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Understanding Concurrency for Graph
Workloads in Large Scale Multicores

Masab Ahmad,

University of Connecticut, 2016

ABSTRACT

Algorithms operating on a graph setting are known to be highly irregular and un-

structured. This leads to workload imbalance and data locality challenge when these

algorithms are parallelized and executed on the evolving multicore processors. Previ-

ous parallel benchmark suites for shared memory multicores have focused on various

workload domains, such as scientific, graphics, and vision. However, these suites lack

graph applications that must be evaluated in the context of architectural design space

for futuristic multicores. This paper presents CRONO, a benchmark suite composed

of multi-threaded graph algorithms for shared memory multicore processors. We an-

alyze and characterize these benchmarks using a multicore simulator, as well as a real

multicore machine setup. CRONO uses both synthetic and real world graphs. Our

characterization shows that graph benchmarks are diverse and challenging in the con-

text of scaling efficiency. They exhibit low locality due to unstructured memory access

patterns, and incur fine-grain communication between threads. Our characterization

also reveals that these challenges remain in state-of-the-art graph algorithms, and in

this context CRONO can be used to identify develop novel architectural methods to

mitigate efficiency bottlenecks in futuristic multicore processors.
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0.1 The CRONO Graph Analytics Benchmark Suite

for Future Multicores

0.1.1 Introduction

Graph workloads ubiquitously arise in a variety of emerging application domains, such

as cognitive computing [1], self-driving cars [2], and data analytics [3]. Recent explo-

sion of data has further accelerated their usage, as well as challenges associated with

their computational efficiency. Larger and more complex graphs, such as road net-

works [4] and social networks [5] now arise even in the personal computing space [6].

However, graph workloads are highly unstructured and irregular, and their analysis

remains a bane for most computational architectures. Limited memory bandwidth

and on-chip data access latency inhibits high performance [7, 8]. Fine grain communi-

cation leads to low concurrency that further exacerbates this problem. Even parallel

algorithms suffer from network congestion and traffic [9]. Their irregular data access

patterns inhibit various architectural methods, such as out-of-order cores and on-chip

caches, from performing well. To counter these constraints, prior research focuses on

faster sequential machines and more recently specialized accelerator architectures.

Since single thread efficiency has slowed down due to the power wall, GPU based

architectures have gained momentum to exploit performance for graph workloads [10].

GPUs offer large degree of hardware thread-level concurrency, which can be used to

improve efficiency using workload parallelization strategies. Researchers have pro-

posed GPU benchmark suites, such as Rodinia [11] and Pannotia [9], that optimize

memory access patterns, load imbalance, and cache effects for various graph work-

loads. They also describe fundamental program properties for graph workloads with

1
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respect to their GPU implementations.

In the context of traditional multicore processors, the industry has already inte-

grated multiple cores (4–16) on a single die [12]. Due to lack of high core count on

a single chip, researchers are exploring processor clusters to perform parallelization

studies for graph algorithms. Satish et. al. [13] discuss and analyze how various

graph frameworks, such as Galios [3], GraphChi [6], GraphLab [14], and Combina-

torial BLAS [15], scale and perform in distributed computing and supercomputing

setups, such as the Graph500 [16]. Other researchers have evaluated primitive al-

gorithms, such as Breadth First Search (BFS) on a variety of graphs, and shown

that graph analytics exhibit significant nondeterminism [12][17]. However, these im-

plementations suffer from a number of limitations, such as a lack of architectural

characterization [18, 19] and standardization. They are not adequate enough to eval-

uate future large-scale single-chip multicore processors.

As conventional multicore processors get highly parallel [20], with notable com-

mercial examples of Xeon Phi [21] and Tile64 [22], graph algorithms must scale well

on such systems. Due to fine grain communication constraints, graph analytics has

traditionally avoided parallel processor clusters. However, future multicores are ex-

pected to integrate hundreds of cores on a chip that are interconnected using on-chip

networks and large distributed caches [23]. Therefore, novel methods to address the

concurrency bottlenecks in graph workloads must be studied for such futuristic multi-

cores. Popular multicore benchmark suites, such as SPLASH [24] and PARSEC [25],

do not contain many graph workloads. It is imperative to develop and characterize

state-of-the-art graph benchmarks to explore the scalability of futuristic multicore

processors.

We create an open source graph benchmark suite for shared memory multicores,
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called CRONO. It contains important and well known graph workloads, along with

both synthetic and real world graph inputs. We present a thorough characterization

of CRONO using both multicore simulator and a real multicore machine setup. Most

of the graph benchmarks scale to high thread counts, have diverse memory access

patterns, and exhibit a variety of scalability challenges that must be studied for

multicore architecture design space exploration. Our simulation based evaluation

shows a diverse design space and fine grain view of architectural bottlenecks, while

real machine results validate simulator trends. We make the following contributions:

• We present CRONO [26], a graph benchmark suite for shared memory mul-

ticores that uses state-of-the-art parallelization strategies. It encompasses the

following benchmarks:

– Path Planning : Single Source Shortest Path [9], All Pairs Shortest

Path [27], and Betweenness Centrality [28].

– Search : Breadth First Search [29], Depth First Search [30], and the

Traveling Salesman Problem [30].

– Graph Processing : Connected Components [31], Triangle Counting [13],

PageRank [13], and Community Detection [32].

• We quantify the communication and computation tradeoffs stemming from syn-

chronization and data sharing in graph analytics.

