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A Numerical Investigation of Multiple Traveling Pulse and

Front Solutions

Faisal Duraihem, Ph.D.

University of Connecticut, 2018

ABSTRACT

Algorithms are proposed to calculate traveling pulses and fronts in both directions

for the FitzHugh- Nagumo equations in one dimensional spatial domain. The first

algorithm is based on the application of the steepest descent method to a certain

functional on some admissible sets. These sets are different for pulses and for fronts.

This approach is global in nature, so that an initial guess for the wave profile and the

speed can be quite different from the correct solution. The second algorithm is the

pseudo arc length continuation method, which solves the governing equations directly.

The two algorithms are complementary. Continuation makes the computation of a

bifurcation diagram more efficient, but it requires a good initial guess. This is supplied

by the steepest descent algorithm. Also, the two algorithms serve as an independent

check for one another.

Depending on the physical parameter values, we observe the existence of single,

multiple (stable and unstable) or no traveling pulses and fronts, within the corre-

sponding admissible set. At suitable parameter values, we found as many as five

traveling wave solutions; two distinct pulses and two fronts moving to the right, and

one front moving to the left. The computed wave profiles are tested numerically using
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a parabolic solver and, for stable solutions, the speed and shape are maintained very

well for a large number of time steps.
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Chapter 1

A steepest descent method

1.1 Introduction

Reaction-diffusion models are commonly studied in diverse phenomena in physics,

chemistry and biology [12]. For infinite domains their equilibrium solutions are known

as standing waves. Besides being important in their own right, these are crucial in

understanding the dynamics of time-evolving solutions, as the latter may approach

the standing waves as time evolves. These stable standing waves are then known as

local attractors (of time-evolving trajectories). Traveling waves are another special

solution to reaction-diffusion systems. To an observer moving with a certain speed

c, these kinds of solutions appear stationary and keep their own shape. In fact, a

standing wave corresponds to c = 0. These solutions can be local attractors as well

[8]. A determination of a traveling wave involves both its shape and wave speed.

Since the first important traveling wave paper [9] in the 1930’s, traveling wave

solutions of scalar second order reaction-diffusion equations have been studied exten-

1
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sively [11]. However progress has been slow on a system of equations, unless the max-

imum principles happen to be applicable [10]. FitzHugh-Nagumo equations are not

in the latter category. Recently there are known theoretical results for the equations.

With the help of this new information, we would like to numerically demonstrate the

richness of phenomena associated with this system. We will construct global numer-

ical algorithms for computing traveling waves and show that multiple traveling wave

solutions can coexist with the same physical parameters.

Let d > 0 , γ > 0 , 0 < β < 1/2 be given parameters satisfying

4

(1− β)2
< γ <

9

(1− 2β)(2− β)
(1.1.1)

and let f(u) ≡ u(u− β)(1− u). The FitzHugh-Nagumo equations are given by

 ut = uxx + 1
d
(f(u)− v) ,

vt = vxx + u− γ v .
(1.1.2)

The imposed bounds on γ in (1.1.1) will be explained later on in this subsection. We

look for their traveling wave solutions. In other words, do there exist bounded smooth

functions ũ : R → R, ṽ : R → R and a constant c ∈ R such that u(x, t) = ũ(x − ct)

and v(x, t) = ṽ(x− ct) are solutions of (1.1.2)? This requires

 ũ′′ + cũ′ + 1
d
(f(ũ)− ṽ) = 0,

ṽ′′ + cṽ′ + ũ− γṽ = 0.
(1.1.3)

If c > 0 then the wave travels to the right. After a rescaling of the independent
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variable, the governing traveling wave equations are

c2du′′ + c2du′ + f(u)− v = 0, (1.1.4a)

c2v′′ + c2v′ + u− γv = 0. (1.1.4b)

Constant equilibrium solutions of (1.1.4a) and (1.1.4b) satisfy

 f(u)− v = 0,

u− γ v = 0.
(1.1.5)

When γ > 4
(1−β)2 as specified in (1.1.1), there are three equilibrium states (u, v) =

(0, 0), (µ2,
µ2
γ

), (µ3,
µ3
γ

) with 0 < β < µ2 <
1+β
2
< µ3 < 1. Multiple equilibrium states

can lead to two types of traveling wave solutions: a front and a pulse. A traveling

front solution connects distinct equilibrium states at both ends while a traveling

pulse connects the same equilibrium state. We will look for both traveling pulse

and traveling front solutions with (u, v) → (0, 0) as x → ∞ while their behavior as

x→ −∞ differ.

Before we focus our attention on the FitzHugh-Nagumo equations, we examine

the case of a scalar parabolic equation wt = wxx + f(w) with the same bistable

nonlinearity f as above. Its constant equilibrium solutions are w = 0, β, 1. Suppose

w(x, t) = u(x− ct) ≡ u(ζ) is its traveling wave solution with a speed c > 0, then the

waves travels to the right and u′′ + cu′ + f(u) = 0. Moreover u goes to a constant

equilibrium solution as ζ → ±∞. Define T (u) ≡ u′2

2
−F (u) where F (u) = −

∫ u
0
f(t)dt.
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A direct computation gives

dT

dζ
= u′ (u′′ + f(u)) = −cu′2 ≤ 0.

For a non-trivial u, it is clear that

T (u(∞)) = −F (u(∞)) < T (u(−∞)) = −F (u(−∞)),

hence there will never be a traveling pulse; only a front satisfying F (u(∞)) >

F (u(−∞)) is possible. With β < 1
2

it can be checked that F (β) > 0 = F (0) > F (1).

Suppose u = 0 at x =∞, it follows that only u = 1 at x = −∞ is a feasible choice. If

we think of F as the energy, when the wave travels to the right, eventually the lower

energy state u = 1 will displace the higher energy state u = 0.

We like to numerically investigate if analogous statements can be made for the

FitzHugh-Nagumo equations. The corresponding theoretical study has been con-

ducted in [6].

1.2 A variational formulation for traveling waves

Recall from [2] the following variational formulation for the solutions of (1.1.4a) and

(1.1.4b); the formulation works for both pulses and fronts. Define the Hilbert spaces

L2
ex ≡ {u :

∫
exw2dx < ∞} with the inner product 〈f, g〉L2

ex
=
∫
exfg dx, and H1

ex ≡

{u :
∫
ex(u′2 + u2)dx < ∞} with the inner product 〈f, g〉H1

ex
=
∫
ex(f ′g′ + fg) dx.

As (1.2.4b) is a linear equation in v we can let v ≡ Lcu. Here the linear operator
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Lc : L2
ex → L2

ex is defined by

Lcu(x) ≡
∫ ∞
−∞

G(x, s)u(s)ds,

where G(x, s) is the Green’s function

G(x, s) =


1

c
√
c2+4γ

er2(x−s) if x < s,

1

c
√
c2+4γ

er1(x−s) if x > s,

with r1 =
−c−
√
c2+4γ

2c
< −1 and r2 =

−c+
√
c2+4γ

2c
> 0. Define F : R → R by

F (ξ) ≡ −
∫ ξ
0
f(η)dη = ξ4

4
− (1+β)ξ3

3
+ βξ2

2
and Jc : H1

ex → R by

Jc(u) ≡
∫
R
ex
(
dc2

2
u2x +

1

2
uLcu+ F (u)

)
dx. (1.2.1)

As Lc is self-adjoint with respect to the weighted inner product in L2
ex , i.e. for any

f, g ∈ L2
ex , 〈f,Lcg〉L2

ex
= 〈Lcf, g〉L2

ex
, a direct calculation gives

J ′c(u)h =

∫
R
ex
(
dc2uxhx + hLcu− f(u)h

)
dx for all h ∈ H1

ex . (1.2.2)

Hence unconstrained critical points of Jc satisfy the integral differential equation

c2du′′ + c2du′ + f(u)− Lcu = 0,

which is equivalent to (1.1.4a)-(1.1.4b).
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1.2.1 Case 1: Pulses

Following [2] we employ a definition which will be used in the admissible domain Ap

for studying pulses below.

Definition: A function u ∈ C(R) is in the class −/ + /− if there exist x1, x2 ∈

[−∞,∞] with x1 ≤ x2 such that (a) u(x) ≤ 0 for all x ∈ (−∞, x1] ∪ [x2,∞) and (b)

u(x) ≥ 0 for all x ∈ [x1, x2].

Take a constant M1 = M1(γ) > 0 such that for all ξ ≤ −M1 , we have f(ξ) ≥ 1
γ
.

