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ABSTRACT

Methods for Fault Detection and Isolation (FDI) in systems with uncertainty have

been studied extensively due to the increasing value and complexity of the maintenance and

operation of modern Cyber-Physical Systems (CPS). CPS are characterized by nonlinearity,

environmental and system uncertainty, fault complexity and highly non-linear fault propagation,

which require advanced fault detection and isolation algorithms. Therefore, modern efforts

develop active FDI (methods that require system reconfiguration) based on information theory

to design tests rich in information for fault assessment. Information-based criteria for test

design are often deployed as a Frequentist Optimal Experimental Design (FOED) problem,

which utilizes the information matrix of the system. D- and Ds-optimality criteria for the

information matrix have been used extensively in the literature since they usually calculate

more robust test designs, which are less likely to be susceptible to uncertainty. However,

FOED methods provide only locally informative tests, as they find optimal solutions around

a neighborhood of an anticipated set of values for system uncertainty and fault severity. On

the other hand, Bayesian Optimal Experimental Design (BOED) overcomes the issue of local

optimality by exploring the entire parameter space of a system. BOED can, thus, provide

robust test designs for active FDI. The literature on BOED for FDI is limited and mostly

examines the case of normally distributed parameter priors. In some cases, such as in newly

installed systems, a more generalized inference can be derived by using uniform distributions

as parameter priors, when existing knowledge about the parameters is limited.
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In BOED, an optimal design can be found by maximizing an expected utility based

on observed data. There is a plethora of utility functions, but the choice of utility function

impacts the robustness of the solution and the computational cost of BOED. For instance,

BOED that is based on the Fisher Information matrix can lead to an alphabetical criterion

such as D- and Ds-optimality for the objective function of the BOED, but this also increases

the computational cost for optimization since these criteria involve sensitivity analysis with the

system model. On the other hand, when an observation-based method such as the Kullback-

Leibler divergence from posterior to prior is used to make an inference on parameters, the

expected utility calculations involve nested Monte Carlo calculations which, in turn, affect

computation time. The challenge in these approaches is to find an adequate but relatively low

Monte Carlo sampling rate, without introducing a significant bias on the result. Theory shows

that for normally distributed parameter priors, the Kullback-Leibler divergence expected

utility reduces to a Bayesian D-optimality. Similarly, Bayesian Ds-optimality can be used

when the parameter priors are normally distributed. In this thesis, we prove the validity of

the theory on a three-tank system using normally and uniformly distributed parameter priors

to compare the Bayesian D-optimal design criterion and the Kullback-Leibler divergence

expected utility. Nevertheless, there is no observation-based metric similar to Bayesian

Ds-optimality when the parameter priors are not normally distributed.

The main objective of this thesis is to derive an observation-based utility function similar

to the Ds-optimality that can be used even when the requirement for normally distributed

priors is not met. We begin our presentation with a formalistic comparison of FOED and

x



BOED for different objective metrics. We focus on the impact different utility functions have

on the optimal design and their computation time. The value of BOED is illustrated using a

variation of the benchmark three-tank system as a case study. At the same time, we present

the deterministic variance of the optimal design for different utility functions for this case

study. The performance of the various utility functions of BOED and the corresponding

FOED optimal designs are compared in terms of Hellinger distance. Hellinger distance

is a bounded distribution metric between 0 and 1, where 0 indicates complete overlap of

the distributions and 1 indicates the absence of common points between the distributions.

Analysis of the Hellinger distances calculated for the benchmark system shows that BOED

designs can better separate the distributions of system measurements and, consequently,

can classify the fault scenarios and the no-fault case with less uncertainty. When a uniform

distribution is used as a parameter prior, the observation-based utility functions give better

designs than FOED and Bayesian D-optimality, which use the Fisher information matrix.

The observation-based method, similar to Ds-optimality, finds a better design than the

observation-based method similar to D-optimality, but it is computationally more expensive.

The computational cost can be lowered by reducing the Monte Carlo sampling, but, if the

sampling rate is reduced significantly, an uneven solution plane is created affecting the FDI

test design and assessment. Based on the results of this analysis, future research should focus

on decreasing the computational cost without affecting the test design robustness.

xi



Chapter 1

Introduction

1.1 Motivation

Since the early 19th century, the manufacturing industry’s processes are increasing in number

and complexity. Simplistic manufacturing systems that were developed in the early days of the

Industrial Revolution were replaced with highly sophisticated cyber-physical systems (CPS)

in industry, such as energy, automotive, aerospace, etc., which are parted from thousands of

smaller sub-systems. The increasing complexity of the systems results in a higher probability

of abnormal events and calls for robust fault detection and isolation (FDI). In modern CPS,

which are characterized by nonlinearity, high environmental and system uncertainty, fault

complexity and nonlinear fault propagation, FDI becomes challenging. There is an abundance

of techniques for FDI in the literature, though methods that utilize optimal experimental

design approaches are limited. The implementation of optimal experimental design can create

tests that are robust for fault diagnosis. In most cases, Frequentist optimal experimental

design (FOED) is adopted, which can provide only locally optimal tests [1]. This research

aims to utilize a Bayesian optimal experimental design, which can create globally optimal

1
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tests.

The following example can elucidate the need for a global optimal test for FDI. Let

us assume we have a process with two control (input) variables, u = [u1, u2], two faults,

θ1, two uncertain parameters, θ2, and one output, y. We also treat the faults as uncertain

parameters and we create a parameter vector θ = [θ1, θ2]. If we assume that the uncertain

parameters, θ2, follow a normal distribution, the presence or absence of a fault will result in

an uncertain output similar to Fig 1.1.

Fig. 1.1: Result of the uncertain parameters, θ2, to the expected output, y.
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In Fig. 1.1 the possible outputs of the no-fault, Fault 1, and Fault 2 scenarios are

overlapping, which makes it impossible to detect whether there is a fault or not, nor to

determine which fault it could be, by observing the output, y. More specifically, if the output

is 50, then it is likely that Fault 2 has occurred, though there is a low probability of a

fault-free system and an even lower probability that Fault 1 occurred. This confusion worsens

if the output is 47 or 52, where the probabilities of Fault 1 and Fault 2, and Fault 2 and

no-fault scenarios are equal, respectively.

Frequentist optimal experimental design uses the most likely values of the uncertain

parameters and finds the optimal design (optimal input), which separates better the output

curves of the scenarios under investigation (Fault 1, Fault 2, no-fault). Although, as the real

values of the uncertain parameters are departing from their most likely values (θ̃2 6= θ), the

derived optimal design is not optimal anymore and the resulting curves can overlap worse

than the nominal case (unoptimized case) as we can see in Fig. 1.2.

