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Abstract: 
 
Nitrate N and O isotope distributions in the environment can be used to elucidate salient 

biogeochemical N transformations. In order to do so, it is necessary to know the isotopic 

imprints characteristic of respective N transformations, and to understand the underlying 

mechanisms that determine these patterns. In order to provide mechanistic constraints on 

the isotopic imprints associated with nitrate consuming processes, we measured the 

enzymatic N and O isotope effects (15ε and 18ε) imparted on nitrate by three types of 

nitrate reductase enzymes, including (a) a prokaryotic respiratory nitrate reductase, Nar, 

from the heterotrophic denitrifier Paracoccus denitrificans, (b) a prokaryotic periplasmic 

nitrate reductase, Nap, from the photoheterotroph Rhodobacter sphaeroides, and (c) two 

commercially purified extracts of eukaryotic assimilatory nitrate reductases (EukNR) 

from Pichia angusta and from Arabidopsis thaliana. Enzymatic Nar assays fuelled with 

the artificial electron donors methyl and benzyl viologen yielded identical N and O 

isotope effects (Δδ18O:Δδ15N ≈ 1) of ~27‰, regardless of the initial nitrate concentration 

(200 µM vs. 1000 µM) or assay temperature (20˚C vs. 4˚C). Enzymatic assays with 

EukNR fuelled by methyl viologen yielded strikingly identical results to Nar, namely a 

Δδ18O:Δδ15N ≈ 1 and isotope effect magnitudes of ~27‰. Nar assays fuelled with the 

physiological reductant hydroquinone also yielded a consistent Δδ18O:Δδ15N ≈ 1, but 

showed more variable isotope effect amplitudes, from 22.9 ± 1.5‰ to 33.0 ± 4.3‰. This 

suggests that isotope effect amplitudes may be sensitive to the rate of internal electron 

transfer to the enzyme’s catalytic site. Nap assays showed unique fractionation patterns, 

including a Δδ18O:Δδ15N ≈ 0.5, N isotope effect of ~38‰, and O isotope effect of ~19‰, 

which portends a different catalytic mechanism than that of the closely related Nar and 

distantly related EukNR enzyme types.  These results confirm that dominant nitrate 

consuming processes in the environment fractionate with a Δδ18O:Δδ15N ≈ 1, providing a 

reliable benchmark from which to identify their specific signature from environmental 

isotope distributions. The distinctive isotopic signature of the auxiliary Nap enzyme is of 

interest with respect to deciphering catalytic mechanisms, but is unlikely to account for 

imprints on nitrate in the environment given the auxiliary role of Nap in bacterial 

physiology. 
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Introduction: 

Nitrogen (N) is an essential nutrient for life, whose availability has substantial influence on 

the productivity of terrestrial and marine ecosystems (Falkowski 1997; Gruber 2008; Gruber and 

Galloway 2008).  It is thus important to understand the sources and sinks of bioavailable nitrogen 

on global and regional scales. To this end, the naturally occurring stable N and O isotope ratios 

of nitrate (15N/14N and 18O/16O, respectively) can be used as indicators of sources, sinks, and 

transformation processes among N pools (e.g., Casciotti et al. 2002; Sigman et al. 1997; Sigman 

et al. 2005). The isotopic composition of nitrate registers the isotopic imprints of its source(s) as 

well as those imparted by of the transformations to which it was subject, thus integrating the 

spatial and temporal variability inherent to N transformations in the environment, which is 

difficult to capture otherwise. Measured in tandem, the coupled N and O isotope ratios of nitrate 

also provide complementary signatures of co-occurring N transformations that could not be 

disentangled from measurements of nitrate N isotope ratios alone (e.g., Sigman et al. review 

2009). 

 The two major biological nitrate consumption pathways in the N cycle are nitrate 

assimilation and denitrification, the latter of which constitutes microbially-mediated respiratory 

reduction of nitrate to N2 gas. Both of these reactions impart N and O isotopic enrichment to the 

unconsumed nitrate pool.  During assimilation and denitrification, nitrate containing the light 

isotopes, 14N and 16O, reacts faster than that with the heavy isotopes, leading to an progressive 

enrichment of both 15N and 18O of the remaining nitrate pool as nitrate is consumed (Wada and 

Hattori 1978; Granger et al. 2004; Granger et al. 2008).  The degree to which isotopic 

discrimination occurs is quantified by the kinetic isotope effect, ε = (lightk/heavyk – 1) x 1000, 
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expressed in per mille (‰), where the lightk and heavyk are the respective reaction rate coefficients 

for the heavy and the light isotope bearing molecules.   