Let

Ap ≡ {u ∈ H1
ex : ‖u‖2H1

ex
= 2,−M1 ≤ u ≤ 1, u ∈ −/+ /−}.

We look for a minimizer u0 of Jc restricted to the domain Ap. Introduce a Lagrange

multiplier λ to remove the equality constraint ‖u‖2
H1

ex
= 2 in Ap. It follows that u0 is

an unconstrained critical point of Ic where

Ic(u) ≡ Jc(u) + λ

(∫
R
ex

1

2
(u′2 + u2)dx− 1

)
. (1.2.3)

Hence for all φ ∈ H1
ex

0 = I ′c(u0)φ = J ′c(u0)φ+ λ

∫
R
ex(u′0φ

′ + u0φ)dx. (1.2.4)

Putting φ = u′0 this becomes

0 =

∫
R
ex
(
dc2
(
u′20
2

)′
+

(
u0Lcu0

2

)′
+ (F (u0))

′
)
dx+ λ

∫
R

ex

2

(
u′20 + u20

)′
dx.

An integration by parts yields Jc(u0) + λ = 0. If we can pick c = c0 such that
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Jc0(u0) = 0, then λ = 0. This allows us to conclude from (1.2.4) and (1.2.2) that u0

and v0 = Lc0(u0) solve (1.1.4a) and (1.1.4b). In other words (u0, v0, c0) is a traveling

wave solution. While this argument has ignored the inequality constraints in Ap, the

same conclusion can be drawn by the rigorous proof in [2].

1.2.2 Case 2: Fronts

In order to have a traveling front solution, we need more then one constant equilibrium

solution; hence γ > 4
(1−β)2 is imposed. Recall that (u, v) = (0, 0), (µ2,

µ2
γ

), (µ3,
µ3
γ

) are

the constant equilibrium solutions.

We now explain the physical significance of the other condition γ < 9
(1−2β)(2−β) in

(1.1.1). Let E = 1
2
uLcu + F (u) be the energy, which includes the nonlocal energy

as well. (This is motivated by the form of Jc in (1.2.1). Note that ux = 0 for

a constant equilibrium solution). The equilibrium solution (u, v) = (0, 0) has an

energy of E1 = 0; while that for (u, v) = (µ3,
µ3
γ

) is E3 =
µ23
2γ

+ F (µ3). When

γ = γ∗ = 9
(1−2β)(2−β) , let µ3 = µ∗3. It can be checked that

∫ µ∗3

0

(
u

γ
− f(u)

)
du = 0;

i.e. the areas of the two regions formed by the straight line v = u
γ∗

and v = f(u) are

equal and opposite in signs. Suppose γ < γ∗ as in (1.2.1), then

E1 = 0 <

∫ µ3

0

(
u

γ
− f(u)

)
du =

µ2
3

2γ
+ F (µ3) = E3. (1.2.5)

At the end of Section 1.1, we have demonstrated that only a lower energy state can

displace a higher energy state for traveling waves of a scalar parabolic equation. We
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will investigate if the same will be true for a traveling front of the FitzHugh-Nagumo

equations. See [5].

Definition: A function u ∈ C(R) is in the class +/− if there exist x1 ∈ [−∞,∞]

such that (a) u(x) ≥ 0 for all x ∈ (−∞, x1] and (b) u(x) ≤ 0 for all x ∈ [x1,∞).

To study traveling fronts we let

Af ≡ {u ∈ H1
ex : ‖u‖2H1

ex
= 2,−M1 ≤ u ≤ 1, u ∈ +/− and u− µ3 ∈ +/−}.

Note that +/− ⊆ −/+ /− as we allow x1 and x2 in the defintion of −/+ /− to take

up ±∞.

We look for a minimizer uf of Jc in the domain Af . Similar arguments as in the

case of a pulse lead to finding a speed cf such that Jcf (uf ) = 0. Then (uf , vf , cf ) is a

traveling front solution where vf = Lcfuf with (uf , vf ) → (µ3,
µ3
γ

) as x → −∞ and

(uf , vf ) → (0, 0) as x → ∞. If cf > 0, the higher energy state (µ3,
µ3
γ

) will displace

the lower energy state (0, 0). On the other hand if cf < 0, the lower energy state

(0, 0) displaces the higher energy state (µ3,
µ3
γ

).

1.3 A steepest descent method for the computa-

tion of traveling waves

1.3.1 Case 1: Pulses

We propose to find (u0, v0, c0) numerically using a steepest descent algorithm, which

tracks a global minimizer u0 of Jc in the admissible set Ap. Pioneering work has al-

ready been done in [5]. Given any c > 0 and u ∈ Ap, let the steepest descent direction
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on the manifold {u ∈ H1
ex : ‖u‖2

H1
ex

= 2} be denoted by q = q(u, c), normalized so

that ‖q‖2
H1

ex
= 2. It can now be checked that 〈u, q〉H1

ex
= 0. We introduce Lagrange

multipliers ρ and µ to remove the equality constraints ‖q‖2
H1

ex
= 2 and 〈u, q〉H1

ex
= 0,

respectively. Therefore q can be found as an unconstrained critical point of

Kc(φ) = J ′c(u)φ+ ρ(
1

2
‖φ‖2H1

ex
− 1) + µ〈u, φ〉H1

ex
for all φ ∈ H1

ex . (1.3.1)

Hence we have

K′c(q) = 0 (1.3.2)

with

K′c(φ)p = J ′c(u)p+ ρ〈φ, p〉H1
ex

+ µ〈u, p〉H1
ex

for all p ∈ H1
ex . (1.3.3)

From (1.3.2) and (1.3.3) we have

0 = J ′c(u)p+ ρ〈q, p〉H1
ex

+ µ〈u, p〉H1
ex

for all p ∈ H1
ex . (1.3.4)

Putting p = u in (1.3.4) we get

J ′c(u)u+ ρ〈q, u〉H1
ex

+ µ‖u‖2H1
ex

= 0. (1.3.5)

As ‖u‖2
H1

ex
= 2 and 〈q, u〉H1

ex
= 0, we get µ = −1

2
J ′c(u)u, which is computable.

Returning to (1.3.4) we have for all p ∈ H1
ex ,

∫
R
ex
(
dc2u′p′ + pLcu− f(u)p

)
dx+ ρ

∫
R
ex(q′p′ + qp)dx

+ µ

∫
R
ex(u′p′ + up)dx = 0,

(1.3.6)
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which implies

−u∗xx − u∗x + u∗ = dc2u− Lcu+ f(u), (1.3.7)

where u∗ = ρq + (dc2 + µ)u. For a pulse we impose |u∗(x)| → 0 as x→∞.

Observe that (1.3.7) is a linear equation. Given c > 0 and an approximation

u = un ∈ H1
ex for a minimizer of Jc, the right hand side of (1.3.7) is known and

we can numerically solve u∗ using the finite difference method [1, 6]. (See details in

Chapter 2 ). As a consequence we can compute ρq. It can be shown ρq points in the

steepest descent direction. Hence the next update is

un+1 = un + α(u∗ − (µ+ dc2)un), 0 < α < 1. (1.3.8)

Here α is the descent step size, which is chosen by us through experimentation.

When Jc(u
n) stops decreasing, we have found a minimizer numerically. Thus we have

a minimizer u
(c)
0 such that Jc(u

(c)
0 ) = inf

Ap

Jc ≡ J (c). These procedures allow us to

obtain a graph of J versus c. It is known [2] that there is always a c = c0 such

that J (c) ≡ Jc(u
(c)
0 ) = 0 when d is sufficiently small. Let v

(c0)
0 = Lc0u

(c0)
0 . Then

(u
(c0)
0 , v

(c0)
0 , c0) is a traveling pulse solution.

Algorithm. Given c > 0and un ∈ Ap, the steepest descent algorithm to compute

min
Ap

Jc is as follows

1- Compute vn = Lcun.

2- Set µn = −1
2
J ′c(u

n)un.

3- Compute u∗, for u = un in (1.3.7).

4- Set ũn+1 = un + α(u∗ − (µ+ dc2)un).

5- Set un+1 = s(r(ũn+1)), where r is the clipping operator, and s is the shift operator
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(see below ).

6- Check J(un+1) ≤ J(un).

Here the clipping and the shift operators are defined as follows.

Definition. Let

u ∈ C+
0 ≡ {u ∈ C(R) : u(x) > 0 for some x ∈ R and lim

|x|→∞
u(x) = 0}

be given and define

x̄ ≡ max{x ∈ R : u(x) = max
y∈R

u(y)}.