On the other hand, Bayesian optimal experimental design takes into consideration

the whole distribution of the uncertain parameters and finds the optimal design for any

possible combination of uncertainty. In that case, even when the real values of the uncertain

parameters depart from their most likely values (θ̃2 6= θ), the output curves continue to be

optimally separated (Fig. 1.3).
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Fig. 1.2: Output distributions for a Frequentist optimal design for real values of the uncertain

parameters, θ̃2, equal and not equal to their most likely values.

Fig. 1.3: Output distributions for a Bayesian optimal design for real values of the uncertain

parameters, θ̃2, equal and not equal to their most likely values.
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1.2 Objectives and Chapter Structure

The objective of this master’s thesis is to introduce a methodology that can improve fault

detection and isolation in a system using Bayesian optimal experimental design to create

tests. The idea lies in the concept that an optimal test can extract more information than a

non-optimal test. The methodology uses a Bayesian active model-based FDI to optimize the

fault diagnosis. Specifically, it employs a Bayesian experimental design to detect the optimal

test (design) under which, if the system of interest operates, it will detect and isolate the

possible fault with the maximum probability. This methodology can be applied in systems

that have the capability to go off-line or to perform in relaxed operational conditions to

diagnose the possibility of a fault.

This thesis is organized as follows:

Chapter 2: Literature Review

We introduce the basic ideas of our thesis, and we analyze the terminology that will be

used in the following chapters. We present published works that this thesis methodology is

based on. The first section provides a fundamental analysis of FDI, while the second section

presents the optimal experimental design criteria for FDI and some of the works which have

been used. The last section presents the literature review of Bayesian experimental design in

multiple applications.
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Chapter 3: Methodology

The methodology of our work used to improve FDI is presented in chapter 3. We give the

formulations of Frequentist and Bayesian D-optimal criteria, and we outline their differences.

We also present a previously introduced criterion in the literature of Bayesian experimental

design that can be reduced to D-optimal design under specific assumptions, and it can be

calculated faster than Bayesian D-optimal criterion. Then we present and compare the

formulations of Frequentist and Bayesian Ds-optimal criteria. We use the idea of the Bayesian

design criterion that can be reduced to D-optimal design, to introduce a Bayesian criterion

similar to Bayesian Ds-optimal criterion. Finally, we present the Hellinger distance as a

metric of comparison of our results.

Chapter 4: Results and Discussion

In the fourth chapter, we present a three-tank system in which we apply the design criteria,

discussed in chapter 3, to find the optimal design. The efficiency of each design is calculated

by using the Hellinger distance for all possible fault, and no-fault scenarios.

Chapter 5: Conclusions

In chapter 5 we provide the concluding remarks, analyze the limitations, and discuss future

directions for research.



Chapter 2

Literature Review

2.1 Fault Detection and Isolation (FDI)

Any unexpected deviation from the standard operating condition is presumed as a fault.

The fault detection and isolation (FDI) process detects a fault (deviations) in a system, and

categorizes the type as well as its source in the system (fault isolation). FDI methods can be

classified, based on various viewpoints, in multiple categories. Following Venkatasubramanian

et. al.’s [2, 3, 4] viewpoint, the main diagnosis components are the type of knowledge and the

type of diagnosis search strategy. The latter depends on the type of knowledge, which makes

it the most important feature in FDI. From an a priori knowledge available viewpoint, the

FDI is classified in model-based and in history-based or data-driven methods. Both of these

categories are divided into the quantitative and qualitative methods, as shown in figure 2.1.

The model-based methods use a mathematical representation of the system to detect

and isolate faults. These methods can be classified further as quantitative or qualitative. Fault

trees [5], abstraction hierarchy [6] and digraphs [7] are some of the model-based qualitative

methods, while parity space [8], Kalman filters [9], parametric estimation [10] and diagnostic

7
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Fig. 2.1: Classification of fault detection and isolation methods

observers [11] are some of the model-based quantitative methods. Model-based methods are

used when the available mathematical models are adequately representative of the system of

interest. History-based or data-driven methods are used when the mathematical models of

the system of interest are not available, not sufficiently accurate, or not applicable. Similar to

model-based methods, history-based methods can be classified further into quantitative and

qualitative methods. Expert systems [12] and qualitative trend analysis [13] are two of the

history-based quantitative methods, while statistical [14], clustering [15] and neural networks

[16] are some of the quantitative methods [17].

FDI methods can categorized as passive or active based on their application mode.
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Passive FDI approaches use data collected in real time and they are compared with historical

or process model data for fault diagnosis. Active FDI approaches manipulate the input

trajectories to obtain optimal data for a better fault diagnosis. The downside of active FDI

is that, in order to manipulate the input trajectories, the system has to operate in relaxed

operating conditions or be off-line. On the other hand, active FDI has been proven superior

to passive FDI, since it utilizes optimal data [1, 18].

In model-based active FDI, optimal design of experiments or optimal experimental

design (OED) can be implemented to find the optimal input set of parameters (optimal

design) [19, 20, 21]. There is a plethora of design criteria that have been used in the past

for OED. The choice of the design criterion can affect the efficiency of FDI and usually the

optimal design criterion is system specific.

2.2 OED criteria

Design criteria can be classified into four categories, information-based criteria, distance-based

criteria, compound-based criteria, and other criteria. The most frequently used criteria in the

literature are the information-based criteria, which are related to the information matrix I of

the system. The information matrix is proportional to the inverse of the variance-covariance

matrix for the least-square estimates of the linear parameters of the model [22]. Based on the

information matrix, we can derive multiple design criteria related to the characteristic values

of a matrix and these criteria can be used as statistical metrics. A-optimality minimizes the

trace of the information matrix and results in the minimization of the average variance of the
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estimates of the regression coefficients. C-optimality minimizes the asymptotic variance of

the maximum likelihood estimator of a linear combination of the model parameters.

D-optimality criterion, which is introduced by Wald [23], is the most popular design

criterion and it seeks to maximize the determinant of the information matrix or equivalently

minimize the determinant of the variance-covariance matrix. A special case of D-optimality is

the Ds-optimality [24, 25], where the information matrix is partitioned into M = [M11, M12;

MT
12, M22] and the design criterion seeks to maximize the log{|M |/|M22|} [following 26,

notation]. D-optimal design was utilized by Lanouette et al. [27] to create data sets for

evaluation of various neural networks in three applications. Alaña and Theodoropoulos [28]

used D-optimality in non-linear distributed systems to improve parameter estimation, while

Imanieh and Aghahosseini [29] used D-optimal criterion to select the optimal combination of

nanocomposites’ precursor for membranes. In their research, Han et al. [20] and Han et al.