• We identify high degree of data sharing and network traffic as the key scalability

bottlenecks in graph analytics. Based on our findings, we discuss inefficiencies

that reside in today’s architectures, and what future multicore processors must

address to ensure scalability and high performance.
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0.1.2 Motivation

Requirements for a Graph Analytics Benchmark Suite

Multithreaded Shared Memory Workloads: Trends in computing show that

shared memory architectures will remain pervasive. Shared memory programming

model allows ease of programming, where data sharing and inter-core communication

is managed by the underlying cache coherence and consistency protocols. Novel

architectural optimizations, such as the locality-aware coherence [33] and hardware

consistency protocols [34], allow researchers to optimize parallel algorithms under the

shared memory paradigm.

Emerging Parallel Algorithms and Workloads: Due to the progressive evolution

of computing paradigms, algorithms change rapidly. Newer algorithms rise to fame,

an example of which is Triangle Counting [13]. Moreover, contemporary algorithms,

such as Depth First and Breadth First searches, are finding more usage in today’s

applications. State-of-the-art parallel graph algorithms can potentially deliver high

performance when executed on concurrent hardware. However, the massive data and

fine grain communication in these algorithms present their own set of challenges for

future multicore processors. A multithreaded graph benchmark suite must contain

algorithms that remain in use for time to come, as well as algorithms that have

demonstrated potential.

Diverse and Scalable Workloads: Given the vast variety of available algorithms,

any graph benchmark suite must contain parallel algorithms that are representative

of graph analytics. Famous algorithms such as Breadth First search and Dijkstra’s

algorithm for shortest path computations fit well in this context.
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Scalability also remains a major issue in parallel computing, and it is already

known that graph workloads do not scale regularly [3]. However, some scalability,

even if it is not linear, must be shown so future architectures may improve and build

upon the existing challenges and enable performance improvements.

Challenges in Existing Graph Analytics

Existing graph analytics research faces variations in algorithms, input data sets, and

parallelization strategies. These variations cause differences in performance and en-

ergy characterization. They also cause various architecture implementations to ex-

hibit different computation and communication behaviors. We outline some of these

challenges.

Irregular Data Access and Synchronization: Graph workloads are highly ir-

regular, and therefore exhibit different cache and synchronization effects. Irregular

behavior also arises due to dynamic data dependencies within graph algorithms, lead-

ing to fine grain communication between threads and low locality for data accesses [9].

However, it still is not evident what methods must be deployed in futuristic multicore

architectures to address the data locality and communication challenges.

Lack of Parallelism and Load Balance: Linear speedups are not fully observed in

most graph workloads. Some work efficient algorithms, such as efficient heuristics for

path planning, are not parallelizable, and even observe slowdowns in multithreaded

setups. The lack of parallelization is observed because of synchronization and irreg-

ular data access behaviors. Due to this unstructured behavior the execution also

observes load imbalance. Prior research on graph frameworks attempts to solve the

load imbalance problem by using efficient scheduling methods [3]. However, these
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frameworks do not show scalability to high thread counts, or architectural character-

ization to identify where the bottlenecks arise.

Lack of a Graph Benchmark Suite for Multicores: Benchmark suites unify

test workloads so that different researchers can properly compare their architecture

methods against others, and justify why their scheme is better. The PARSEC and

SPLASH suites are available for this purpose. However, they do not contain state-

of-the-art graph workloads, and have scalability problems at high thread counts for

various graph instances. The Graph500 suite [16] also contains several benchmarks,

such as BFS, and is tailored for supercomputing setup with clusters of several nodes

connected using a high bandwidth interconnect. However, it is not tailored for single-

chip shared memory multicores, and it primarily relies on the Message Passing (MPI)

paradigm for communication. Therefore, there exists a need for a graph benchmark

suite for multicores, which is the primary focus of this paper.

0.1.3 Overview of CRONO

In this section we discuss CRONO graph benchmarks and their parallelization strate-

gies. These benchmarks are parametrized to vary across thread count and input

instances.

Single Source Shortest Path (SSSP) - Dijkstra

Dijkstra’s algorithm computes shortest paths for graphs with non-negative edge weights,

and is a popular benchmark used in various applications, such as self-driving cars [2].

The algorithm starts from a user defined vertex, and hops over all the vertices in the

graph, updating neighboring vertices with lowest path costs from the starting vertex.
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A distance array is updated with these lowest path costs, while another data structure

contains information about which vertices are already checked and which remain to

be checked.

The algorithm consists of two main loops, an outer loop that visits all the vertices,

and the inner loop which visits all the neighboring vertices of a given vertex, each

of which can be parallelized. The outer loop can be parallelized in a controlled

manner, where pareto fronts of vertices are opened and computed upon [9] [35].

Vertex path costs are updated using atomic locks, as threads may share vertices with

common neighbors. On the other hand, the inner loop can be parallelized statically,

dividing neighboring vertices amongst working threads. Real world graphs, such as

road networks, are known to have a small numbers of neighboring vertices, and hence

the outer loop parallelization works well in these cases.

All Pairs Shortest Path (APSP) - Floyd Warshall

The APSP benchmark is similar to SSSP. However, in this case a SSSP kernel is run

for each vertex pair in the graph. We use the highly parallelizable Floyd Warshall

algorithm [30], in which each thread ‘captures’ a vertex, and starts computing the

shortest path to the destination vertex using Dijkstra’s algorithm. Once a thread

finishes working on its vertex, it captures another vertex to work on. Vertex capture

is thus done via atomic locks, as two threads must not pick the same vertex. Each

thread creates and maintains its own distance arrays and other data structures for

shortest path computations. This is a similar parallel implementation as in [27].
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Betweenness Centrality

The Betweenness Centrality benchmark identifies important vertices in a graph. This

is done by computing all the shortest paths in a graph between all the pairs of vertices,

and then identifying the number of shortest paths passing through each given vertex.