Let (x1, x2) be the largest open interval containing x̄ such that u(x) > 0 for all

x ∈ (x1, x2). We define the clipping operator r : C+
0 → −/ + /− such that for any

u ∈ C+
0

r(u)(x) =


u(x), if x ∈ (x1, x2) or u(x) ≤ 0,

0, otherwise.

Definition. The shift operator s : H1
ex → H1

ex is defined such that for any u ∈ H1
ex ,

s(u)(x) = u(x− log
1

ω
),

where ω = 1
2
‖u‖2

H1
ex

.

Step 5 in the above algorithm ensures that un+1 ∈ −/ + /− and ‖un+1‖2
H1

ex
= 2. In

fact we should also clip in case un+1 < −M1; however in all our computations we

have never observed this happening.
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1.3.2 Case 2: Fronts

The traveling front satisfies (u, v) → (0, 0) as x → ∞ and (u, v) → (µ3,
µ3
γ

) as

x → −∞. Hence its right boundary condition will be the same as that for a pulse,

while there is a difference at the left boundary. In actual numerical implementation

the domain (−∞,∞) will be approximated by a long interval [a, b]. We will discuss

how to construct asymptotic boundary conditions at both x = a and x = b in the

next chapter. It turns out that so long as u′ → 0 ( which is satisfied by both pulse

and front), the asymptotic boundary conditions remains the same. Since u ∈ +/−

and u − µ ∈ +/− for a front, there will be a difference for the clipping operation in

step 5 of the algorithm. As the change is more or less obvious, we skip the details.

1.4 Fronts traveling in both directions

Let a front satisfy (u, v) → (0, 0) as x → ∞ and (u, v) → (µ3,
µ3
γ

) as x → −∞.

For γ in the range specified by (1.1.1), we know from (1.2.5) that E1 < E3. For a

traveling front with c > 0, the high energy equilibrium state will displace the low

energy state; this is exactly opposite the scalar equation situation. Our numerical

results in Chapter 4 show indeed there is such a solution.

On the other hand, it seems likely that a low energy state can also displace a

high energy state. If such a solution also exists, we have a second front solution

which travels to the left. In order to use the same algorithm to find this second front

solution, we make the following transformation.



13

Our traveling front problem is to find (u, v, c) satisfying

 dc2u′′ + dc2u′ + f(u)− v = 0,

c2v′′ + c2v′ + u− γv = 0,
(1.4.1)

with (u, v)→ (µ3,
µ3
γ

) as x→ −∞ and (u, v)→ (0, 0) as x→∞. To look for a front

traveling to the left, let U = µ3 − u and V = µ3
γ
− v. Thus we have

 −dc
2U ′′ − dc2U ′ + f(µ3 − U)− µ3

γ
+ V = 0,

−c2V ′′ − c2V ′ + µ3 − U − γ(µ3
γ
− V ) = 0.

(1.4.2)

which are the same as  dc2U ′′ + dc2U ′ + f̃(U)− V = 0,

c2V ′′ + c2V ′ − γV + U = 0,
(1.4.3)

where f̃(U) = µ3
γ
− f(µ3−U). Observe that (U, V )→ (0, 0) as x→∞ and (U, V )→

(µ3,
µ3
γ

) as x → −∞. In Chapter 4 we are able to use our existing steepest decent

algorithm to find a right traveling front (U, V, c̃) with speed c̃ > 0. Going back to the

original variables (u, v), this new traveling front correspond to a wave traveling to the

left. The state (u, v) = (0, 0) will eventually displace (u, v) = (µ3,
µ3
γ

), resulting in a

lower energy state displacing a higher energy state.



Chapter 2

Numerical implementation and
boundary conditions

2.1 Numerical implementation of the steepest de-

scent algorithm

In the first step of our steepest descent algorithm in Section 1.3.1, for a given c > 0

we need to compute v = Lcu, i.e. v satisfies the linear equation

−c2vxx − c2 vx − u+ γ v = 0. (2.1.1)

Approximate (−∞,∞) by a large interval [a, b] and take a uniform mesh {x0, x1, ..., xN}

with x0 = a, xN = b, and xj−xj−1 = h = b−a
N

for j = 1, 2, ..., N . To solve this equation

we use a centered, second-order finite difference method and obtain

(−vj+1 + 2vj − vj−1)− h
2
(vj+1 − vj−1) + h2 γ

c2
vj = h2

c2
uj, j = 0, 1, 2, ..., N, (2.1.2)

14
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with asymptotic boundary conditions at the end points to be described in the next

section.

Second, we compute µ = −1
2
J ′c(u)u by applying a composite midpoint quadrature

rule

µ = −h
2

N∑
j=0

exj+1/2{dc2
(uj+1−uj

h

)2
+ uj+1/2vj+1/2 − f(uj+1/2)uj+1/2}, (2.1.3)

where uj+1/2 =
uj+uj+1

2
and vj+1/2 =

vj+vj+1

2
.

Third, u∗ can be solved by using a similar finite difference discretization on (1.3.7)

with corresponding asymptotic boundary conditions. This allows evaluation of ũn+1

and un+1 in steps 4 and 5 of the steepest descent algorithm. In particular, after we

perform the clipping operation, the shifting operation can now be easily achieved by

updating the node locations :

xn+1
j = xnj + log

(
2

‖r(ũn+1)‖2
H1
ex

)
, j = 0, 1, ..., N. (2.1.4)

Next, we compute

Jc(u
n+1) = h

N∑
j=0

ex
n
j+1/2

{
dc2

2

(
unj+1−unj

h

)2
+ 1

2
unj+1/2v

n
j+1/2 + F (unj+1/2)

}
(2.1.5)

where vn+1 is solved from un+1 using an analogue of (2.1.2), un+1
j+1/2 = 1

2
(un+1

j + un+1
j+1 )

and vn+1
j+1/2 = 1

2
(vn+1
j + vn+1

j+1 ).

Finally we check if Jc(u
(n+1)) ≤ Jc(u

(n)). The algorithm stops when

Jc(u
(n))− Jc(u(n+1))

Jc(u(n+1))
≤ δ1
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or

Jc(u
(n))− Jc(u(n+1)) ≤ δ2

for some prescribed small δ1 and δ2. We take δ2 � δ1 in our implementation. The

second condition is needed when Jc ≈ 0.

2.2 Asymptotic boundary conditions for Lcu

We now construct asymptotic boundary conditions for (2.1.1). Suppose a function

u ∈ C(R) is known only on a large interval [a, b]. Let v = Lcu so that

v′′ + v′ − γ

c2
v = − u

c2
(2.2.1)

on (−∞,∞). This is equivalent to the system:

v
z


′

= A

v
z

−
 0

u
c2

 (2.2.2)

where A =

 0 1

γ
c2
−1

. The eigenvalues of A are λ1,2 = 1
2

(
−1±

√
1 + 4γ

c2

)
with

λ1 < −1 < 0 < λ2 and the corresponding left eigenvectors are
⇀

` 1 =

−λ2
1

 and
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⇀

` 2 =

−λ1
1

. By taking the scalar product of
⇀

` 1 with (2.2.2), we obtain

ϕ′1 = λ1ϕ1 −
u

c2
, (2.2.3)

where ϕ1 ≡
⇀

` 1.

v
z

 = −λ2v + z. This first order equation can be cast in the form

(e−λ1tϕ1)
′ = − u

c2
e−λ1t.

As we restrict our attention to bounded u and v, ϕ1 has to be bounded. Hence

e−λ1xϕ1(x) = −
∫ x

−∞

u(t)

c2
e−λ1tdt,

which simplifies to

ϕ1(x) = −
∫ x

−∞

u(t)

c2
eλ1(x−t)dt.

In other words, the arbitrary constant associated with the complementary solution

of (25) has to be set to zero in order for ϕ1 to stay bounded as x → −∞. With

(−∞,∞) being approximated by the large interval [a, b] for the purpose of numerical

computation and u being known only on [a, b], we now estimate ϕ1(a). First we

observe

−u(a)

c2
= λ1

∫ a

−∞
eλ1(a−t)

u(a)

c2
dt.

Thus

λ1ϕ1(a)− u(a)

c2
=
λ1
c2

∫ a

−∞
eλ1(a−t)(u(a)− u(t))dt
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=
−1

c2

∫ a

−∞
eλ1(a−t)u′(t)dt.

