and weights dis-
tribution (lower plots). Single study results. Scenario 2.

study. Similar to the original MCDA, our approach allows one to incorporate multiple

outcomes into BR assessment. The advantage of our approach over the original MCDA,

is that it also allows one to incorporate variability associated with both outcomes values

and patient preferences. In order to minimize a participation burden for patients and

medical monitors, as well as a financial burden for a sponsor due the collection of the

preference data, we propose collecting such data only for a sample of trial participants.

If such a sample is random, then as we showed, MI results are very close to the results

based on all trial participants preferences.

While our simulations were mainly based on MCAR, we also showed favorable results
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Figure 20: % of trials with beneficial BR profile for a new treatment. Scenario 2. The
dashed line represents a result when the preference weights are observed for all study
participants.

of MI under MAR. It should be noted, that although MCAR is unlikely to hold in

clinical trials [Little et al., 2012], this missingness structure could be embedded in a

study design. In other words, one could design a study where the participants of the

ancillary preference survey are randomly chosen. If the preferences are influenced by

patients’ BL characteristics, a plausibility of MCAR can be evaluated by comparing

these characteristics between ancillary study participants and non-participants.

The consideration of MCDA scores’ variability in BR assessment irrespective of a trial

design has been recently evaluated by Wen et al. [2014] and by Broekhuizen et al. [2017].
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Figure 21: Outcome criteria values per treatment group (upper plots) and weights dis-
tribution (lower plots). Single study results. Scenario 3.

Wen et al. [2014] proposed two methods that take into account clinical data variability,

including a simulation method. Although the authors focused on the aggregated clinical

trial data, they outlined a bootstrap procedure which could be used in cases when

patient-level data are available. It should be noted that patients preferences in this

approach are fixed. We implemented the bootstrap procedure as proposed by Wen et al.

[2014], while using fixed weights in Scenario 3 from Section 5.2. The fixed weights were

calculated as weighted average of the mean preferences specified for Scenario 3 based on

the relevant BL characteristics. For example, since the mean weights for the PE were

(90, 60, 30) for low, medium and high values of BCVA at BL respectively, and given for
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Figure 22: % of trials with beneficial BR profile for a new treatment. Scenario 3. The
dashed line represents a result when the preference weights are observed for all study
participants.

example, proportion of patients who have such BCVA values at BL is 20%, 50% and 30%

respectively, the fixed weight for that PE for all the patients would be 84. The use of

one fixed weight for all the patients, rather then individual patient preferences resulted

in 52.9% of the simulated studies concluding favorable BR of a non-inferior treatment

over a standard one. This is 20% more optimistic than the original 32.1% (dashed line

in Figure 22), when each patient provided his/her preference.

Broekhuizen et al. [2017] suggested a probabilistic approach, where uncertainty in

weight preferences identified by the patients in the previous preference survey studies,
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Figure 23: % of trials with beneficial BR profile for a new treatment. Scenario 3 with
MAR missingness structure. The dashed line represents a result when the preference
weights are observed for all study participants.

as well as uncertainty in the clinical data are taken into account using Markov Chain

Monte Carlo simulation. We believe that this approach could be useful if the preference

survey results are available prior to new NI trial initiation, and if both survey and NI

trial participants come from the same patient population. In order to evaluate a possi-

ble implication of the differences between survey and NI trial participants, we simulated

Scenario 3 from Section 5.2 assuming that survey participants are sicker than those in

NI trial. Specifically, we assumed that 70%, 20% and 10% of the survey participants

have low, medium and high BCVA BL values respectively, as well as 90% have high CST
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values. Since we anticipate patients’ preferences to be affected by BL characteristics,

encountering sicker patients will translate into higher BCVA and CST preferences. Us-

ing the mean values of the new preferences along with the outcome values of the study

participants in accordance with Broekhuizen et al. [2017], we received 42.8% of simu-

lated studies concluding favorable BR of the non-inferior treatment. This is 10% more

optimistic than the original 32.1%.

The above two comparisons underline the importance of taking into consideration

both outcome and preferences variability, as well as obtaining preferences from the same

patient population as being investigated during an NI study. While BR assessment is

critical for consideration of any new therapy, it is especially important for NI trials.

Given an acceptable clinical worsening in effectiveness of non-inferior treatment, there

is a need for formal assessment of the treatment’s advantages over a standard of care. If

the non-inferior treatment does not offer benefits that outweigh decreased effectiveness,

there is no justification for its approval. However, so far such formal BR assessment was

not used for non-inferior treatments. Hence, our novel approach provides a pragmatic

solution for BR assessment of non-inferior treatments.