Initially the algorithm computes APSPs using the highly parallel Floyd-Warshall

algorithm [30], after which another loop runs over all the vertices and computes

the number of shortest paths passing through each vertex. Some additional data

structures are required in the APSP function executed earlier for this purpose. In

our parallel version, APSP is executed as described in Section 0.1.3, then a barrier is

applied, and finally a loop executes to compute the centralities of each vertex. The

final loop is statically divided amongst threads, with each thread reading shortest

path values and updating the centralities via atomic locks. This is similar to the

parallel implementation in [28].

Breadth First Search (BFS)

BFS is a highly popular algorithm in most graph applications [30]. The algorithm

searches for a target vertex in a given graph, while doing a neighbors first type

search. More parallelism is exploitable in BFS, and prior research has shown signif-

icant speedups [29]. Parallelism can be exploited via vertex capture, in which each

thread picks a vertex and searches its neighbors. This is done in the inner loop where

the neighbors are statically divided amongst threads. Vertex capture is done via

atomic locks, while a barrier is required in inner loop based parallelism to hop to the

next vertex in each iteration.
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Depth First Search (DFS)

Like BFS, DFS is also a popular benchmark in various graph applications [30]. This

algorithm also searches for a target vertex in a graph, with it performing a first-come

first-served type search involving branches. Branches are connected components of a

graph that extend outward like branches in a tree from a source vertex, in contrast

to a BFS where the neighboring vertices are considered first. These branches can be

searched in parallel, depending on the density and connectivity of the graph. In the

case of DFS, only branch level parallelism is available, and hence more parallelism

can only be exploited if the branches are long enough to offset computation versus

communication ratios. A long branch implies that a thread has to spend more time

in compute rather than communicate more often to acquire subsequent branches.

Travelling Salesman Problem (TSP)

TSP is a NP-hard problem that has been studied in detail for quite some time now [30].

It involves computations that determine a shortest path that can traverse all cities,

where cities are in conjunction with vertices, given as an input. Parallel versions

involve branch and bound implementations [36], with each thread working on a branch

of a possible shortest path. A global bound is kept as the shortest path cost found in

each iteration, and threads whose costs become greater than this bound stop working

on their branch and move on to the next branch. Intuitively, branches are designated

at static time, while the global bound is maintained dynamically via an atomic lock.
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Connected Components

Connected Components is a formidable graph workload used primarily to measure

connected regions in images. Clustering applications may also employ this work-

load [5]. A global data structure is maintained by this algorithm, and contains labels

for each vertex in the graph. In the initialization phase, if the vertices are within a

connected region then their labels are set to that connected region. A loop then runs

over all the vertices in the graph, maintaining and updating labels iteratively. Label

updates are done on the basis of connectivity and edge weights. Vertices with common

labels count towards a connected component of the graph. In a parallel implemen-

tation, this loop is statically divided amongst threads. Barriers separate functions

that set and update these labels. Our implementation of connected components is a

modified version of prior work [31].

Triangle Counting

Triangle counting is an important graph workload to measure graph statistics re-

garding vertex connections and sharing. Triangles are formed in a graph when three

vertices are connected to each other. The algorithm statically divides the graph into

threads, after which each thread starts finding triangles in its allocated section. A

global data structure is maintained for each vertex, which stores the connections be-

tween vertices. The loop then runs over all vertices inside each thread, and updates

to the global data structure are done via atomic locks. Then a barrier is applied,

after which another loop runs, which is also statically divided amongst threads that

compute the number of triangles for each vertex. A vertex may be connected to many

other vertices, and thus may form multiple triangles. We use the exact version of the
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algorithm, and explanation from [13] to construct our implementation.

PageRank

PageRank is a well known algorithm used by web services, social networks, and search

algorithms. It uses probability distributions to compute ranking of pages in a given

graph. The rankings themselves are also probabilities which specify the likelihood that

a person on the internet will visit a page. From many different PageRank implemen-

tations, we base our per iteration implementation on [13], with no approximations.

The algorithm initializes the probability of each vertex to the inverse of the total

number of vertices, and then uses the formula in Equation 0.1.1 to compute the page

ranks of each vertex.

PRt+1(i) = r + (1 − r) ∗
∑

j,neighbors

PRt(j)

degree(j)
(0.1.1)

PR represents the page rank of vertex i at each iteration, r denotes the probability

of a random page visit by a user, and degree is the number of neighboring vertices

of vertex i. In our parallel implementation, we have a floating point array for the

probability distribution of the input graph, and another array for the page ranks of

the vertices. The graph is statically divided amongst threads, with updates for page

ranks done via atomic locks, as threads may converge on common neighbors from

their given vertices.
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Community Detection

Community Detection is a highly irregular and inherently sequential algorithm to

detect communities with similar characteristics. The Louvain algorithm is the most

efficient method in this domain, and uses heuristics to relax the inherently sequential

inter-vertex community dependencies. It optimizes modularity, a measure of connec-

tivity in a graph, which is later used to detect communities. We use a parallel version

of the Louvain algorithm [32], and use a bounded heuristic to relax modularity ap-

proximations. This improves scalability at high thread counts, while propagating a

loss of modularity accuracy with the increase in parallelism. The graph is statically

divided amongst threads, with each thread recursively placing vertices in communi-

ties of other vertices that maximize the overall modularity. The algorithm terminates

when the modularity can not be increased any further.