For both traveling fronts and pulses, we can assume u′(t) = o(1) as t→ −∞. Thus if

|a| � 1 and a < 0, then

|λ1ϕ1(a)− u(a)

c2
| ≤ |o(1)|

c2

∫ a

−∞
eλ1(a−t)dt =

|o(1)|
|λ1|c2

.

We therefore employ the asymptotic boundary condition λ1ϕ1 = u
c2

at x = a. This is

equivalent to

v′ − λ2v =
u

λ1c2
at x = a. (2.2.4)

A similar analysis leads to

v′ − λ1v =
u

λ2c2
at x = b. (2.2.5)

The asymptotic boundary conditions are (2.2.4) and (2.2.5).

Recall that x = a corresponds to the mesh point x0. Setting j = 0 in (2.1.2) we

have

−v1 + 2v0 − v−1 −
h

2
(v1 − v−1) + h2

γ

c2
v0 =

h2

c2
u0. (2.2.6)

On the other hand, a discretization of (2.2.4) gives

v1 − v−1 − 2hλ2v0 =
2h

λ1c2
u0. (2.2.7)

After some algebraic manipulation to eliminate v−1, we obtain

(2 + 2hλ2 +
h2γ

c2
− h2λ2)v0 − 2v1 =

h2

c2

(
1 +

1

λ1
− 2

hλ1

)
u0. (2.2.8)
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An analogous derivation gives

(2− 2hλ1 +
h2γ

c2
− h2λ1)vN − 2vN−1 =

h2

c2

(
1 +

1

λ2
+

2

hλ2

)
uN (2.2.9)

at the right boundary x = b, which corresponds to the mesh point xN .

We note that the discretized boundary conditions (2.2.8) and (2.2.9) work for both

the pulse and front solutions.

2.3 Asymptotic boundary conditions for u∗

We will compute u∗ from (1.3.7). Let ũ = dc2u−Lcu+ f(u), which is known. Hence

we study

u∗′′ + u∗′ − u∗ = ũ.

Comparing this equation to (2.1.1), the asymptotic boundary condition analysis in

Section 2.2 are applicable if we substitute γ/c2 by 1 and u/c2 by ũ. Hence the new

eigenvalues are

λ∗1,2 =
1

2

(
−1±

√
5
)

while the asymptotic boundary conditions are given by

u∗′ − λ∗2u∗ =
ũ

λ∗1
at x = a. (2.3.1)

u∗′ − λ∗1u∗ =
ũ

λ∗2
at x = b. (2.3.2)

The new discretized asymptotic boundary conditions are then
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(
2 + 2hλ∗2 + h2 − h2λ∗2

)
u∗0 − 2u∗1 = h2

(
1 +

1

λ∗1
− 2

hλ∗1

)
ũ0 (2.3.3)

and

(2− 2hλ∗1 + h2 − h2λ∗1)u∗N − 2u∗N−1 = h2
(

1 +
1

λ∗2
+

2

hλ∗2

)
ũN (2.3.4)

where ũj = dc2uj − vj + f(uj).



Chapter 3

Continuation algorithm

3.1 The governing equations for a continuation al-

gorithm

The steepest descent algorithm that we develop for both traveling pulses and fronts

are global in nature. There is no need for a good initial guess in order for the

algorithm to converge. Once we have found one such solution using the algorithm,

a continuation method can be used in conjunction to find other solutions when the

physical parameters are changed gradually. This can lead to a more efficient numerical

method and allow us to trace the solution curves in a bifurcation diagram.

The traveling wave problem is to find (u0, v0, c0) satisfying (1.1.4a) and (1.1.4b).

Since any translation of a solution remains a solution, we impose a constraint

∫ ∞
−∞

ex(u′2 + u2)dx = 2

21
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to make the solution unique. Otherwise, there will be a non-trivial null space to the

linearized operator which will cause a breakdown of the continuation method. In

addition we want to pick c0 so that Jc0(u0, v0) = 0.

First we demonstrate that this last equation is satisfied automatically if (1.1.4a)

and (1.1.4b) hold. Indeed suppose (u, v, c) satisfies (1.1.4a) and (1.1.4b). Define

Jc(u) ≡
∫
R
ex
(
dc2

2
u′2 +

1

2
uLcu+ F (u)

)
dx.

Then for any φ ∈ H1
ex(R),

J ′c(u)φ =

∫
R
ex
(
dc2u′φ′ + φLcu− f(u)φ

)
dx (3.1.1)

=

∫
R
ex
(
−dc2u′′ − dc2u′ + Lcu− f(u)

)
φdx (3.1.2)

= 0 (3.1.3)

because of (1.1.4a)-(1.1.4b). In particular, if we take φ = u′ in (3.1.1),

0 = J ′c(u)u′

=

∫
R
ex
(
dc2u′u′′ + u′Lcu− f(u)u′

)
dx

=

∫
R
ex
d

dx

(
dc2

2
u′2 +

1

2
uLcu+ F (u)

)
dx

= −
∫
R
ex
(
dc2

2
u′2 +

1

2
uLcu+ F (u)

)
dx

= −Jc(u),

where the last equality has been obtained using integration by parts. Thus Jc(u) =

0 is automatic. We can therefore conclude that in a numerical implementation of
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a continuation algorithm for the FitzHugh-Nagumo equations, there is no need to

enforce Jc(u) = 0. It suffices to find (u, v, c) satisfying

c2du′′ + c2du′ + f(u)− v = 0, (3.1.4a)

c2v′′ + c2v′ + u− γv = 0, (3.1.4b)∫ ∞
−∞

ex(u′2 + u2)dx− 2 = 0. (3.1.4c)

These are the governing equations for the continuation algorithm.

Define g : C2(R) × C2(R) × R × R3 → C(R) × C(R) × R such that for u, v ∈

C2(R), c ∈ R and
⇀
p = (d, γ, β) ∈ R3,

g(u, v, c,
⇀
p) ≡


c2du′′ + c2du′ + f(u)− v

c2v′′ + c2v′ + u− γv∫∞
−∞ e

x(u′2 + u2)dx− 2

 . (3.1.5)

As a reminder, β is embedded in the definition of the function f . Traveling waves

are the solutions that satisfy g(u, v, c,
⇀
p) = 0 when parameter

⇀
p is given. Finding

a solution is difficult because the system of equations are nonlinear. However for a

given set of physical parameters d, γ, β, our global steepest descent algorithm already

finds solutions without a good initial guess. Once we have one solution point, we can

find other solutions using a continuation algorithm. In actual implementation, we fix

two of (d, γ, β) and call the third λ. A continuation algorithm computes the solution

curve as we vary λ gradually.
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3.2 Continuation

We now describe the continuation method [9]. For our specific application to the

equations (3.1.4a)-(3.1.4c), we can think of X = C2(R) × C2(R) × R, Y = C(R) ×

C(R) × R, λ ∈ R is one of {d, γ, β} while the other two parameters are fixed, and

x = (u, v, c) ∈ X.

Let X, Y be Banach spaces and g : X × R → Y be C1. We like to find (x, λ) so

that g(x, λ) = 0. As g ∈ C1, for any (x, λ) ∈ X × R we have the partial derivative

Dxg(x, λ) ∈ L(X, Y ), the Banach space of all linear bounded maps from X to Y .

Suppose (x0, λ0) ∈ X×R solves g(x, λ) = 0. If (Dxg(x0, λ0))
−1 : Y → X exists and is

in L(Y,X), as a consequence of the implicit function theorem, there are small δ > 0

and a function x̃ : (λ0 − δ, λ0 + δ) → X such that g(x̃(λ), λ) = 0 for all λ in the

interval. Moreover (x0, λ0) can serve as a good initial guess for solving g(x, λ) = 0

using the Newton’s method when λ is close to λ0. To be more precise, we employ the

iteration scheme

xn+1 = xn − (Dxg(x, λ))−1g(xn, λ), n = 0, 1, 2, ...

Suppose {un} converges, then ũ(λ) ≡ limun is the sought-after solution for λ. One

can repeat this procedure when we change λ gradually to find the solution curve as

long as (Dxg(x, λ))−1 exists. The solution curve in the (u, λ) space is known as the

bifurcation diagram.