Culture studies of nitrate uptake by marine phytoplankton and by denitrifying bacteria have 

elucidated that the magnitude of the organism-level isotope effect (εorg) imparted on nitrate 

during both nitrate assimilation and nitrate respiration is determined by analogous processes, and 

is largely dependent on the fate of nitrate after its active uptake into the cell (see Figure 1) 

(Shearer 1991; Granger et al. 2004, 2008, 2010; Needoba et al. 2004).  Of the nitrate actively 

transported into the cell, a fraction is irreversibly reduced to nitrite by the respective assimilatory 

or respiratory nitrate reductase enzymes, whereas a portion of the internal nitrate escapes 

enzymatic reduction and passively effluxes back into the environment, given a favorable 

electrochemical gradient.  Isotope discrimination of the heavy isotopologues of nitrate occurs 

internally during bond-breakage at enzyme site, and not during transport (Karsh et al. 2014; 

Granger et al. 2008; Granger et al. 2010; Kritee et al. 2012).  The magnitude of εorg recorded in 

the external medium thus records that imposed by the enzymatic isotope effect, but varies as a 

function of the relative fraction of nitrate effluxed out of the cell, where εorg = f *(εenzyme) and f is 

the ratio of nitrate efflux to uptake (Shearer et al. 1991; Francois et al. 1993;Needoba et al. 2004; 

Karsh et al. 2014). For assimilatory nitrate reduction mediated by eukaryotic nitrate reductase 

(EukNR), the N isotope effect (15εEukNR) of nitrate reductase purified from the fungus Aspergillus 

sp., chosen due to its commercial availability as a purified enzyme, and from cell suspensions of 

marine diatom Thalassiosira weissflogii, were recently shown to be ~27‰ in vitro (Karsh et al. 

2012), which is coherently higher than the upper end of the assimilation isotope effect as 

observed in cultures, which ranges from 0 to 20‰  (Wada and Hattori 1978; Montoya and 

McCarthy 1995; Waser et al. 1998a; Needoba et al. 2003; Granger et al. 2004), and from that 



	   3	  

observed at the surface ocean, which ranges from 5 to 10‰   (Wada 1980; Wu et al. 1997; Waser 

et al. 1998; Sigman et al. 1999; Altabet 2001; DiFiore et al. 2006).  N isotope effects in cultures 

of denitrifiers and those attributed to denitrification in the environment cover a broader range 

than observed for nitrate assimilation, from 2 to 30 ‰ (Wellman et al. 1968; Wada et al. 1975; 

Barford et al. 1999;	  Brandes et al. 1998; Voss et al. 2001; Granger et al. 2008). The enzymatic 

isotope effect associated with nitrate reduction by the respiratory Nar nitrate reductase is not well 

constrained. Because the enzymatic isotope effect would not be influenced by the relative 

fraction of nitrate effluxed out of the cell as described above, we anticipate it to be greater than 

the denitrification isotope effects observed in cultures and in the environment. It would thus set 

an upper boundary for the isotope effect of denitrification, which is on the order of 25 to 30‰ 

(Wellman et al. 1968; Barford et al. 1999; Granger et al. 2008). 

Understanding the magnitude of the N isotope effects of denitrification and the factors that 

control it is of importance due to the utility of N isotopes in constraining source and sink 

estimates of fixed N to the global ocean (Brandes and Devol 2002). Global estimates of N2-

fixation and of water-column and benthic denitrification, which are derived from extrapolations 

of field rate measures or from geochemical estimates, vary widely. The oceanic N budget can 

thus be construed as being relatively balanced on ocean-circulation time scales (Gruber and 

Sarmiento 1997; Gruber 2008) or grossly out of balance, losing nitrate at a faster rate than is 

being produced (Altabet and Curry 1989; Brandes and Devol 2002; Canfield et al. 2010; 

Codispoti 1995; Deutsch et al. 2007). In this respect, N isotope ratios and isotope effects of 

pertinent N transformations provide an additional conserved metric from which to construct a 

mass balance of nitrogen sources and sink terms to the global ocean.  In these exercises, the 

isotope effect associated with water column denitrification, 15εdenit, is generally presumed to be 
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on the order of 25‰ (Brandes and Devol 2002), even though 15εdenit has been found to vary from 

2 and 30‰ in both the water column and culture studies (Brandes et al. 1998; Voss et al. 2001; 

Granger et al. 2008).  Estimates of the magnitude of the benthic denitrification term derived 

therein, which assume the isotope effect associated with benthic denitrification is near 0‰, result 

in bulk denitrification (water column and benthic) that is over 2 x greater than estimates of N2-

fixation rates, thus diagnosing a massive and improbable imbalance in the modern oceanic N 

budget. Recent investigations that looked into the variability in 15εdenit with cell specific nitrate 

reduction rates in cultures grown under various conditions relevant to the ocean have called into 

question the validity of setting the 15εdenit of water column denitrification at 25‰, as under many 

of the simulated ‘oceanic’ growth conditions, where cell specific nitrate reduction rate was lower 

than for culture studies under ideal growth conditions, the isotope effect was driven lower than 

the canonical 25‰ (Kritee et al. 2012).  Based on the results of their experiments, the authors 

suggest a value of 10-15‰ may be more appropriate for N budget mass balance exercises, and a 

lower value would mitigate the discrepancy between the magnitudes of the source and sink 

fluxes to the fixed nitrogen pool.  A balanced N-budget is attractive; however, given the 

importance of the magnitude of 15εdenit of denitrification, it is worth trying to further constrain 

this value for its use in models and to understand what determines its expression in the 

environment. 	  