0.1.4 Methods

Summary of Benchmarks and their Parallelizations

Table 0.1.1: Benchmarks and Parallelizations used for Evaluation.

Benchmark Identifiers Parellelizations

SSSP DIJK Graph Division [9]
APSP Vertex Capture [37]
BETW CENT Vertex Capture & Outer Loop [28]
BFS Graph Division [29]
DFS Branch and Bound [36]
TSP Branch and Bound [36]
CONN COMP Graph Division [9]
TRI CNT Vertex Capture & Graph Division [13]
PageRank Vertex Capture & Graph Division [13]
COMM Vertex Capture & Graph Division [32]
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All graph algorithms follow a generic structure that consists of an outer loop

and an inner loop [9]. The outer loop traverses the graph vertices, while the inner

loop traverses the neighboring vertices only for a given vertex. For most cases, more

outer loop parallelization is available as graph vertices (outer loop iterations) always

outnumber inner loop iterations. Graph division [13] is an outer loop parallelization

technique in which the input graph is statically or dynamically divided amongst

threads. Threads use locks and barriers to synchronize shared variables or parts of

the graph. Vertex capture [37] is also an outer loop parallelization technique in which

threads compete for vertices (compete for work) dynamically. For workloads having

many combinations of branches, such as in TSP, branch and bound strategies are

applied [36]. These employ threads traversing different branches, and stop working

on branches whose cost outweighs a global cost. Global costs are updated via locks

at threshold based iterations, where thresholds are defined by heuristics. Table 0.1.1

provides a summary of CRONO benchmarks and their parallelization strategies.

All benchmarks are parallelized using the popular pthreads API. We execute

each benchmark compiled using -O2 and -O3 flags, and then report speedups based

on completion times for both real machine and simulator setups.

Many-core Simulator Setup

We evaluate CRONO using the Graphite simulator that models futuristic shared

memory multicores [38]. We consider a 256 core NoC-based multicore organization

with a two-level private L1, shared L2 cache hierarchy per core. The upper limit

of 256 for the core count is chosen as it shows all of the effects of scalability. The

architectural parameters used for evaluation are shown in Table 0.1.2. We use the
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Graphite simulator because many-core chips with hundreds of cores do not exist yet,

whereas Graphite can simulate up to a thousand cores. Multicore configurations with

both in-order and out-of-order cores are simulated for architectural exploration. To

mitigate simulation slowdowns at large core counts, Graphite relaxes cycle accuracy

and uses multithreading for increased performance.

Table 0.1.2: Graphite architectural parameters for evaluation.

Architectural Parameter Value

Number of Cores 256 @ 1 GHz

In-Order Core Setup

Compute Pipeline per core Single-Issue Core

Out-of-Order Core Setup

Compute Pipeline per core Single-Issue Core
Out-of-Order Memory

Reorder Buffer Size 168
Load/Store Queue Size 64/48

Memory Subsystem

L1-I Cache per core 32 KB, 4-way Assoc., 1 cycle
L1-D Cache per core 32 KB, 4-way Assoc., 1 cycle
L2 Cache per core 256 KB, 8-way Assoc., 8 cycle

Inclusive, NUCA
Cache Line Size 64 bytes
Directory Protocol Invalidation-based MESI

ACKWise4 directory [39]
Num. of Memory Controllers 8
DRAM Bandwidth 5 GBps per controller
DRAM Latency 100 ns

Electrical 2-D Mesh with XY Routing

Hop Latency 2 cycles (1-router, 1-link)
Contention Model Only link contention

(Infinite input buffers)
Flit Width 64 bits



15

Many-core Real Machine Setup

We also evaluate our benchmarks on a real multicore machine to validate result trends

observed with the simulator. We use an Intel i7-4790 machine clocked at 3.6GHz

with four out-of-order two-way hyperthreaded cores, an 8MB shared L3 cache, and

a 256KB per-core private L2 cache [40].

Benchmark Characterization

For each simulation run, we measure the Completion Time, i.e., the time in parallel

region of the benchmark; this includes the compute latency, the memory access la-

tency, and the synchronization latency. The memory access latency is further broken

down into four components. (1) L1Cache-L2Cache latency is the time spent by

the L1 cache miss request to the L2 cache and the corresponding reply from the L2

cache including time spent in the network and the first access to the L2 cache. (2)

L2Home-Waiting time is the queueing delay incurred because requests to the same

cache line must be serialized to ensure memory consistency. (3) L2Cache-Sharers

latency is the roundtrip time needed to invalidate private sharers and receive their ac-

knowledgments. This also includes time spent requesting and receiving synchronous

write-backs. (4) L2Home-OffChip memory latency is the time spent accessing

memory including the time spent communicating with the memory controller and the

queueing delay incurred due to finite off-chip bandwidth.

For on-chip private L1 cache misses, we analyze the following types of misses:

(1) Cold misses are cache misses that occur to a cache line that has never been

previously brought into the cache, (2) Capacity misses are cache misses to a cache

line that was brought in previously but later evicted to make room for another cache
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line, and (3) Sharing misses are cache misses to a cache line that was brought in

previously but was invalidated or downgraded due to a read/write request by another

core.

To evaluate the overall on-chip cache effects, we measure the cache hierarchy

miss rate, which is the number of L2 cache misses divided by the total number of

L1 cache accesses.

We also measure the dynamic energy consumption for the memory system

including on-chip and off-chip data accesses, and the on-chip network. For energy

evaluations of on-chip electrical network routers and links, we use the DSENT [41]

tool. Energy estimates for the L1-I, L1-D and L2 (with integrated directory) caches

are obtained using McPAT [42]. The evaluation is performed at the 11nm technology

node to account for future technology trends.