The limitations of our study include the simulations that are limited to the scenarios

being considered in this Chapter. In addition, we used a partial linear function for

scoring of outcome criteria. The use of other function types is outside the scope of this

work.

The contribution of this Chapter is a development of a new tool for comprehensive
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BR assessment of non-inferior treatments. Since our approach is based on the data

collected during the study and therefore reported in the clinical study report, it would

facilitate a more transparent BR evaluation in practice. Moreover, incorporation of

the individual patients’ perspectives from the target patient population is aligned with

recent regulatory commitments to include patient preferences in BR assessment. Our

method contributes to a better decision making process with regards to new non-inferior

treatments.
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Chapter 6

Conclusion

This dissertation focuses on new approaches for the design and analysis of NI clinical

trials. Each Chapter presented in this dissertation looks at different statistical issues

related to this type of trial. Specifically, in Chapter 2, we provide a set of recommen-

dations for incomplete data analysis along with a novel approach for analysis of data

under MNAR. This contributes towards better analysis practices of NI trials. In Chap-

ter 3, we introduce MI combination rules for difference in binomial proportions, when

NW method is used. While we use this method for analysis of NI trials and therefore

contribute again towards better analysis of such trials, it is a general methodology which

is useful for other applications as well. In Chapter 4 we present a new framework for

incorporating different clinical experts opinions regarding NI margin into tthe design

and analysis of NI trials. While in Chapter 5, we develop a simple BR assessment ap-

proach for evaluation of overall benefit of non-inferior treatment. Both Chapter 4 and 5

advance design, analysis and interpretation of NI clinical trials. This dissertation pro-

vides an important contribution to the field of Statistics, and drug development. The
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novel methods and techniques outlined in this dissertation facilitate practitioners in-

volved with NI trails to make more efficient and transparent evaluations of treatment

effectiveness.
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Appendix A

A.1 Sample size per scenario and method
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Figure A1: Sample size per scenario and method

A.2 Outcome variable model

The baseline covariates were set to follow bivariate Normal distribution: (X1, X2) ∼

N2(µ1 = 4, µ2 = 100, σ1 = 1, σ2 = 20, ρ = −0.3), where µ1, µ2 represent mean values for

X1, X2 respectively, σ1, σ2 represent standard deviation values for X1, X2 respectively,

and ρ is a correlation coefficient between X1 and X2. X1 could for example represent
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disease status at baseline, while X2 could be a systolic blood pressure at baseline.

Model parameters in (8) were set as following: βGrpout = log pTrt∗(1−pCon)
pCon∗(1−pTrt)

, αy =

log pCon
(1−pCon)

− β1out ∗ µ1 − β2out ∗ µ2, and β1out = 0.1, β2out = −0.01. The values of β1, β2

were found through simulation and were calibrated to achieve the target proportions of

favorable events in the treatment arms.

A.3 Additional results for Chapter 2
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Figure A2: Empirical power CCA imputation strategy for MCAR: drop-out rates are
balanced between the treatment groups
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Figure A3: Empirical power CCA strategy for MAR: drop-out rates are balanced be-
tween the treatment groups
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Figure A4: Empirical type-I error CCA strategy for MAR, overall drop-out rate of 20%
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Figure A5: Mean relative bias CCA strategy for MAR: drop-out rates are balanced
between the treatment groups
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Figure A6: Mean relative bias CCA strategy for MAR, overall drop-out rate of 20%
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Table A1: Mean relative bias for MNAR due to lack of efficacy in Trt for different
drop-out (DO) rates, CCA and two-stage MI strategies, Wald method