[21], used D-optimal design criterion in a kinetic model selection for NiO and CH4 −NiO

reduction equivalently, in Chemical-Looping Combustion.

In FDI, Ds-optimal experimental design criterion was used by Patan and Ucinski [30] to

determine the optimal locations of sensors in a fault detection problem in distributed systems.

Palmer et al. [1] employed a D-optimal test design while they checked the identifiability of

the faults for FDI in two case studies. In the first case study a two-step optimal test design

was created for the fouling identification in an aircraft heat exchanger, while the second case

study searched for the optimal conditions for component FDI in a subsystem of an aircraft

environmental control system. Their preliminary results were very promising and the have
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continued their research in this direction.

2.3 Optimal FDI Test Design

In optimal FDI test design, the input trajectories of the system play the role of the design,

while the faults and no-fault scenarios are the parameters of which we try to minimize their

uncertainty. The optimal FDI test design is obtained by maximizing or minimizing a design

criterion, which results in reduced parameter uncertainty.

Palmer et al. [1] employed a D-optimal test design to create tests for the heat exchanger

fouling identification. The resulting test was a two-step steady-state test which increased

the total test time. Based on the idea of Palmer et al. [1], Bollas et al. [31] applied for

a patent for an active FDI test design in a plate-fin heat exchanger fouling identification,

which was approved three years later. Palmer and Bollas [32] applied an active FDI test

design using dynamic information to identify faults in a plate fin heat exchanger model and

they found that the use of dynamic information performed better than the steady-state

information. Palmer et al. [33] used a Ds-optimal FDI test design to detect and isolate faults

in a diesel engine air handling system. Palmer et al. [34] performed a comparative study of a

steady-state and a dynamic D-optimal test design followed by false alarm analysis in a plate

fin heat exchanger and an environmental control system. Palmer and Bollas [35] compared

D-, Ds-, E- and PAC-optimal test designs combined with a k-nearest neighbor algorithm

in a three-tank system and in a diesel engine. Ds-optimal test design generated the highest

rate of successful predictions in both case studies; however, the prediction of the hole as a
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fault in the three-tank system was 68% while in the diesel engine the prediction of the inner

manifold fault was 49% and the prediction of the fault free case was as low as 77%. The

latter can produce many false alarm cases. Palmer and Bollas [36] compared a steady-state

and dynamic D-optimal test design together with an extended Kalman filter (EKF) and a

moving horizon estimation (MHE) to detect and isolate faults in a plate fin heat exchanger

and an environmental control system. The dynamic test design was found to be consistently

more precise than the steady-state test design, while the MHE performed better than EKF in

all cases. Palmer and Bollas [37] used a Ds-optimal test design in a sensor selection problem

in a three-tank system and compared the results in terms of Kullback-Leibler divergence and

Fisher information distance. The results indicated that as the sensor noise is increased, the

parameter estimation rate can be increased by removing the noisy sensor.

Following a different path on active FDI test design, Hale et al. [38] proposed an active

FDI test design using a semi-infinite program with admissible system inputs for the worse-case

realization of uncertainty and applied it in a three-tank system. Hale and Bollas [39] applied

an active FDI test design using symptom maps in an aircraft environmental control system.

Hale et al. [40] presented an algorithm for an active FDI test design using a semi-infinite

program for the worst-case realization combined with a k-nearest neighbor algorithm and

they tested it on a three-tank system. Based on their results the fault estimation in all of the

fault scenarios and in the no-fault case averaged an 84% successful prediction.

In all the above cases the test designs were created assuming that the uncertainty

parameters and the faults follow a normal distribution and have the value of the most likely
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estimator, or the worst-case realization. The assumptions of the normally distributed faults

and the most likely estimator could result in different designs as in [1, 32, 33, 34, 35, 41].

The overestimation of the worst-case realization used in [38, 39, 40] could potentially create

less effective FDI test designs, even though that is not the case in these three articles. It

is important to mention here that the FDI test design optimality is related with the under

investigation system. FDI test designs in any system, which are on average optimal within

the parameter space, could be found using Bayesian methods for FDI.

2.4 Bayesian approach to FDI

One of the first articles that discussed Bayesian design of experiments was Lindley’s [42],

which was based on an idea that was cultivated previously in one of his older articles [43] and

in Box’s [44] work. In Lindley’s [43] article, prior information was utilized to create a measure

which was used to provide solutions to some experimental design problems, while in Box’s [44]

article, empirical data were fitted to experimental design using Bayes’ theorem. Lindley [45],

following Raiffa and Schlaifer [46], presented a Bayesian solution to an experimental design

problem, using a general utility function. In their landmark review, Chaloner and Verdinelli

[47] discussed the literature on Bayesian experimental design based on three examples, with

their decision-theoretic structure incorporating both linear and nonlinear design problems.

Finally, the authors suggested the use of different utility functions to solve these three design

problems. In their article, Atkinson and Bogacka [48] used a weighted D- and Ds-optimality

criterion as a utility function for the determination of a simple kinetic equation of a chemical
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reaction. Huan and Marzouk [49] used the Kullback-Leibler (KL) divergence from the

posterior to the prior distribution of the investigated parameters as a utility function for a

combustion kinetics problem. Zhang et al. [50] also used KL divergence to find the optimal

location of a sampling well, to identify the source parameters in a groundwater contamination

problem. In their research, Aggarwal et al. [51] presented a fully Bayesian approach to

optimal experimental design using the KL divergence in a parameter estimation problem and

a model selection problem.

The desired outcome in an active FDI problem is to create robust tests that will be

optimal for all possible values of the faults and the uncertainty parameters. Frequentist

D- and Ds-optimality criteria are often locally optimal, as they design FDI tests for a

predetermined set of fault scenarios at fixed uncertainty expectations. Bayesian D- and

Ds-optimality criteria take into account the fault variation and the parameter uncertainty,

delivering a design which is optimal within the variation range. However, they are only valid

for regular distributions, such as Normal, Poisson, Beta, etc, since they utilize the Fisher

information matrix. In case of a non-regular distribution, such as the uniform distribution, the

information inequality is not valid and the design criteria, which use the Fisher information,

can not be used [52]. Generalized BOED, similar to the D-optimal criterion has been used

in the past for regular distributions [49, 50, 53], but not for non-regular distributions. In

this thesis, we present the concept of using Bayesian test design for FDI as discussed in

Stefanidis et al. [54, 55, 56], and we develop this idea further to create a generalized Bayesian

test design criterion, similar to the Ds-optimal criterion. We use a three-tank system as a
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demo system, and the Hellinger distance of the fault distributions, to compare the introduced

generalized BOED criterion with the Frequentist and Bayesian D- and Ds-optimal criteria.