When the solution curve at (x, λ) forms a fold, (Dxg(x1, λ1))
−1 does not exist at

the turning point and the above Newton’s method fails. In our circumstances we can

remedy this by using the following continuation algorithm.
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3.2.1 Before engaging the continuation algorithm

Before we start the continuation algorithm, we use the steepest descent method to

compute x0 when λ = λ0. Let s = s0 at this location (without loss of generality we can

set s0 = 0). Assume (Dxg)−1(x0, λ0) exists. Since g(x(s), λ(s)) = 0, we differentiate

to obtain

Dxg(x, λ) · dx
ds

+Dλg(x, λ) · dλ
ds

= 0. (3.2.1)

Using an overdot to represent the derivative with respect to s, it follows that

ẋ = −(Dxg)−1(Dλg)λ̇. (3.2.2)

Define

Ñ(x, λ, s) ≡
∥∥∥∥dxds

∥∥∥∥2 +

∣∣∣∣dλds
∣∣∣∣2 − 1, (3.2.3)

where ‖ · ‖ is the norm in X. From the definition of arc length, we impose the

constraint Ñ = 0. Combine with (3.2.2) we have

λ̇2
(

1 +
∥∥(Dxg)−1Dλg

∥∥2) = 1. (3.2.4)

This gives

|λ̇| =
(

1 +
∥∥(Dxg)−1Dλg

∥∥2)− 1
2
. (3.2.5)

At s = s0 = 0, we choose λ̇(s0) > 0 if we want λ to increase initially. Similarly

we impose λ̇(s0) < 0 if λ decreases initially. Hence λ̇(s0) is determined and we can

evaluate ẋ(s0) from (3.2.2).

Take a λ1 which is close to λ0. Suppose for simplicity λ1 > λ0 so that we choose
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λ̇(s0) > 0. With λ̇(s0) known, we can compute ∆s from

λ1 = λ0 + λ̇(s0) ·∆s. (3.2.6)

Let x = x1 be a solution close to x0 and satisfy g(x1, λ1) = 0. To compute x1, we

employ the initial guess

x
(0)
1 = x0 + ẋ(s0) ·∆s, (3.2.7)

which will be a better choice than x0. Assuming (Dxg(x1, λ1))
−1 exists, the Newton’s

method

x
(m+1)
1 = x

(m)
1 − (Dxg(x

(m)
1 , λ1))

−1 · g(x
(m)
1 , λ1), m = 0, 1, 2, ... (3.2.8)

will converge to the solution x1. This solution (x1, λ1) corresponds to s = s1 ≡ s0+∆s.

Algorithm ( Finding the first 2 adjacent solutions )

1.Find x0 for a given λ0 so that g(x0, λ0) = 0 using steepest descent algorithm in

Chapter 1. We assign s = s0 = 0 for this solution.

2. Calculate Dλg(x(0), λ(0)) and Dxg(x(0), λ(0)).

3. Solve Dxg(x(0), λ(0))Z = Dλg(x(0), λ(0)).

4. Given another nearly λ1, we take sign(λ̇(0)) = sign(λ1 − λ0).

5. λ̇(0) = sign (λ̇(0)) (1 + ‖Z‖2)− 1
2 .

6. Calculate ẋ(0) = −λ̇(0)Z.

7. Compute ∆s by (3.2.6)

8. Use (3.2.7) to calculate an initial guess of x1. Iterate using (3.2.8).

9. Set s1 = s0 + ∆s = ∆s for the solution (x1, λ1).

10- Employ the continuation algorithm to be described next.
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3.2.2 The continuation algorithm

In the continuation algorithm, we think of (x, λ) as parameterized by the arc length

s along the solution curve. First we augment the original equation g(x, λ) = 0 with

the scalar equation Ñ(x, λ, s) = 0 where Ñ has been defined in (3.2.3). Let

G̃(x, λ, s) ≡

 g(x, λ)

Ñ(x, λ, s)

 (3.2.9)

so that G̃ : X × R× R→ Y × R. We already know G(x0, λ0, s0) = G(x1, λ1, s1) = 0.

Choose a small ∆s > 0 and let

si+1 = si + ∆s , i = 1, 2, 3, ... .

Suppose (D(x,λ)G̃(x1, λ1, s1))
−1 ∈ L(Y × R, X × R), then x = x̃(s) and λ = λ̃(s) for

some function x̃ and λ̃ in a neighborhood of s = s2. We can now use the Newton’s

method on this larger system G̃ = 0 with some appropriate initial guess (x, λ).

3.2.3 Pseudo arc length continuation

To facilitate computation, we employ a slight modification of the above continua-

tion algorithm, which is known as the pseudo arc length parametrization. Suppose

(x(s), λ(s)) are known at s = sk−1 and s = sk. Define

N(x, λ, s) ≡ ẋ(sk) · (x(s)− x(sk)) + λ̇(sk) · (λ(s)− λ(sk))−∆s. (3.2.10)
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From the definition of arc length along the solution curve in the (x, λ) space, we need

to impose ∥∥∥∥dxds
∥∥∥∥2 +

∣∣∣∣dλds
∣∣∣∣2 = 1. (3.2.11)

To calculate dx
ds

(sk) and dλ
ds

(sk), we let

z =
1

∆s
(x(sk)− x(sk−1), λ(sk)− λ(sk−1)) (3.2.12)

so that

‖z‖ =
1

∆s

√
‖x(sk)− x(sk−1)‖2 + |λ(sk)− λ(sk−1)|2. (3.2.13)

It is clear that z
‖z‖ represents an approximation to

(
dx
ds

(sk),
dλ
ds

(sk)
)

while preserving

(3.2.11). Instead of finding solution of G̃ = 0, we let

G(x, λ, s) ≡

 g(x, λ)

N(x, λ, s)

 (3.2.14)

and look for solution of G = 0 at s = sk+1. Even if (Dxg)−1 does not exist at this

point, one can still have the existence of (D(x,λ)G)−1. Therefore we can employ the

Newton’s method on the extended system:

(x(i+1), λ(i+1)) = (x(i), λ(i))−(D(x,λ)G)−1(x(i), λ(i), sk+1)G(x(i), λ(i), sk+1), i = 0, 1, 2, ...

(3.2.15)

to find the solution (x, λ) that corresponds to s = sk+1. Here k is fixed. The choice

of (x(0), λ(0)) will be discussed next.
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With dx
ds

(sk) and dλ
ds

(sk) being calculated by z
‖z‖ already, we let

x(0) ≡ x(sk) + +ẋ(sk)(sk+1 − sk),

λ(0) ≡ λ(sk) + λ̇(sk)(sk+1 − sk).

Then (x(0), λ(0)) serves as initial guess to solve (3.2.14) for s = sk+1.

3.3 Asymptotic boundary conditions

The asymptotic boundary conditions for the continuation method differ from those

for the steepest descent algorithm. As x → ∞, both a pulse and front satisfy

(u, v) → (0, 0); their asymptotic behavior are therefore similar and give rise to the

same asymptotic boundary conditions. On the other hand as x→ −∞, their behav-

iors differ.

3.3.1 At x =∞ (for both pulse and front)

Let a >> 1. On the interval [a,∞), we linearize (3.1.4a)-(3.1.4b) about (u, v) = (0, 0)

and obtain

c20

ũ
ṽ


xx

+ c20

ũ
ṽ


x

− A

ũ
ṽ

 = 0, (3.3.1)

where A =

 β
d

1
d

−1 γ

. Note that (ũ, ṽ) is a good approximation of (u, v) for large

x. When d is sufficiently small, the matrix A has 2 real and positive eigenvalues
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0 < λ1 < λ2 that satisfy

dλ2 − (β + dγ)λ+ (1 + γβ) = 0. (3.3.2)

Moreover (see [2])

0 < λ1 <
β

2d
<

1

2

(
γ +

β

d

)
< λ2 <

β

d
. (3.3.3)

In addition, by (3.3.3)

γ <
β

d
. (3.3.4)

Let
⇀
a ,

⇀

b be the eigenvectors corresponding to eigenvalues λ1 and λ2, respectively.

Define α2 = β
d
−λ1, which is positive by (3.3.3). It is readily checked that

⇀
a =

−1

dα2


and

⇀

b =

−α2

1

.

Denote by s2, s3 the roots of s2 + s−
λ1

c2
= 0 and s1, s4 those of s2 + s−

λ2

c2
= 0.

One verifies

s1 < s2 < −1 < 0 < s3 < s4.

By restricting to bounded solution of (ũ, ṽ) for (3.3.1) ( see Lemma 6.1 in [2] ), we

have u
v

 ∼
ũ
ṽ

 = D1

⇀

b es1x +D2
⇀
aes2x as x→∞, (3.3.5)

where D1 and D2 are some constants (see [2]). It has been shown that D2 6= 0. With
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s1 < s2 < 0 the above asymptotic relation simplifies to

u
v

 ∼ D2
⇀
as2e

s2x as x→∞. (3.3.6)

Moreover u
v


′

∼ D2
⇀
as2e

s2x as x→ −∞. (3.3.7)

Hence u′ ∼ s2u and v′ ∼ s2v as x → ∞. We therefore impose the asymptotic

boundary conditions u′ = s2u and v′ = s2v at x = xN .