Load Imbalance

Load imbalance is a primary cause of performance degradation in many-core pro-

cessors [7]. Instruction counts are generally used as a metric in this case, because

they incorporate communication as well as compute instructions. We define the load

imbalance metric in equation (0.1.2). Max(thread inst.) is the instruction count of

the thread that executes most number of instructions, while Min(thread inst.) is the

thread with minimum instruction count. Variability defines how much imbalance a

thread has with respect to other threads in the worst case. We use the range of in-

structions because it envisions the loads across the multicore, from which it quantifies
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Table 0.1.3: Input Graphs for Evaluation.

Dataset # Vertices # Edges

Road Networks [4]
Texas 1,379,917 1,921,660
Pennsylvania 1,088,092 1,541,898
California 1,965,206 2,766,607

Social Networks [5]
Facebook 2,937,612 41,919,708

Synthetic [43]
Sparse 1,048,576 16,777,216
Cities for TSP 32 Cities

the extreme data points.

V ariability =
Max(thread inst.) −Min(thread inst.)

Max(thread inst.)
(0.1.2)

Input Graphs and Data Structures

The CRONO benchmark suite uses several synthetic and real world input graphs, as

shown in Table 0.1.3. Real world graphs are taken from the SNAP dataset directory,

which contains several graph types such as road networks [4], citation networks, and

social networks [5]. We also generate random synthetic graphs using a modified ver-

sion of the GTgraph generator [43]. CRONO ’s graph generators are included within

the programs, and based on the user’s specification they can sustain significantly large

datasets, from several kilobytes to several gigabyte or higher sizes. Generated graphs

are converted to an adjacency list representation, which contains a data structure

for vertex connections and another structure for edge weights. All data structures

are cache line aligned to ensure optimal performance. With the exception of TSP,

which uses a user defined number of cities as an input, all benchmarks are able to

use road networks, social networks, and synthetic graphs. APSP and BETW CENT
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uses an adjacency matrix representation, and it is simulated with a graph containing

16,384 vertices. To allow subtle comparisons between algorithms in terms of charac-

terization, we use sparse synthetic graphs as inputs. The synthetic graph generator

is bundled with each benchmark, which can be used for testing with a range of graph

topologies.

0.1.5 Characterization

In this section we discuss characterization results for each CRONO benchmark. Anal-

ysis is done on the basis of parallelism, work efficiency, and speedups. Architectural

analysis is done using detailed execution time breakdowns, containing information

on where the time is spent in the architecture for each workload. We also identify

bottlenecks generalized across all graph workloads as well as for individual bench-

marks. The evaluation uses in-order cores and synthetic sparse graphs as default,

unless otherwise stated.

Computation, Communication, and Scalability

Figure 0.1.1 shows the detailed completion time breakdowns for all benchmarks. All

benchmarks, except DFS, TSP and COMM, scale up to 256 threads. Scalability,

however is not fully linear in all cases. SSSP DIJK scales to 256 threads and gives

a maximum speedup of 4.45×. Graph division based parallelism, which divides the

graph into threads to exploit vertex-level parallelism, is used in BFS, TRI CNT,

and PageRank, and therefore these benchmarks show similar trends. Benchmarks

containing data dependent memory accesses, such as SSSP DIJK and PageRank,

scale less than benchmarks containing less dependencies, such as BFS, which scales
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Figure 0.1.1: Normalized completion time breakdowns for CRONO benchmarks.
Speedup over the sequential version is shown above the best thread count.
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to 8.26×.

Synchronization and coherence overheads (L2Home-Waiting and L2Home-Sharing

times) are the primary factors leading to diminished scalability. These arise from

threads working on shared data and/or waiting at the atomic locks or barriers.

L2Home-Waiting times are higher at intermediate thread counts, as threads wait

more on locked data that is being computed on by other threads. However, with an

increase in thread count, each thread is able to allocate it’s graph chunk within its

private L1 cache, and thus the waiting time at the shared cache decreases. Synchro-

nization and L2Home-Sharing times increase as L1 traffic needs to be orchestrated

for shared vertices for coherence and consistency. These components remain a major

problem even when graph chunks local to a thread fit in the private L1 caches.

COMM, an inherently sequential benchmark parallelized using heuristics, fails

to scale to 256 threads due to growing synchronization caused by algorithmic con-

straints. A more approximate heuristic might allow further scaling, but will also

degrade program accuracy. Communication due to dependencies also plays a major

role in the scalability of CONN COMP. It scales less than APSP and BETW CENT,

and is mainly limited by Synchronization and L2Home-Waiting times. Dependen-

cies stall threads from accessing data already being used by another thread, hence

threads have to wait longer to access shared data, contributing further to the on-chip

communication latency.

L2Home-Sharing is the time spent ensuring cache coherence for shared cache lines

containing vertices and other shared global variables. For example, the DFS and

TSP plots show significant L2Home-Sharing times in Figure 0.1.1. This stems from

vertices that are shared in branches that are allocated to different threads. This is

evident from the branch and bound parallelization strategy. However, DFS scales less
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than TSP since DFS is an inherently sequential algorithm, and also because it has

more vertex level dependencies, as evident from its higher L2Home-Sharers times.

TSP, on the other hand, has more combinations to exploit parallelism, with only

partial vertex level dependencies that serialize on a bound check. Therefore, TSP

scales to 128 threads and attains a speedup of 10.7×, which is more than twice of

what is achieved for DFS.

Compute times are observed to be highly scalable, as evident from Figure 0.1.1.