pCon DO M2 CCA MI
0.65 0.05 15% -0.697 -0.050
0.65 0.10 15% -0.351 -0.002
0.65 0.15 15% -0.230 0.008
0.75 0.05 15% -0.669 -0.056
0.75 0.10 15% -0.357 -0.014
0.75 0.15 15% -0.248 0.031
0.80 0.15 15% -0.257 0.002
0.85 0.05 15% -0.566 -0.082
0.85 0.10 15% -0.332 -0.011
0.65 0.05 10% -0.483 -0.052
0.65 0.10 10% -0.244 -0.013
0.65 0.15 10% -0.158 -0.001
0.75 0.05 10% -0.468 -0.058
0.75 0.10 10% -0.247 -0.019
0.75 0.15 10% -0.174 0.015
0.80 0.15 10% -0.181 -0.007
0.85 0.05 10% -0.399 -0.073
0.85 0.10 10% -0.233 -0.019
0.65 0.05 5% -0.258 -0.041
0.65 0.10 5% -0.130 -0.014
0.65 0.15 5% -0.088 -0.009
0.75 0.05 5% -0.248 -0.042
0.75 0.10 5% -0.129 -0.015
0.75 0.15 5% -0.095 -0.001
0.80 0.15 5% -0.099 -0.011
0.85 0.05 5% -0.210 -0.046
0.85 0.10 5% -0.122 -0.014
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Figure A7: Empirical power two-stage MI strategy for MNAR due to lack of efficacy in
Trt
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Figure A8: Empirical type-I errors, CCA strategy for MNAR due to overwhelming
efficacy in Con
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Figure A9: Empirical type-I errors, two-stage MI strategy via MICE for MNAR due to
overwhelming efficacy in Con
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Figure A10: Empirical power two-stage MI strategy for MNAR due to overwhelming
efficacy in Con
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Table A2: Mean relative bias for MNAR due to overwhelming efficacy in Con for different
drop-out (DO) rates, CCA and two-stage MI strategies, Wald method

pCon M2 DO CCA MI
0.65 0.05 20% -1.650 0.134
0.65 0.10 20% -0.831 0.093
0.65 0.15 20% -0.560 0.043
0.75 0.05 20% -1.185 0.098
0.75 0.10 20% -0.594 0.076
0.75 0.15 20% -0.406 0.017
0.80 0.15 20% -0.330 0.028
0.85 0.05 20% -0.689 0.050
0.85 0.10 20% -0.347 0.063
0.65 0.05 15% -1.235 0.147
0.65 0.10 15% -0.624 0.083
0.65 0.15 15% -0.421 0.040
0.75 0.05 15% -0.871 0.097
0.75 0.10 15% -0.437 0.065
0.75 0.15 15% -0.301 0.016
0.80 0.15 15% -0.244 0.020
0.85 0.05 15% -0.497 0.051
0.85 0.10 15% -0.250 0.047
0.65 0.05 10% -0.825 0.118
0.65 0.10 10% -0.418 0.060
0.65 0.15 10% -0.284 0.028
0.75 0.05 10% -0.569 0.077
0.75 0.10 10% -0.287 0.044
0.75 0.15 10% -0.201 0.010
0.80 0.15 10% -0.161 0.012
0.85 0.05 10% -0.318 0.041
0.85 0.10 10% -0.161 0.033
0.65 0.05 5% -0.419 0.059
0.65 0.10 5% -0.214 0.026
0.65 0.15 5% -0.149 0.009
0.75 0.05 5% -0.280 0.041
0.75 0.10 5% -0.142 0.021
0.75 0.15 5% -0.104 0.001
0.80 0.15 5% -0.084 0.001
0.85 0.05 5% -0.150 0.026
0.85 0.10 5% -0.077 0.017
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Appendix B
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Figure B1: Coverage probability for MAR with independent X and Y (Dashed line
represents the desired coverage probability of .95, dotted line represents covarage probability
of .90.)
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Figure B2: Average width of 95% confidence intervals for MAR, with independent X
and Y
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Appendix C
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Figure C1: Deviation from objective NI decision, when more experienced MDs are more
likely to participate in the survey, subject-level data are fully observed, ρ = 0.7.

Table C1: Percent of studies concluding NI by method, when more experienced MDs
are more likely to participate in the survey, subject-level data are MCAR, ρ = 0.7.

pTrt n OBJ MI OBS MIN MAX
0.775 250 22.8 19.4 10.3 78.7 1.1
0.775 500 39.1 32.9 15.0 97.4 0.9
0.800 250 48.8 41.2 25.6 92.4 4.7
0.800 500 77.9 68.7 42.0 99.8 6.2
0.825 250 77.2 69.1 49.5 98.7 15.1
0.825 500 96.9 92.7 74.7 100.0 26.6
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Figure C2: Deviation from objective NI decision, when MDs participation in the survey
is completely random, subject-level data are fully observed, ρ = 0.7.
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Figure C3: Deviation from population based non-inferiority decision, subject-level data
are MCAR, ρ = 0.7.
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Figure C4: Deviation from population based non-inferiority decision, subject-level data
are MAR, ρ = 0.7.
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