3.3.2 At x = −∞ for the pulse

Following the similar derivation in (3.3.1) we have

u
v

 ∼ C1

⇀

b es4x + C2
⇀
aes3x as x→ −∞, (3.3.8)

where C1 and C2 are constants. Again it can be shown that C2 6= 0. With s4 > s3 > 0,

it follows that u
v

 ∼ C2
⇀
as3e

s3x as x→ −∞. (3.3.9)

Moreover u
v


′

∼ C2
⇀
as3e

s3x as x→ −∞. (3.3.10)
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We therefore impose the asymptotic boundary conditions u′ = s3u and v′ = s3v at

x = x0.

3.3.3 At x = −∞ for the front

In this case (u, v) = (µ3,
µ3
γ

) as x→ −∞. Let a >> 1. With (U, V ) as in Section 1.4,

by linearization about this equilibrium solution, it is known that

−

U
V

 =

u− µ3

v − µ3
γ

 ∼
ũ
ṽ

 as x→ −∞

with

c20

ũ
ṽ


xx

+ c20

ũ
ṽ


x

− Â

ũ
ṽ

 = 0 on (−∞,−a] (3.3.11)

and Â =

−f ′(µ3)d
1
d

−1 γ

. When d is sufficiently small, this matrix has 2 real and

positive eigenvalues 0 < λ̂1 < λ̂2 that satisfy

dλ̂2 + (f ′(µ3)− dγ)λ̂+ (1− γf ′(µ3)) = 0. (3.3.12)

Denote by ŝ2, ŝ3 the roots of s2 + s− λ̂1
c2

= 0 and s1, s4 those of s2 + s− λ̂2
c2

= 0. It is

readily checked that

ŝ1 < ŝ2 < −1 < 0 < ŝ3 < ŝ4.

A similar analysis gives U ′ ∼ ŝ3U and V ′ ∼ ŝ3V , as x → −∞. We therefore impose

the asymptotic boundary conditions U ′ = ŝ3U and V ′ = ŝ3V at x = x0.
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3.4 Discretization of the governing equations

The governing equations for the pseudo arc length continuation method are given

by G = 0 in (3.2.14), where g has been defined in (3.1.5). Again we use [a, b] to

approximate (−∞,∞) with x0 = a, xN = b, and xj − xj−1 = h = b−a
N

for j =

1, 2, ..., N . For (3.1.4a) we employ the finite difference approximation:

u′′|xi =
1

12∆x2
(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2), i = 2, 3, ..., N − 2,

u′|xi =
1

12∆x
(−ui+2 + 8ui+1 − 8ui−1 + ui−2), i = 2, 3, ..., N − 2,

for the interior nodes. Both have an accuracy of O(h4), see [14]. When i = 1 and

i = N − 1 we use

u′′|x1 =
1

12∆x2
(10u0 − 15u1 − 4u2 + 14u3 − 6u4 + u5),

u′|x1 =
1

12∆x
(−3u0 − 10u1 + 18u2 − 6u3 + u4),

u′′|xN−1
=

1

12∆x2
(uN−5 − 6uN−4 + 14uN−3 − 4uN−2 − 15uN−1 + 10uN),

u′|xN−1
=

1

12∆x
(−uN−4 + 6uN−3 − 18uN−2 + 10uN−1 + 3uN),

which preserve the same order of accuracy. To derive the fourth order finite difference

at the boundary when i = 0 we examine the Taylor expansion

uk = u0 + khu′0 +
k2h2

2!
u′′0 +

k3h3

3!
u
(3)
0 +

k4h4

4!
u
(4)
0 +O(h5) k = 1, ..., 4. (3.4.1)
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Now put u′|x0 = s3u0 in (3.4.1). Using various uk for k = 1, 2, 3, 4, we can eliminate

u
(3)
0 and u

(4)
0 , this leads to the O(h5) finite difference formula at x = x0

u′′|x0 =
2

h2

((
−25

12
hs3 −

415

144

)
u0 + 4u1 −

3

2
u2 +

4

9
u3 −

1

16
u4

)
.

A similar analysis using u′|xN = s2uN in (3.4.1) gives

u′′|xN =
2

h2

((
25

12
hs2 −

415

144

)
uN + 4uN−1 −

3

2
uN−2 +

4

9
uN−3 −

1

16
uN−4

)
.

The same derivation is applicable to v in (3.1.4b). The last equation (3.1.4c) involves

numerical quadrature. With f(x) = u′2 + u2, we apply the composite Simpson’s rule

∫ b

a

f(x)dx ≈ h

3

N−1
2∑
i=1

(f(x2i−1) + 4f(x2i) + f(x2i+1)) (3.4.2)

to compute ∫ ∞
−∞

ex(u′2 + u2)dx.

As is well-known, the quadrature error for simpson’s rule is O(h4).



Chapter 4

Numerical results

In this chapter we report numerical results obtained using algorithms documented

earlier. It is remarkable that for some suitable range of (d, γ, β), we find at least 5

traveling wave solutions with distinct wave speeds.

4.1 Numerical results of the steepest descent al-

gorithm

In the steepest descent algorithm we look for minimizers in some admissible set. The

admissible sets for the pulse and the front are Ap and Af , respectively, defined in

Chapter 1. A good initial guess of the (u, v, c) is not required for the convergence

of the algorithm. We fix β = 0.25 γ = 8.6984 and allow d to vary. For this β,

the constraint (1.1.1) becomes 7.1111 < γ < 10.2857 so that the prescribed γ lies

inside this range. For all our numerical experiments using the steepest descent, we

use a mesh size 5.0e − 3 on the computational domain = [−110, 40] to approximate

35
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(−∞,∞); the number of grid points are 30001 points in our numerical experiments

for both pulse and fronts.

When d is large, there is no traveling wave solution. For small d we find both

traveling pulses and fronts.

4.1.1 Case 1: Pulses

Let d = 1.8e−3 in our initial set of experiments. For each c > 0, we find a minimizer

uc of Jc using the steepest descent algorithm. As already defined in Chapter 1, we

let J (c) ≡ Jc(uc) = min
u∈Ap

Jc(u). A plot of J versus c for this value of d is given in

Figure 4.1.1. We see that J has no root so that there is no traveling pulse solution

within the confine of Ap.

We now make d slightly smaller at 1.6e− 3. The results are also given in Figure

4.1.1. There are two roots of J : c = c0 ∼= 4.98 and c = c1 ∼= 2. Let u0 and u1 be

the corresponding minimizers associated with c = c0 and c = c1 respectively. Then

(u0,Lc0u0, c0) and (u1,Lc1u1, c1) are traveling pulse solutions in the admissible set

Ap. Hence there are two of them for the same γ, β and this d.

As we push d progressively smaller, we see that c1 → 0 at some finite d, leaving

behind only one traveling pulse. This can be clearly seen when d = 5.0e − 4. There

is only one c = c0 = 14.3 where J (c) = 0. Thus (u0,Lc0u0, c0) is a traveling pulse for

this value of d. Additional results are tabulated in Tables 4.1.1. For all such d, we

have only one unique traveling pulse.

We now document the shapes of traveling pulses. When d = 1.6e−3, we have two

pulses with distinct speeds 0 < c1 < c0. Using vi = Lciui for i = 0, 1, the solutions

(u0, v0) and (u1, v1) are given in Figures 4.1.2 and 4.1.3, respectively. In Figure 4.1.4
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d c min(u) max(v) dc2

5.0e− 4 14.3 -0.1458 0.0796 0.1022
4.23e− 4 15.8 -0.1486 0.0798 0.1056
3.0e− 4 19.27 -0.1536 0.0802 0.1114
1.0e− 4 34.71 -0.1612 0.0803 0.1205

Table 4.1.1: traveling pulse for β = 0.25 and γ = 8.6984.
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c
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1

J
c

×10
-3

d=1.6e-3

Figure 4.1.1: A plot of J vs. c when β = 0.25 and γ = 8.6984 for traveling pulse. Each
curve corresponds to the indicated d. The right picture a plot of J vs. c when β = 0.25,
d = 1.6e− 3 and γ = 8.6984. There are two roots of J : c = c0 ∼= 4.98 and c = c1 ∼= 2.

we overlay the solutions u0 and u1 to explore their differences in shape. It is clear

that the pulse width associated with the faster wave is significantly larger. In the

same figure we also compare the profiles of v0 and v1.