The L1Cache-L2Home times decrease for all benchmarks since available L1 cache

capacity increases at higher thread counts. In case of highly scalable benchmarks, such

as APSP and CONN COMP, benefits are gained from reduction in the Compute and

L1Cache-L2Home times. The communication component, such as Synchronization,

is much smaller compared to the Compute component in these benchmarks.

Off-chip memory access times, shown by the L2Home-OffChip component, are

higher in percentage at lower thread counts. However, this component gets distributed

as more threads exploit the available memory level parallelism. We observe that at

the best thread count, L2Home-OffChip does not contribute to the lack of scalability.

Hence, memory bandwidth is not a prominent issue in our graph benchmarks.

Scalability summary: Most graph benchmarks exhibit weak scaling. The primary

reason from our characterization is that on-chip communication, such as synchroniza-

tion and cache coherence traffic contributes mainly to the lack of scalability.

Load Imbalance

Load imbalance remains an undesirable characteristic in graph workloads. Bench-

marks such as SSSP DIJK and PageRank, which use the Graph division paralleliza-
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Figure 0.1.2: Active vertices study for CRONO benchmarks. Completion time shown as
normalized (0%-100%). Active Vertices also shown as normalized with respect to the

maximum vertex count (0-1).

tion strategy, exhibit much lower imbalance. This is because most graph workloads

are ‘vertex centric’, meaning that most of the compute and communication is done

because of the vertices, and not because of the edges or other variables. Once a graph

is divided, statically or dynamically, load balancing strategies come into play. Our

workloads use various methods to reduce load imbalance, such as cache line alignment

of data structures to mitigate redundant cache line sharing and synchronization.

In the case of SSSP DIJK, dynamic load balancing of threads by allocating ‘pareto

fronts’ of vertices improves performance. In all benchmarks, load imbalance increases

at higher thread count (see Variability component in Figure 0.1.1). This is because

work is distributed amongst threads in a fine grain manner, which results in a few

threads doing variable work either due to data sharing effects, or because those threads

simply got a chunk of vertices that require less work. However, in other benchmarks

such as DFS and TSP, load imbalance remains high, mainly because of certain threads

working less due to bound constraints.

Parallelism and Graph Access Patterns

Graph algorithms need to sustain parallelism to ensure scalability without bottle-

necks. We conduct a study of active vertices at best thread counts for the CRONO
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benchmarks. Active vertices per unit time define how much exploitable parallelism is

available, as well as some visualization of the program’s memory access patterns. A

larger number of active vertices at any given time in the execution for a benchmark

shows that the benchmark requires a larger memory at that unit time. This may also

be used as an indicator of how many threads are active at any time.

Figure 0.1.2 shows how active vertices change during the course of execution for

CRONO benchmarks. Active vertices and completion time both have been nor-

malized to allow for a subtle comparative analysis. The shortest path benchmarks

(SSSP DIJK, APSP, and BETW CENT ) dynamically open pareto fronts that steadily

increase parallel work. After some course of action, the pareto fronts dwindle as less

vertices remain to be worked on, and thus parallelism decreases. For BETW CENT,

we observe a spike at the end, during which the algorithm runs some iterations to

determine centralities of vertices after it had executed an instance of APSP.

In the case of BFS, DFS and TSP benchmarks, active vertices remain consis-

tently high due to the available parallelism during execution. However, synchroniza-

tion plays a major factor in these algorithms, as seen earlier. For CONN COMP

and COMM, the access pattern is sinusoidal, as the algorithm does three main par-

allel function calls, with each call separated by a barrier instance. PageRank and

TRI CNT have similar active vertex patterns, as they use a similar graph division

parallelization structure.

Data Locality and Cache Effects

This section discusses the private L1 and shared L2 cache effects for the CRONO

benchmarks. Figure 0.1.3 shows the L1 cache miss rate breakdowns. The APSP,



24

BETW CENT, and CONN COMP benchmarks have high capacity miss rates. This

occurs due to low locality in these workloads. APSP and BETW CENT both use

the Floyd-Warshall algorithm, which initializes large input graph data structures for

each thread, leading to L1 cache thrashing. CONN COMP shows a high capacity

miss rate because of its low locality, even though it is seen to be somewhat scalable in

Figure 0.1.1. The primary reason for this is that the benchmark requires larger data

structures to maintain graph connectivity labels, and hence a larger private cache

capacity is required.

For the remaining benchmarks encompassing both graph division and branch and

bound parallelization strategies, high sharing miss rates are observed. These occur

due to ping-pong of shared variables between threads, and also due to invalidation

messages arising from shared vertices. In Section 0.1.7 we discuss how these shar-

ing misses can be mitigated using intelligent caching schemes for workloads such as

PageRank and SSSP DIJK .

To view the overall on-chip cache effects, we plot the cache hierarchy miss rate

for all CRONO benchmarks in Figure 0.1.4. The cache hierarchy miss rate is low,

with the exception of CONN COMP, implying that most benchmarks do not put

exorbitant pressure on the memory bandwidth. CONN COMP has higher L1 capac-

ity misses (as discussed earlier) that creep into the overall cache hierarchy effects.

Benchmarks working on smaller graph sizes, such as APSP, BETW CENT, and TSP

have negligible pressure on the on-chip cache hierarchy. Overall, with the exception of

CONN COMP, all benchmarks exhibit high cache hit rates, thus exhibiting effective

opportunities for efficient parallelization outcome.
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Graph Dependence and Vertex Scalability

Various input graphs exhibit different scalability that must be considered in graph

workloads. Therefore, we take several real world graphs, along with synthetic graphs

(sparse), to evaluate CRONO benchmarks. Sparse graphs are regularly used in most

applications, and have a small number of neighboring vertices connected to any vertex.