Chapter 3

Methodology

3.1 Bayesian Optimal Experimental Design (BOED)

Bayesian design of experiments is based on Bayes’ theorem, where a posterior distribution

can be updated based on prior information. Bayes’ theorem is expressed as shown in Eq.

(3.1).

p(θ|y,d) =
p(y|θ,d)p(θ|d)

p(y|d)
(3.1)

where p(θ|y,d) is the posterior density of the parameters θ, p(θ|d) is the prior density of

the parameters for a given design d, and p(y|θ,d) is the likelihood of the observation y.

The denominator p(y|d) is the evidence, which is equal to p(y|d) =
∫
Θ

p(y|θ,d)p(θ|d) dθ

and can be regarded as a normalization constant. It is reasonable to assume that our prior

knowledge of the parameters does not vary with the design, which means the prior density of

the parameters is not a function of the design d and leads to the simplification p(θ|d) = p(θ).

According to Lindley [45], if a design d is chosen from a set of designs D, to determine

16
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the unknown parameters θ from a parameter space Θ, and data y from a sample space Y

will be observed, then, an optimal design d∗ can be found by maximizing the expected utility

(U (d∗)), based on the observed data y, as shown in Eq. (3.2). It is important to mention that

there could be one or multiple optimal designs, depending on the problem under examination.

U(d∗) = max
d∈D

∫
Y

∫
Θ

u(d,y,θ)p(θ|y,d)p(y|d) dθdy (3.2)

where U (d∗) is a vector containing the expected utilities of all optimal designs d∗, u(d,y,θ)

is a utility function, p(θ|y,d) is the posterior density of the parameters and p(y|d) is the

evidence.

Applying Bayes’ theorem, Eq. (3.2) simplifies to Eq. (3.3):

U(d∗) = max
d∈D

∫
Y

∫
Θ

u(d,y,θ)p(y|θ,d)p(θ) dθdy (3.3)

There is a plethora of utility functions which can be used depending on the application

[47, 48, 51, 57, 58]. In general, any loss function can be used as a utility function. A

frequently used utility function within the Bayesian experimental design context is the gain

in Shannon information and equivalently the maximization of Kullback-Leibler divergence

from the posterior to the prior distribution [49, 50]. This utility is usually chosen because

of its connection with the information theory, but also because Shannon information under

specific assumptions can be connected with Fisher information. Fisher information is often
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used within Frequentist optimal experimental design, with the most used criteria being the

D- and its special case Ds-optimal criterion.

3.2 Frequentist D-Optimal criterion

Frequentist D-optimal design criterion utilizes the Fisher information matrix to find the

optimal design d∗ that minimizes the variance of the parameters θ. In particular, Frequentist

D-optimal design criterion maximizes the logarithm of the determinant of the Fisher

information matrix I(θ,d)), or, equivalently, minimizes the logarithmic determinant of

variance-covariance matrix V(θ,d)), since variance-covariance matrix is equal to the reverse

Fisher information matrix (I(θ,d)) = {V(θ,d)}−1). The latter is not always true and

it derives from the Information Inequality or, as it is broadly known, the Crámer-Raw

Lower Inequality or Bound (CRLB). The Information Inequality is based on the idea that

the correlation of two variables is bounded by ±1, or equivalently that the square of the

covariance of two variables is less than or equal to the product of their variances. If T (x) is

an unbiased statistic of g(θ), and I(θ) is the variance of 1
p(x,θ)

dp(x,θ)
dθ

, with p(x, θ) the density

function corresponding to a continuous distribution function for a random variable X with

parameter θ, then the Information Inequality is [59]

Vθ [T (X)] ≥ (dg(θ)/dθ)2

I(θ)
(3.4)



19

If the function we want to estimate is g(θ) ≡ θ, the Information Inequality simplifies

to Eq. (3.5).

Vθ [T (X)] ≥ 1

I(θ)
(3.5)

The Information Inequality reduces to equality when the variance of the statistic under

consideration is an affine function of the Score (parameters follow a Normal or a Poisson

distribution), otherwise it is a strict inequality (parameters follow a Gamma or a Binomial

distribution) [60]. Fisher Information requires regular distribution families, such as the

Normal or Gamma distributions, while it does not apply to non-regular distribution families,

such as the Uniform distribution [61]. An interesting interpretation of Information Inequality

is that the log-likelihood of the “true” value model tends to be larger than the log-likelihood

of the “wrong” model [62].

In Frequentist approach, assuming a regular distribution for the parameters, the most

likely estimate can be used as the value of θ, and the D-optimality criterion can be found

from Eq. (3.6).

φF,DOpt(d
∗) = max

d∈D
det {I(θ,d))} = min

d∈D
det {V(θ,d))} (3.6)

When the parameter variance-covariance matrix is not known for all designs, Fisher

information matrix has to be calculated based on the observations of the system. Assuming
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the parameters follow a normal distribution, the information matrix can be found through

the sensitivities of the system, Eq. (3.7) [19].

I(θ,d) =

Ny∑
r=1

Ny∑
s=1

QT
r σrsQs (3.7)

In Eq. (3.7) σrs is the [r, s] element of the inverse of the variance-covariance matrix, Σy, as

defined in Eq. (3.8).

Σy =



σ2
y1

σ2
y1y2

· · · σ2
y1ynresp

σ2
y2y1

σ2
y2

· · · σ2
y2ynresp

...
... . . . ...

σ2
ynrespy1

σ2
ynrespy2

· · · σ2
ynresp


(3.8)

The sensitivity matrix Qr, can be obtained from Eq. (3.9).