Inputing these profiles as initial conditions for the parabolic solver of (1.1.2 ), we

record the successive wave profiles of various time intervals in Figure 4.1.5. It shows

that the wave corresponding to c = c0 keeps the same shape and moves with a speed

c0. This indicates this wave is stable. To substantiate this claim, we plot the final

u profile at t = 7.5 from the parabolic solvers side by side with u0 from the steepest

descent algorithm in the left picture of Figure 4.1.7. The two profiles are in fact



38

-150 -100 -50 0 50

x

-0.2

0

0.2

0.4

0.6

0.8

1
u

0
, 

v
0

u
0

v
0

0 10 20 30 40

x

-8

-6

-4

-2

0

2

4

6

8

u
0
, 

v
0

×10
-3

u
0

v
0

Figure 4.1.2: traveling pulse with speed c0 ∼= 4.98 when β = 0.25, γ = 8.6984 and
d = 1.6e− 3 . The right picture is magnified view of the left in the leading edge of the

traveling wave.
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Figure 4.1.3: traveling pulse with speed c1 ∼= 2 when β = 0.25, γ = 8.6984 and
d = 1.6e− 3. The right picture is magnified view of the left in the leading edge of the

traveling wave.

indistinguishable in the picture.

We do the same on the wave for c = c1. However this time the wave rapidly breaks

up and reorganizes as the fast stable wave profile seen in Figure 4.1.6. A comparison

of the final u profile of t = 7.5 with that of u0 is given on the right picture of Figure

4.1.7. The slow wave is therefore unstable.
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Figure 4.1.4: Difference in shapes between u0 and u1, and between v0 and v1 for
traveling pulse.
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Figure 4.1.5: The fast moving pulse travels at constant speed c0 when the profile in
figure 4.1.2, obtained by steepest descent algorithm, is input as initial conditions in the

parabolic solvers.

Finally we investigate the change in the fast pulse profile with respect to d in

Figure 4.1.8. We see that as d decreases, the pulse width increases rapidly while
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Figure 4.1.6: The slow moving pulse breaks up and evolves into the fast moving pulse
when the profile in Figure 4.1.3, obtained by steepest descent algorithm, is input as initial

conditions in the parabolic solvers.
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Figure 4.1.7: The parabolic solver solution at t = 7.5 in Figure 4.1.5 and u0 are
indistinguishable on the left picture. The same is true for the parabolic solver solution in

Figure 4.1.6 and u0 on the right.

retaining the same qualitative shape.



41

-600 -400 -200 0 200

x

-0.2

0

0.2

0.4

0.6

0.8

1

u

d=5.0e-4

d=3.0e-4

d=1.0e-4

Figure 4.1.8: Compare profile of u for fast pulse at different d.

4.1.2 Case 2: Front moving to the right

We start with d = 1.8e− 3 as in Case 1. For each c > 0, we find a minimizer uc of Jc

using the steepest descent algorithm and let J (c) ≡ Jc(uc) = min
u∈Af

Jc(u). A plot of

J versus c for this value of d is given in Figure 4.1.9. We see that J has no root so

that there is no traveling front solution that moves to the right.

The numerical results for d = 1.6e− 3 is also given in Figure 4.1.9. There are two

roots of J : c = c0 ∼= 4.975 and c = c1 ∼= 2.983. Let u0 and u1 be the corresponding

minimizers associated with c = c0 and c = c1, respectively. Hence we have two

right-moving traveling front solutions in the admissible set Af .

A similar phenomenon as in Case 1 occurs when we push d smaller. We see that

c1 → 0 at some finite d, leaving behind only one traveling pulse. This can be clearly

seen when d = 1.0e − 4. There is only one c = c0 = 34.7 at which J (c) = 0. Thus
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(u0,Lc0u0, c0) is a traveling front for this value of d. Restricting ourselves to the

fastest traveling front, we tabulate additional numerical results see in Tables 4.1.2.

d c0 min(u) max(v) dc20

5.0e− 4 14.299 −1.98e− 4 9.01e− 2 0.1022
4.23e− 4 15.8 −1.37e− 4 9.0e− 2 0.1056
3.0e− 4 19.27 −6.63e− 5 8.82e− 2 0.1114
1.0e− 4 34.71 −6.54e− 6 9.02e− 2 0.1205

Table 4.1.2: Right-moving fast traveling front for β = 0.25 and γ = 8.6984. These
parameters are the same as in Table 4.1.1.
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Figure 4.1.9: A plot of J vs. c when β = 0.25 and γ = 8.6984 for traveling front. Each
curve corresponds to the indicated d. The right picture a plot of J vs. c when β = 0.25,
d = 1.6e− 3 and γ = 8.6984. There are two roots of J : c = c0 ∼= 4.975 and c = c1 ∼= 2.983.

We now document the shapes of traveling pulses. When d = 1.6e−3, we have two

pulses with distinct speeds 0 < c1 < c0. Using vi = Lciui for i = 0, 1, the solutions

(u0, v0) and (u1, v1) are given in Figures 4.1.10 and 4.1.11, respectively. In Figure

4.1.12 we overlay the solution u0 and u1 to explore their differences in shape. Again

the fast wave has wider front width.

Inputing these profiles as initial conditions for the parabolic solver of (1.1.2), we
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Figure 4.1.10: The fast right-moving traveling front with speed c0 ∼= 4.975 when
β = 0.25, γ = 8.6984 and d = 1.6e− 3. The right picture is magnified view of the left in

the leading edge of the traveling wave.
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Figure 4.1.11: The slow right-moving traveling front with speed c0 ∼= 2.98 when
β = 0.25, γ = 8.6984 and d = 1.6e− 3. The right picture is magnified view of the left in

the leading edge of the traveling wave.

see in Figure 4.1.13 that the wave corresponding to c = c0 keeps the same shape and

moves with a speed c0. This indicates this wave is stable.

However for the wave for c = c1, in Figure 4.1.14 we see that the wave rapidly

breaks up and reorganizes to the fast stable wave profile. The slow wave is therefore

unstable. To check that the parabolic solvers solutions evolve into u0, we plot the
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Figure 4.1.12: difference in shape between u0 and u1 and between v0 and v1 for
right-moving traveling front.
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Figure 4.1.13: The fast right-moving front travels at constant speed c0 when the profile
in Figure 4.1.10, obtained by steepest descent algorithm, is input as initial conditions in

the parabolic solvers.

solutions at final time versus u0 in Figure 4.1.15. They indeed agree. In Figure

4.1.15 we compare the profile at last t with u0 and u1. Finally in Figure 4.1.16 we
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Figure 4.1.14: The front travels at constant speed c1 when the profile in Figure 4.1.11,
obtained by steepest descent algorithm, is input as initial conditions in the parabolic

solvers.
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Figure 4.1.15: The parabolic solver solution at t = 80.4 in Figure 4.1.13 and u0 are
indistinguishable on the left picture. The same is true for the parabolic solver solution at

t = 8.5 in Figure 4.1.14 and u0 on the right.

compare the wave profiles of the fast fronts corresponding to a range of d. A smaller

d gives rise to a slower decay near x = −∞.
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Figure 4.1.16: Compare profiles of u for right moving fast fronts at different d.

4.1.3 Case 3: Front moving to the left

Recall that we use the transformation U = µ3 − u and V = µ3
γ
− v to obtain an

equivalent system (1.4.2) with (U, V ) → (0, 0) as x → ∞ and (U, V ) → (µ3,
µ3
γ

) as

x → −∞. For each c > 0, we find a minimizer Uc of Jc using the steepest descent

algorithm. Let J (c) ≡ Jc(Uc) = min
U∈Af

Jc(U). A plot of J versus c for this value of d

is given in Figure 4.1.17. In contrast to the other cases, J has at most one root. The

root gives a traveling front solution Af moving to the right in the (U, V ) formulation.

It corresponds to a front moving to the left in the original variables (u, v) . This

can be clearly seen when d = 5.0e − 4. There is only one c = c0 = 20.75 at which

J (c) = 0. Thus (U0,Lc0U0, c0) is a traveling front moving to the right for this value

of d. Additional numerical results are given in the Tables 4.1.3.