Table 0.1.4 shows best speedups for CRONO benchmarks on various graphs described

in Section 0.1.4. Similar trends are seen for synthetic sparse, road network, and

social network graphs, mainly due to similar sparsity. The Facebook graph provides

larger speedups as it is sparse and has more vertices, which exploits more outer loop

scalability.

Input scalability is an important issue for graph workloads. Graph sizes vary

with the numbers of vertices, for example the road network of a city will have less

vertices than that of a state or a country. Therefore, graph algorithms must show

vertex scalability to be considered scalable. We scale vertex counts for sparse graphs

from 16K to 4M vertices. For APSP and BETW CENT we scale from 1K to 32K

vertices, and for TSP we scale from 4 to 32 cities. Figure 0.1.5 shows the results for

different vertex counts. All benchmarks show a positive scaling trend as graph sizes

increase.

Energy Analysis

Dynamic energy consumption is an important metric in modern architectures that are

constrained by the power wall. Specifically, we characterize the energy consumption of

the memory system components. Figure 0.1.6 shows normalized energy breakdowns

for all CRONO benchmarks. Sparse synthetic graphs (1M vertices with 16 edges
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Table 0.1.4: Graph Variation results for CRONO benchmarks. All speedups are relative to the
sequential versions (Best Speedups).

Algorithm Sparse TX PN CA FB.

Synth. Road.Net. Social.Net.

SSSP DIJK 4.45 4.1 4.31 4.24 6.62
APSP 204 - - - -
BETW CENT 180 - - - -
BFS 8.26 8.14 7.82 8.21 8.81
DFS 3.57 3.14 3.37 3.26 3.62
TSP(32 Cities) 10.7 - - - -
CONN COMP 78.5 65.1 66.1 66.4 82.1
TRI CNT 8.93 8.12 8.21 8.19 9.53
PageRank 5.37 4.91 5.22 5.14 5.66
COMM 24 21.1 21.8 21.5 22.3

per vertex) are used in this context, with the exception of APSP and BETW CENT,

which use a 16K vertex graph, and TSP, which uses 32 cities. All benchmarks are seen

to dissipate a high portion of the energy (an average of 75%) in the network links and

the network routers, which shows that graph benchmarks stress the on-chip network.

Benchmarks such as APSP and TSP, which have small working set but reuse a lot

of data, stress the private L1-D and L1-I caches significantly. COMM shows higher

DRAM energy consumption due to a large L2Home-OffChip component. This trend

is also visible in COMM ’s completion time breakdown in Figure 0.1.1.

Core Type Analysis

In this section we analyze the effects of out-of-order (OOO) core type for the CRONO

benchmarks. OOO cores have the potential to hide the memory subsystem latencies

by overlapping computation with communication. The key question we seek to answer

is whether the bottlenecks observed for the in-order cores can be mitigated if OOO

cores are used? We use the OOO core type from Table 0.1.2 and plot the associated
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Figure 0.1.6: Normalized dynamic energy breakdowns for CRONO benchmarks.

normalized completion time breakdowns in Figure 0.1.7. We stack the normalized

completion time to show a better view of each component. Speedups at the best

thread count over the sequential OOO core are plotted in Figure 0.1.8.

Overall, trends in scalability remain similar to the in-order cores from Figure 0.1.1.

Compute bound benchmarks, such as APSP and BETW CENT scale, and are ex-

pected to continue scaling as they consist of large Compute and L1Cache-L2Home

components. CONN COMP and COMM still suffer from synchronization and com-

munication bottlenecks. Benchmarks with data dependencies, such as SSSP DIJK,

PageRank, TRI CNT and COMM, have significant synchronization and coherence

(L2Home-Waiting and L2Home-Sharers) components.

Branch and Bound benchmarks, such as DFS and TSP, show smaller speedups

compared to the system configuration with in-order cores. This happens because the

sequential OOO core performs significantly better than a sequential in-order core.

Furthermore, DFS and TSP suffer from a combination of completion time com-
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Figure 0.1.7: Normalized completion time at the best thread count for an OOO core
based simulated multicore.

ponents, such as L1Cache-L2Home, L2Home-Waiting, and L2Home-Sharers, showing

that an OOO core is unable to improve the on-chip communication overhead for these

benchmarks. Viewing these results for the CRONO benchmarks, we conclude that

OOO cores can not hide latencies associated with on-chip communication. There-

fore, alternative research such as improving caches and on-chip networks must be

undertaken to improve the bottlenecks in graph analytic workloads.

0.1.6 Real Machine Results

We also executed our benchmarks on a real machine setup to validate our simulator re-

sults. Figure 0.1.9 shows the speedup for each benchmark using a sparse input graph,

relative to its sequential version. All benchmarks give similar speedup trends com-

pared to the results obtained from the Graphite simulator in Figures 0.1.1 and 0.1.8.

However, speedups are higher at lower thread counts for less scalable benchmarks,
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Figure 0.1.8: Speedups at the best thread count over a sequential OOO core.

such as SSSP DIJK and PageRank. Benchmarks such as APSP and BETW CENT

scale linearly for the real machine setup as well. Speedups reduce at 16 threads as

the operating system begins to share 16 threads via context switching on four 2-way

multithreaded cores.