Qr =



(
∂ŷr
∂θ̃1

)
n1,θ̃1

(
∂ŷr
∂θ̃2

)
n1,θ̃2

· · ·
(
∂ŷr
∂θ̃k

)
n1,θ̃k(

∂ŷr
∂θ̃1

)
n2,θ̃1

(
∂ŷr
∂θ̃2

)
n2,θ̃2

· · ·
(
∂ŷr
∂θ̃k

)
n2,θ̃k

...
... . . . ...(

∂ŷr
∂θ̃1

)
nsp,θ̃1

(
∂ŷr
∂θ̃2

)
nsp,θ̃2

· · ·
(
∂ŷr
∂θ̃k

)
nsp,θ̃k


(3.9)

where n1, n2, ..., nsp, is the number of the samples of the rth response.
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3.3 Bayesian D-Optimal criterion

As mentioned earlier, one of the most frequently used utility functions is the Kullback-

Leibler divergence from posterior to prior. This metric represents the gain in information,

if we update the prior parameter probability distribution (information) with the posterior

parameter probability distribution. The advantages of the Kullback-Leibler divergence as a

utility function include that it is non-negative (Gibbs’ inequality), it is convex and it is equal

to 0, if and only if the posterior distribution is equal to the prior [63]. Using Kullback-Leibler

divergence from posterior to the prior as a utility function we get Eq. (3.10).

u(d,y,θ) =

∫
Θ

p(θ|y,d) log

[
p(θ|y,d)

p(θ)

]
dθ (3.10)

Eq.(3.10) involves an integration over the parameter space Θ; therefore, the utility function

is not a function of the system parameters θ, and it reduces to u(d,y). The expected utility

U(d) (Eq. (3.3)) then becomes

U(d) =

∫
Y

∫
Θ

u(d,y)p(y,θ|d) dθ dy =

∫
Y

∫
Θ

log

[
p(θ|y,d)

p(θ)

]
p(y,θ|d) dθdy (3.11)

Since the prior belief on θ does not depend on the design d, the expected utility reduces to

U(d) =

∫
Y

∫
Θ

log [p(θ|y,d)] p(y|θ,d)p(θ) dθdy (3.12)
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The expected utility in Eq. (3.12), is the expected Shannon information of the

posterior distribution. Assuming the parameters follow a normal distribution, θ|y,d ∼

N (θ̂, [Î(θ,d)]−1), where Î(θ,d) is the observed Fisher information matrix, and for θ close

to θ̂, the expected utility is given from Eq. (3.13).

U(d) =

∫
Y

∫
Θ

[
−1

2

[
(θ − θ̂)2Î(θ|d)

]
− log det

[
2π(Î(θ|d)−1)

]1/2
]
p(y|θ,d)p(θ) dθdy

(3.13)

If the cardinality of the parameter vector θ is k, then the first term in Eq. (3.13) is

equal to −k
2
, and the term

[
θ − θ̂

]2

is approximately
[
Î(θ|d)

]−1

. The expected utility can

be found from Eq. (3.14) [47].

U(d) = −k
2

log 2π − k

2
+

1

2

∫
log det {I(θ,d)} p(θ)dθ (3.14)

Given that the maximization of the expected utility is what we are interested in and

not its exact value, the constants can be dropped and the notation of the expected utility

U(.) can be replaced with the notation of the design criterion φ(.). In that case, the design
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criterion reduces to the Eq. (3.15).

φB,DOpt(d) = Eθ [log det I(d)] =

∫
Θ

log det {I(d)}p(θ)dθ (3.15)

Monte Carlo sampling can be used in Eq. (3.15) to approximate the integral. Then the

optimal design can be found from Eq. (3.16).

φB,DOpt(d
∗) = max

d∈D

1

nMC

nMC∑
i=1

log det
[
I(θ(i),d)

]
(3.16)

The analytical evaluation of the design criterion in Eq. (3.11) involves the calculation of

the Fisher information matrix of the system, which raises certain challenges. The estimation

of Fisher information of the system through the sensitivities involves the calculation of several

partial derivative equations (PDEs). The number of PDEs depends on the number of system

parameters θ, and the number of system equations. These PDEs have to be estimated

deterministically for each design d, and each sample set of parameters θi. As the number of

system equations and parameters increase, the estimation of the sensitivities becomes more

and more computationally expensive. Another drawback to the use of Fisher Information

is the regular distribution assumption. The objective in active FDI is to create a test for

fault inference, regardless of the presence or the value of the fault, which implies there is no

prior information about the faults. The latter is translated to a uniform distribution for the

faults, which is a non-regular distribution. In that case, we cannot use the Fisher information
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matrix, and we have to use an alternative estimation of the expected utility.

To evaluate the expected utility differently, we rewrite Eq. (3.11) and apply Bayes’

theorem inside and outside the logarithm.

U(d) =

∫
Y

∫
Θ

p(θ|y,d) log

[
p(θ|y,d)

p(θ)

]
p(y|d) dθdy

=

∫
Y

∫
Θ

p(y|θ,d)p(θ) log

[
p(y|θ,d)

p(y|d)

]
dθdy

(3.17)

To estimate the integral in Eq. (3.17), a Monte Carlo approximation can be used (outer MC).

U(d) ≈ 1

n1

n1∑
i1=1

{
log
[
p(y(i1)|θ(i1),d)

]
− log

[
p(y(i1)|d)

]}
(3.18)

where p(y(i1)|θ(i1),d) is the likelihood of y(i1) which is one of the n1 samples drawn from the

conditional distribution p(y|θ(i1),d), and θ(i1) is drawn from the prior p(θ) [64]. The evidence

p(y(i1)|d) equal to the integral in Eq. (3.19), cannot be directly calculated; therefore, it must

be approximated with a second Monte Carlo sampling (inner MC) through Eq. (3.19):

p(y(i1)|d) =

∫
Θ

p(y(i1)|θ,d)p(θ) ≈ 1

n2

n2∑
i2=1

p(y(i1)|θ(i1,i2),d) (3.19)

where θ(i1,i2) is one of the n2 samples drawn from the prior p(θ). Using θ(i1,i2), y(i2) is

calculated, and the likelihood of the y(i1) can be determined. The approximated value of the
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design criterion can be estimated from Eq. (3.20).