After transforming back to the (u, v) variable, the wave profile is given in Figure

4.1.18. We now plot the left moving front and the 2 right moving fronts in Figure

4.1.19 to highlight their differences in shapes. Any translation of a traveling wave

remains a traveling wave. But even after making a translation, the right and left
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Figure 4.1.17: A plot of J vs. c when β = 0.25 and γ = 8.6984 for left moving traveling
front. Each curve corresponds to the indicated d.

d c dc2

5.0e− 4 20.7597 0.2155
3.0e− 4 27.1930 0.2218
1.0e− 4 47.7745 0.228

Table 4.1.3: Left moving traveling front with β = 0.25 and γ = 8.6984. These
parameters are the same as in Table 4.1.1 and 4.1.2.

moving fronts remain very different.

Next we input the (u, v) profile from the above steepest descent algorithm into the

parabolic solvers. It is clear from Figure 4.1.20 that the front moves to the left with

a constant speed. In Figure 4.1.21 we compare the profile at the last time t = 7.22

with u0. Again the profiles are indistinguishable. Next a plot of left moving front

profiles for various d are given in Figure 4.1.22. We see that a smaller d leads to a
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Figure 4.1.18: left moving traveling front with speed c0 ∼= 20.75 when β = 0.25,
γ = 8.6984 and d = 5.0e− 4.
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Figure 4.1.19: The left moving front and the 2 right moving fronts

slower decay near x =∞.

For d = 1.6e − 3, we have therefore found 5 distinct traveling wave solutions:
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Figure 4.1.20: The left moving front travels at constant speed c0 when the profile in
Figure 4.1.18, obtained by steepest descent algorithm, is input as initial conditions in the

parabolic solvers
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Figure 4.1.21: Compare the profile at last t with u0

2 right-moving traveling pulses, 2 right-moving traveling fronts, and 1 left-moving

traveling front. The u-profiles of all 5 waves are given in Figure 4.1.23
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Figure 4.1.22: Compare profiles of left moving front u for different d.

-120 -100 -80 -60 -40 -20 0 20 40

x

-0.2

0

0.2

0.4

0.6

0.8

1

u

u
0
 front

u
1
 front

u
0
 left moving

u
0
 pulse

u
1
 pulse

Figure 4.1.23: all five traveling waves when d = 1.6e− 3, β = 0.25, and γ = 8.6984. u0
is the fast wave and u1 is the slow wave.

4.1.4 An independent check of our algorithm

Suppose cp is the fastest wave speed associated with a pulse, cf+ is that for a front

moving to the right and cf− is that for a front moving to the left. It is known that

both dc2p and dc2f+ go to (1−2β)2
2

= 0.125 as d → 0, see [2]. From Tables 4.1.1 and
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4.1.2, our numerical results indeed validate the theoretical results. For the front

traveling to the left, we have made transformation to get the governing equations

(1.4.3) on (U, V ), which involve the cubic polynomial nonlinearity f̃ . The roots

of f̃ are u0 = 0, u1 = 0.14174, and u2 = 0.96386. A similar argument leads to

1√
2dc2

f−
(u2 − 2u1 + u0) → 1 as d → 0; in other words dc2f− → 0.231. The results in

Table 4.1.3 agree with this prediction.

4.2 Numerical results for the continuation algo-

rithm

In Chapter 3 we have constructed a continuation algorithm which gradually adjust

the physical parameters to find the bifurcation diagram. To implement this algorithm

we start with the fast traveling wave solution (u, v, c) found using the steepest descent

algorithm. For all our numerical experiments using the continuation method, we use a

mesh size 5.0e−3 on the computational domain [−110, 40] to approximate (−∞,∞);

the number of grid points are 30001 points. We employ ∆s = 0.1 in the pseudo arc

length continuation algorithm described In Section 3.2.

4.2.1 Solution dependence on d

Fix β = 0.25 and γ = 8.6984 and allow d to vary. To initiate the pseudo arc

length continuation method, we use the fast traveling pulse solution (u, v, c) obtained

from the steepest descent algorithm. The continuation algorithm yields a bifurcation

diagram whose projection on the (d, c) plane is represented in Figure 4.2.1. It is seen

that there is a turning point at d = 1.714e−3. For d > 1.714e−3, there is no traveling
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pulse. It is also clear that when d < 1.714e − 3 with d being close to the turning

point, there are two traveling pulses; the fast and the slow waves. Such a bifurcation

diagram agrees with what we observe in the steepest descent method. It is expected

that the slow wave speed c1 goes to 0 at some finite d. However the computation for

the continuation method gets increasingly difficult, therefore we cannot complete this

segment of the bifurcation diagram.
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Figure 4.2.1: bifurcation curves for traveling pulses and fronts when changing d

For traveling fronts moving to the right, we perform the same procedures as for a

traveling pulse. It is seen that in Figure 4.2.1 there is a turning point at d = 1.69e−3.

For d > 1.69e− 3, there is no traveling front moving to the right. It is also clear that

when d < 1.69e − 3 with d being close to a turning point, there are two traveling

fronts moving to the right; the fast and the slow waves. Such a bifurcation diagram

agrees with what we observe in the steepest descent method. Again we expect the
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slow wave speed c1 goes to 0 at some finite d, but finding this segment of bifurcation

curve proves to be too difficult.

The bifurcation diagram for the left moving traveling front is represented in Figure

4.2.1. We see that there is no turning point. However when d > 3.3898e − 3, our

algorithm fails for large values of d because complex numbers start to appear in

the calculations. This can be explained as follows. Linearization of the FitzHugh-

Nagumo equations near x = ∞ leads to (3.3.1). The eigenvalue of the matrix A in

the equation satisfies (3.3.2). As long as λ is real, both roots λ1 and λ2 are positive.

With γ = 8.6984, β = 0.25, we see that λ is real as long as d /∈ (0.0037, 0.22). In such

case the negative root s2 of s2 + s− λ1
c2

= 0 is well defined. We can then impose the

asymptotic boundary condition u′ ∼ s2u and v′ ∼ s2v at large x.

At the same time linearization of the front near x = −∞ leads to (3.3.12). We

can impose the asymptotic boundary condition there only when d /∈ (0.0031, 0.08).

In such cases the negative root s3 of s2 + s − λ1
c2

= 0 is well defined. We can then

impose the asymptotic boundary condition u′ ∼ s3u and v′ ∼ s3v as x → −∞. It is

observed that when d > min{0.0037, 0.0032} = 0.0031, complex s3 starts to appear.

Hence the asymptotic boundary condition is incorrect. Though the algorithm yields

solutions up to d = 3.3898e− 3, the solution for 0.0031 < d < 3.3898e− 3 is not trust

worthy.

4.2.2 Solution dependence on γ

Fix β = 0.25 and d = 5.0e − 4 and allow γ to vary. To initiate the pseudo arc

length continuation method, we use the fast traveling pulse solution (u, v, c) obtained

from the steepest descent algorithm. The continuation algorithm yields a bifurcation
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diagram whose projection on the (γ, c) plane is represented in Figures 4.2.2. When

7.1111 < γ < 10.2857 ( the constraint described by (1.1.1) ), there is a traveling

pulse. We find that traveling pulse continues to exist when γ < 7.1111. However if γ

is slightly larger than 10.2857, no traveling pulse is found. In Figure 4.2.3 we compare

the pulse profiles of u and v at various γ as it approaches 10.2857; it is seen that the

width of the pulse increases rapidly. We speculate that such a width becomes infinitely

long in the limit so that a pulse becomes a front. Numerical inaccuracy prevents us

from determining the exact value of the transition γ.
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Figure 4.2.2: bifurcation curves for traveling pulses and fronts when changing γ

For traveling fronts moving to the right and the left, we perform the same pro-

cedures as for a traveling pulse. It is seen that in Figures 4.2.2 when 7.1111 < γ <

10.2857, there are traveling fronts moving to the right and the left. Both types of

traveling fronts continue to exist when γ > 10.2857. When γ < 7.1111, (u, v) = (0, 0)

is the only unique constant equilibrium solution. Hence it is no surprise that no trav-

eling fronts are found for this range of γ. In fact numerical results find no traveling

front at around γ ∼= 7.5286. This can be explained as follows. When γ̃1 = 7.5643, the
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line v = u
γ̃1

intersects the graph v = f(u) at its local maximum point. For γ1 < γ < γ̃1

it should be f ′(µ3) > 0. The asymptotic boundary condition treatment in Section

3.3.3 breaks down, because the eigenvalue λ̂1 may not be positive any more.
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Figure 4.2.3: Compare fast wave profiles of u and v for pulse at different γ.
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Figure 4.2.4: Compare fast wave profiles of u and v for front moving to the right at
different γ.
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