Further architectural optimizations are enabled in the real machine setup, such as

a deeper cache hierarchy, data prefetching to reduce off-chip bandwidth limitations,

and complex networks to reduce contention. However, the main limitation of the

real machine setup is that it has a smaller number of cores. Future multicores are

expected to integrate a large number of cores on a chip, and they may use CRONO

as an evaluation suite for graph analytic workloads.
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0.1.7 Discussion and Future Work

Based on the analysis and observations, CRONO benchmarks are optimized for local-

ity and scalability. However, some issues still remain, such as high cache and network

latency and energy consumption. We provide some insights on how future architec-

tures may improve to mitigate bottlenecks associated with graph analytic workloads.

Scalability and Architectural Optimizations

We have shown that while most graph algorithms scale to high thread counts with the

right type of parallelization, others scale to only an intermediate thread count. The

ones that scale also are not expected to scale to very high thread counts, such as up to

a thousand cores. Therefore, algorithms need to become adaptive in the sense of load
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balancing. Graph frameworks, such as Galios [3], do improve scheduling paradigms

to mitigate load imbalance. However, these frameworks need to be extended for

conventional parallel programs with architectural support to improve scalability.

Emerging data access mechanisms, such as the locality aware coherence protocol

may be used to improve on-chip data locality [33]. This protocol allows private caching

of cache lines that demonstrate high spatio-temporal locality at runtime, whereas low

locality data is not allowed allocation in the private L1 caches. As a result, the

private L1 caches do not thrash. Moreover, since shared data with low locality is

never replicated in the L1 caches, the protocol results in significant reduction in on-

chip traffic. In the context of graph analytics, global variables such as global bounds in

branch and bound algorithms, and read-write shared data structures can be efficiently

accessed using such architectural optimizations.

Thread and Network Issues

The dynamic energy consumption analysis in Section 0.1.5 shows that all graph bench-

marks spend a significant portion of their energy consumption in the on-chip network.

This implies that graph workloads stress the network greatly, causing traffic and con-

tention. Routing protocols, such as oblivious routing [44], may be able to reduce

contention. Contention in graph workloads mostly arises from shared read-write data

structures, such as distance arrays in the case of path planning algorithms, and web-

site ranking in the case of PageRank. Some of this contended data is more useful to

some threads, which are slower due to locks residing in other threads. This behav-

ior ultimately leads to high load imbalance. Routing protocols need to provide low

contention routes for such data, and therefore classification of packets with respect
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to threads is desirable.

Other ideas include speeding up master threads using out-of-order cores or even

hardware accelerators, leading to a design space exploration of heterogeneous archi-

tectures [11] [45].

0.1.8 Related Work

Several benchmark suites exist containing graph workloads. Examples of these include

MiBench [37], Parboil [46], PBBS [47], Rodinia [11], and Lonestar [48]. Other notable

works include studies by Harish et. al [27], Burtscher et. al [3], [12] and [17]. Such

suites contain famous graph workloads such as BFS and SSSP DIJK. The Graph500

Suite [16] also has several workloads for different real world graphs running in dis-

tributed setups such as supercomputing applications. However, because these suites

generalize workloads from different domains and across specific architectures, such

as GPUs, the essence of these suites does not center on graph benchmarks. The

workloads in these suites are also highly regularized, and do not perform studies such

as input scalability and detailed architectural analysis. Harish et. al [27] performed

a detailed study across different graph workloads on GPUs. Their implementations

include several diverse benchmarks parallelized using a generic program skeleton.

Pannotia [9] is the only benchmark suite directed towards graph analytics, with it

also being implemented and evaluated for GPUs. However, these works have several

shortcomings such as lack of input and architectural scalability studies. In the case

of multicores, on-chip cache and network effects are more predominant, and need to

be characterized effectively.

Graph frameworks remain the current state-of-the-art for graph analytics in mul-
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ticore processors and distributed setups [49]. Pregel [50], Galios [3], GraphChi [6],

and GraphLab [14], are some instances to name a few. Each framework focuses on

a specific domain, such as Pregel focuses on web based graphs, Galios generalizes

algorithms across road networks and random graphs, and GraphLab associated itself

for machine learning big data paradigms. These frameworks also introduce various

scheduling schemes optimized for their domains. They show performance studies for

several graph workloads to validate their scheduling infrastructures. However, these

graph frameworks require special programming models, and cannot be generalized

for all multicore processor benchmarks, such as PARSEC [25] and SPLASH [24].

Parallelization paradigms such as Cilk [51] provide parallel programming language

variants for C/C++ programs. These variants can be used to create schedulers that

do automatic load balancing between threads to ensure scalability. In contrast to

these frameworks and models, we provide a complete benchmark suite along with

their parallelization characterization. We analyze across a variety of behaviors such

as graph dependence, architectural scalability, and memory access patterns.

0.1.9 Conclusion

This paper presents and characterizes CRONO, a scalable and diverse graph bench-

mark suite for multicore processors. CRONO is implemented using conventional

POSIX threads, and can run on any conventional machine. We focus on new widely

used applications, such as PageRank and Path planning since graph analytics is be-

coming increasingly popular. We characterize CRONO across various parameters,

such as energy, graph dependence, architectural bottlenecks, and data sharing. Our

analysis shows the following deductions:
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• Graph analytic workloads exhibit low locality, are highly irregular, and have

diverse energy and memory access patterns.

• Most performance bottlenecks are seen to arise due to synchronization and data

sharing, occurring because of data dependent memory access patterns.

• Energy consumption bottlenecks reside in the on-chip network that incurs high

traffic.

Future multicore architectural optimizations, such as using emerging cache and net-

work protocols are also discussed. CRONO benchmark suite is parametrized to run

across varying number of threads and input instances, and therefore is a rigorous way

for researchers to instrument their architectural schemes.
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