U(d) ≈ 1

n1

n1∑
i1=1

{
log
[
p(y(i1)|θ(i1),d)

]
− log

[
1

n2

n2∑
i2=1

p(y(i1)|θ(i1,i2),d)

]}
(3.20)

It is clear from Eq. (3.20), that the estimation of U(d) is computationally expensive,

because it involves a nested Monte Carlo approximation. For each θ(i1), n2 samples of θ(·,i2)

should be drawn to calculate the inner Monte Carlo. Each Monte Carlo sampling needs 104

or higher samples to approximate an integral. For each of these samples, the physical model

equations should be solved. The computation time for each design is equal to n1 × n2×

(calculation time of the model). The size of n2 samples affects the bias of U(d), while the size

of n1 samples influence its variance. To reduce the computational cost, Huan and Marzouk

[49] proposed reusing the outer Monte Carlo parameter samples θ to the inner Monte Carlo,

and they progressed by proposing a reduction in the number of samples in the inner Monte

Carlo approximation. In this case, there are two types of bias in the calculation of U(d), one

because of the limited samples of n1 and a second one due to the reuse of the parameters

θ. The authors also showed, in the case scenario of a simple nonlinear equation, that, if the

reused sample size is higher than 104, then the bias of U(d) is very small. Even for a sample

size as small as 103, the bias was only 0.5%. Yet, we have to be very careful when we adopt

these sources of bias, and each problem should be considered separately. It is important to

note that Huan and Marzouk [49] proposed drawing a fresh batch of prior samples θ for

each design d, while Ryan [64] proposed to keep the same batch of prior samples when one
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compares different designs, since the positive correlation of their expected utility will reduce

the variance of their difference. In our work, we adopt Ryan’s proposal and we keep the same

batch of parameters for all designs.

3.4 Frequentist Ds-Optimal criterion

In case only a part of the parameters’ vector is of interest to us, then Ds-optimality would be

a more appropriate design criterion. In Ds-optimality, the parameter vector is partitioned

into two sections θ = [θ1 θ2], the section that contains the parameters of interest, θ1, and the

section with the nuisance parameters, θ2 (parameters that are not of interest to us). Then

the Fisher information matrix is partitioned as in Eq. (3.21)

I(θ,d) =

 I11(θ,d) I12(θ,d)

IT12(θ,d) I22(θ,d)

 (3.21)

where I11(θ,d) is the submatrix that contains the information of the parameters of interest

to us, I22(θ,d) contains the information of the nuisance parameters, while IT12(θ,d) and

I12(θ,d) contain the correlated information of the nuisance parameters and the parameters

that are of interest to us.

The Frequentist Ds-optimal criterion can be found from Eq. (3.22) [26].

φfreq,DsOpt(d
∗) = max

d∈D
log
{

det[I11(θ,d)− I12(θ,d)I−1
22 (θ,d)IT12(θ,d)

}
= max

d∈D
log

{
det[I(θ,d)]

det[I22(θ,d)]

} (3.22)
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For some optimal designs, there is the possibility that the Fisher information matrix is

singular. In that case, the Ds-optimal criterion cannot be estimated. In the deterministic

estimation of I(d∗), the problem mentioned above can be avoided by the regulation of the

Fisher information matrix. This regulation can be achieved with the addition of a small

multiple of the identity matrix I, without affecting the maximization problem [26].

Iε(θ,d) = I(θ,d) + εI (3.23)

3.5 Bayesian Ds-Optimal criterion

Similar to the D-optimality, the Ds-optimal criterion can be found from Eq. (3.24) [26, 47].

φB,DsOpt(d) = Eθ

[
log

{
det[I(θ,d)]

det[I22(θ,d)]

}]
=

∫
Θ

log

{
det[I(θ,d)]

det[I22(θ,d)]

}
p(θ)dθ (3.24)

Using a Monte Carlo approximation on Eq. (3.24), the optimal design can be estimated from

Eq. (3.25).

φB,DsOpt(d
∗) = max

d∈D

1

nMC

nMC∑
i1=1

log

{
det[I(θ(i1),d)]

det[I22(θ(i1),d)]

}
(3.25)
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As mentioned before, the FIM singularity problem can be solved with the addition of

a small multiple of the identity matrix I. However, the limitations discussed in section 3.3

dictate a different approach.

Our interest in FDI is to estimate the faults, while the estimation of the uncertain

parameters is not essential to us. Partitioning the parameter vector similar to Ds-optimality

criterion, θ = [θ1,θ2], we work with the part of the parameters of interest θ1. We want to

find the design that maximizes the information gain coming only from the fault parameters,

while we take into consideration the correlation of the uncertain parameters. We can interpret

this as the Kullback-Leibler divergence from the posterior to the prior of the fault parameters,

given the uncertain parameters and the design. The mathematical expression of the above

statement is shown in Eq. (3.26).

u(d,y,θ1,θ2) =

∫
Θ1

p(θ1|y,d,θ2) log

[
p(θ1|y,d,θ2)

p(θ1|θ2,d)

]
dθ1 = u(d,y,θ2) (3.26)

Since the utility function involves an integration over the Θ1 parameter space, it is not a

function of parameter θ1. The prior information on parameter θ1 is not dependent on the

design d, nor on the parameter θ2, and it simplifies to p(θ1|θ2,d) ≡ p(θ1). We define this

new expected utility as U11(d) to distinguish it from the expected utility U(d), which takes

into consideration the whole parameter vector θ. The novel expected utility for the gain in

information from the fault parameters, U11(d), can be found by replacing Eq. (3.26) in Eq.

(3.3).
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presented in Eq. (4.1).

ẏ1 =
u1 − c1Spsign(y1 − y2)

√
2g|y1 − y2| − qf1

A
,

ẏ2 =
c1Spsign(y1 − y2)

√
2g|y1 − y2| − c2Spsign(y2 − y3)

√
2g|y3 − y2|

A
,

ẏ3 =
u2 + c2Spsign(y2 − y3)

√
2g|y2 − y3| − c3

√
2g y3 − qf3

A
,

qfi = πr2
i

√
2g yi, i = 1, 3.

(4.1)

In Eq. (4.1) g denotes the gravitational acceleration. The control variables, the uncertain

parameters and the output variables of the design problem are presented in Table 4.4.

Table 4.1: System parameters and their uncertainties

Parameters Uncertain Parameters

A = 0.0154 m2

Sp = 5× 10−5 m2

g = 9.81 m/s2

c1 ∼ N (1.0, 25× 10−4)

c2 ∼ N (1.0, 25× 10−4)

c3 ∼ N (0.8, 25× 10−4)

Table 4.2: System fault cases based on the prior information of the system

Normally distributed Faults Uniformly distributed Faults

r1 ∼ N (2× 10−3, 10−6) m

r3 ∼ N (2× 10−3, 10−6 m

r1 ∼ U(0, 4× 10−3) m

r3 ∼ U(0, 4× 10−3) m
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The optimal design problems are presented in Eq. (4.2). All six design criteria are

summarized: two Frequentist and four Bayesian.

Design criteria

φF,DOpt(d
∗) ≡ max

d∈D
det {I(θ,d))} (Frequentist D-Optimal)

φfreq,DsOpt(d
∗) ≡ max

d∈D
log {det[I(θ,d)]/det[I22(θ,d)]} (Frequentist Ds-Optimal)

φB,DOpt(d
∗) ≡ max

d∈D
1

nMC

nMC∑
i=1

log det
[
I(θ(i),d)

]
(Bayesian D-Optimal)

φB,DsOpt(d
∗) ≡ max

d∈D
1

nMC

nMC∑
i1=1

log
{

det[I(θ(i1),d)]/det[I22(θ(i1),d)]
}

(Bayesian Ds-Optimal)

U(d∗) ≡ max
d∈D

U(d) (Observation-based Bayesian criterion similar to D-optimal)

U11(d∗) ≡ max
d∈D

U11(d) (Observation-based Bayesian criterion similar to Ds-optimal)

s.t.

θ = [θ1,θ2]

θ1 = {θ1 ∈ R3 : Case 1: r1 ∼ N (2× 10−3, 10−6), r3 ∼ N (2× 10−3, 10−6)

Case 2: r1 ∼ U(0, 4× 10−3), r3 ∼ U(0, 4× 10−3)}

θ2 = {θ2 ∈ R3 : c1 ∼ N (1.0, 25 · 10−4), c2 ∼ N (1.0, 25 · 10−4), c3 ∼ N (0.8, 25 · 10−4)},

h(y, u, θ) = 0

y = {y ∈ Y ⊂ R3 : 0 ≤ y ≤ 0.75}

d = {[u1, u2] ∈ R2 : 0.1 ≤ d ≤ 1}
(4.2)
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Table 4.3: System inflow limits, level transmitter uncertainties and level constraints

Level Transmitter Error Level Uncertainty Level Constraints Inflow

ε1 ∼ N (0, 10−4) m

ε2 ∼ N (0, 10−4) m

ε3 ∼ N (0, 10−4) m

ŷ1 = y1 + ε1 m

ŷ2 = y2 + ε2 m

ŷ3 = y3 + ε3 m

0 ≤ y1 ≤ 0.75 m

0 ≤ y2 ≤ 0.75 m

0 ≤ y3 ≤ 0.75 m

0.1 ≤ u1 ≤ 1 m3

0.1 ≤ u2 ≤ 1 m3

Table 4.4: Design problem variables

Design Parameters Uncertain Parameters Output Variables

d = [u1 u2] θ = [r1 r3 c1 c2 c3] y = [y1 y2 y3]

Frequentist optimal designs are presented in Table 4.5. Frequentist D-optimality is

robust for every value of θ, while Frequentist Ds-optimal designs are varying with the

change of the anticipated value of θ. The average Hellinger distance in all cases shows that

Frequentist Ds-optimal designs result in a better separation of the fault scenarios distributions.

In Table 4.6 and in Figure 4.2 the results of BOED are presented along with their contour

graphs, using a normal prior for the faults. In agreement with the literature, when the

faults are normally distributed, Frequentist D-optimality, Bayesian D-optimality and the

expected utility U(d) give the same optimal design. Our proposed expected utility U11(d)

finds a different optimal design than D-optimality, but it concurs with both Frequentist

and Bayesian Ds-optimal designs. The Hellinger distances of these different designs indicate
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Fig. 4.1: Three-tank system with one hole in the 1st tank and one hole in the 3rd tank

that Ds-optimal design and, consequently, the U11(d) optimal design can be more effective

than D-optimality with the normally distributed faults. Table 4.7 presents the results of the

BOED for uniformly distributed faults. While D-optimality and the expected utility U(d)

produce the same optimal design, the Ds-optimality and the expected utility U11(d) find

different designs. Hellinger distance signifies that the proposed expected utility U11(d) finds

the optimum design, while Ds-optimal design does not separate the fault distributions as good

as the D-optimal design. The latter seems to be in contradiction with the literature, which

states that Ds-optimality finds a better or at least equally optimal design with D-optimality.

Although, since the faults are uniformly distributed and the information inequality cannot be

applied, Bayesian D- and Ds-optimality may fail as optimal design criteria.
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Table 4.5: Frequentist optimal designs and the Hellinger distances for different values of the

parameter array, θ. Normally distributed faults have been assumed for the Hellinger distance

calculation.

θ D −Opt Ds −Opt Hellinger Distance

[r1, r3, c1, c2, c3] u1 u2 u1 u2 D −Opt Ds −Opt

[0.002, 0.002, 1, 1, 0.8] 0.7750 0.1450 0.7750 0.1450 0.94038 0.94038

[0, 0.002, 0.9, 1.1, 0.8] 0.7750 0.1450 0.1900 1.0000 0.94038 0.95593

[0.002, 0, 0.9, 0.9, 0.8] 0.7750 0.1450 0.7750 0.1450 0.94038 0.94038

[0, 0.002, 1.1, 1.1, 0.8] 0.7750 0.1450 0.1900 1.0000 0.94038 0.95593

[0.001, 0.001, 1, 1, 0.8] 0.7750 0.1450 0.5050 0.5950 0.94038 0.97647

[0.001, 0, 0.9, 0.9, 0.8] 0.7750 0.1450 0.5050 0.5950 0.94038 0.97647

Another interesting finding is thatD-optimality is not affected by the uniform distribution

singularity. This robustness of D-optimality most probably is inherited from the three-tank

system problem, since the level of the information in Figure 4.3a and 4.3b indicate the

information gain from the parameter uncertainty is higher than the information gain from

the faults. Therefore, the driving force of the solution in D-optimality in this problem

is the parameters’ uncertainty, and, thus, when a uniform distribution is applied as prior

distribution on the faults, the result is not affected.
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Table 4.6: Bayesian D-,Ds-, U(d)- and U11(d)-optimal designs with their Hellinger distances

for Normally distributed faults.

u1 u2 Hellinger Distance H

Bayesian D-optimal 0.7750 0.1450 0.94038

Bayesian Ds-optimal 0.3250 0.8650 0.95390

Expected Utility U(d) 0.7750 0.1450 0.94038

Expected Utility U11(d) 0.3250 0.8650 0.95390

Table 4.7: Bayesian D-,Ds-, U(d)- and U11(d)-optimal designs with their Hellinger distances

for Uniformly distributed faults.

u1 u2 Hellinger Distance H

Bayesian D-optimal 0.7750 0.1450 0.93392

Bayesian Ds-optimal 0.2800 0.9100 0.92118

Expected Utility U(d) 0.7750 0.1450 0.93392

Expected Utility U11(d) 0.6700 0.3700 0.93883

An advantage of the use of the expected utility U(d) is the computational time. D-

and Ds-optimality are calculated through the sensitivities of the system, which involves

the calculation of multiple derivatives. Although Bayesian D- and Ds-optimality need only

one Monte Carlo for their approximation, these are extremely expensive. Expected utility
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U(d), can also be reduced to one Monte Carlo approximation if we reuse the samples of the

outer Monte Carlo to the inner Monte Carlo approximation. Expected utility U11(d), though

involves two nested Monte Carlo approximations, which makes this estimation expensive.

The approximation of U11(d) can be expedited by reducing the samples of the outer and

inner Monte Carlo approximations and by adding a small bias on its calculation. The

computational cost can be reduced significantly, without proportionally affecting the results.

This is not the case in D- and Ds-optimality, where the reduction of the sampling rate results

in high variation of the design criteria φB,DOpt(d) and φB,DsOpt(d). When the sampling rate

is notably reduced, the variation of the design criterion increases significantly, which results

in different optimal designs.
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(a) φB,D−opt(d) contour (b) φB,Ds−opt(d) contour

(c) U(d) contour (d) U11(d) contour

Fig. 4.2: Contour plots of Bayesian D and Ds-optimality criterion, expected utility U(d) and

expected utility of the faults U11(d) for normal prior distribution of the faults θ1
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(a) φB,D−opt(d) contour (b) φB,Ds−opt(d) contour

(c) U(d) contour (d) U11(d) contour

Fig. 4.3: Contour plots of Bayesian D and Ds-optimality criterion, expected utility U(d) and

expected utility of the faults U11(d) for uniform prior distribution of the faults θ1



Chapter 5

Conclusions

5.1 Concluding Remarks

This work presents a novel observation-based Bayesian parameter subset optimal experimental

design approach similar to Ds-optimality as a solution to active FDI problems in high

uncertainty nonlinear variable systems. This method is compared to the Frequentist and

other Bayesian approaches in a three-tank system.

Specifically, Frequentist D- and Ds-optimality were reviewed and their formulations

were compared with Bayesian D- and Ds-optimality. It is shown how Bayesian D- and

Ds-optimality derive from Kullback-Leibler divergence from the posterior to the prior and

their limitations are outlined. To overcome these limitations a generalized metric of expected

utility is presented as an alternative to Bayesian D-optimality, while a generalized expected

utility, an alternative to Bayesian Ds-optimality, is introduced. All of the above metrics were

tested on a three-tank system using normally and uniformly distributed faults as priors.

Overall, the proposed Bayesian framework was found to be robust when it was compared,

in terms of Hellinger distance, with other metrics in a three-tank system. The observation-
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based Bayesian criterion was found to agree with both the Frequentist and the Bayesian

D-optimality criteria, while the observation-based Bayesian parameter subset design criterion

agreed with the Frequentist and the Bayesian Ds-optimality criteria when the faults were

normally distributed. When the faults followed a uniform distribution, the observation-

based Bayesian criterion was in agreement with the Bayesian D-optimality one, while the

newly introduced observation-based Bayesian parameter subset design criterion was not in

agreement with the Bayesian Ds-optimality criterion. The average Hellinger distance for

the different designs of the uniformly distributed faults showed that the observation-based

Bayesian parameter subset criterion was able to find the optimum design, while Bayesian

Ds-optimality failed to do so. In addition, this novel Bayesian framework proved faster than

Bayesian D- or Ds-optimality, without losing accuracy when its computational cost was

reduced by decreasing the Monte Carlo iterations.

5.2 Limitations

All the methods discussed in this thesis as well as the novel BOED criterion introduced

belong to the active FDI methodology. Active FDI methods come with a limitation on their

applications to processes that can go offline or relax their operating conditions for an amount

of time until the FDI process diagnoses the system. Unfortunately, many systems do not

have this luxury and make these methods inapplicable.

Bayesian optimal experimental design approaches consider global optimization methods

since they take into consideration the whole parameter space. Unfortunately, this comes along
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with high computational cost for the calculation of the optimal design. Although the advances

in computer science and the adoption of calculation expedition methods (polynomial chaos

expansions, etc.) have considerably decreased computational costs, Bayesian approaches have

to be subject to a cost-benefit analysis before they are adopted.

In this work, we used a simple three-tank system to compare the Frequentist and the

Bayesian D- and Ds-optimal criteria, the observation-based Bayesian criterion, and the novel

observation-based Bayesian parameter subset criterion. The three-tank system is a simple

but nonlinear system which can highlight possible vulnerabilities of a proposed methodology.

However, some methodologies are system-specific or their pitfalls may be overseen from a

simple system, such as the three-tank system, which may make then inapplicable.

The metric used for the optimal design evaluation is the Hellinger distance. The

Hellinger distance is a simple and straightforward statistical metric for two distributions,

since it is bounded between zero and one. The underlying assumption for its use though

is that the distributions being compared are similar. If the compared distributions are not

similar, which could be the case of an output of a system if we apply different faults as input,

then the result may not make sense.

5.3 Future research

The presented framework could be the keystone for a series of future works that could adopt

Bayesian experimental design. Hence, the addition of an uninformative prior could be proven

very helpful in systems where new sensors are installed and there is no prior knowledge
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of their faults. Also, the implementation of machine learning can be investigated for data

augmentation in systems where big data extraction can not be performed or the simulation

models of the system are not sufficiently accurate.

As it was mentioned above, the three-tank system is a simple nonlinear system.

Therefore, it would be valuable for future researchers to evaluate all Bayesian criteria discussed

here in multiple complex systems, to test the solution robustness, model computational

complexity and possible limitations. A possible candidate system for such an evaluation

could be a distillation column, where the faults could occur and the uncertain parameters

would be multiple. Another candidate system could be the benchmark Tennessee Eastman

process, where the results could be compared with other active or passive FDI methods in

the literature.

A comparative study of all the presented criteria for multiple estimation methods

like kNN classification, Bayes estimators, etc. is also deemed beneficial. This comparative

study could reveal which design criteria converge faster and more accurately and create an

integrated methodology for a robust FDI. Finally, this research could be further generalized

by implementing a machine learning algorithm for data augmentation to perform Bayesian

experimental design faster, and adopt neural networks in the parameter estimation phase,

to make the estimation more accurate even in very complex systems with highly correlated

uncertain parameters and faults.
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