 Characterizing the coupling between nitrate N and O isotope effects associated with nitrate 

consumption and identifying the mechanisms that influence it are also important, as the nitrate 

N-to-O relationship provides a basis from which to identify when nitrate consumption by 

assimilation and denitrification is occurring in tandem with nitrate production from nitrification 

in the environment. Both denitrification and nitrogen assimilation have been observed to have N 
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and O isotope effects that co-vary linearly with a ratio near 1 (18ε:15ε≅1) in culture studies 

(Granger et al. 2004; Granger et al. 2008; Kritee et al. 2012; Wunderlich et al. 2013) as well as in 

the marine environment (e.g., Casciotti et al. 2002; Sigman et al. 2003). It has been shown that 

this holds true at the enzyme level for nitrate assimilation: pure extracts of assimilatory 

eukaryotic nitrate reductase (EukNR) from the fungus Aspergillus sp. and for a marine diatom 

fractionate N and O isotopes with a ratio ≅ 1:1 in vitro (Karsh et al. 2012), replicating the O-to-N 

observed at the organism level, and confirming unequivocally that enzymatic reduction is the 

fractionating step during assimilation. This peculiar signature constitutes a benchmark in studies 

using coupled N and O isotope measurements; deviations from the 18ε:15ε ratio of 1 in 

environmental samples provide an indication of co-occurring N transformations, where multiple 

processes are adding to or removing nitrate from a pool simultaneously. In particular, ratios 

above 1 have been found in the oxygen deficient zone of the Eastern Tropical North Pacific 

(ETNP) near the shelf break off of Baja California and have been tentatively attributed to the 

ammonification and subsequent nitrification of newly fixed organic material low in δ15N or the 

re-oxidation of NO2
- previously reduced from NO3

- (Sigman et al. 2005; Casciotti and McIlvin 

2007). In the latter scenario, newly reduced NO2
- has a δ15N lower than that of its source NO3

--

due to the fractionation associated with NO3
- reduction, and upon re-oxidation it produces NO3

- 

low in δ15N, but the δ18O of the produced NO3
- has the isotopic imprint near that of ambient 

seawater at ~1‰ (Sigman et al. 2009; Buchwald and Casciotti 2010).  This explanation has also 

been used to explain deviations from 1:1 signal of denitrification seen in the Peruvian ODZ, 

where NO2
- re-oxidation may provide an equally or more important sink for NO2

- as 

denitrification (Casciotti et al. 2013). In the surface ocean, nitrification occurring subsequently 

with nitrate assimilation can similarly lead to an 18ε:15ε >1 depending on the fate of the NH4
+ 
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pool; NH4
+ will be utilized as an N source for assimilation in addition to being nitrified. The 

partitioning of NH4
+ between assimilation and nitrification, as well as the relative amplitudes of 

their respective isotope effects, modulate the δ15N of the newly nitrified NO3
- and thus the 

amplitude of the deviation from the 1:1 signal imposed by nitrate assimilation (Wankel et al. 

2007; Di Fiore et al. 2009; Smart et al. 2015).  Due this complexity, the magnitudes of specific 

processes are difficult to parse out from the isotopic signals when co-occurring transformations 

are at work. 

In freshwater systems, however, denitrification is associated with coincident increase in O 

and N isotopes signal whose 18ε:15ε is between 0.5 and 0.7 (Lehman et al. 2003; Amberger and 

Schmidt 1987; Knöller et al. 2011), thus below the 1:1 observed for cultures of denitrifying 

bacteria and in marine systems. This prevalent signal has traditionally been interpreted as the 

organism-level isotope effect for denitrification (Amberger and Schmidt 1987), yet this premise 

is clearly contradictory to observations from culture work, which demonstrates a consistent 

18ε:15ε of 1 among various strains of denitrifiers (Granger et al. 2008; , Kritee et al. 2012; 

Wunderlich et al. 2013)  Some observations from culture work, however, have led to 

speculations that O-to-N is malleable, ranging from as low as 0.3 up to 1.0, depending on culture 

conditions (Knöller et al. 2011), thus providing a potential explication for the lower 18ε:15ε 

observed in freshwater systems.   

In order to explain the discrepancy between the canonical 1:1 of marine systems and the <1 

observed in freshwater systems, some workers have also suggested that denitrification in 

freshwater systems is catalyzed by an alternate dissimilatory nitrate reductase enzyme, the 

periplasmic Nap nitrate reductase (Wenk et al. 2014, Frey et al. 2014), rather than the respiratory 

Nar nitrate reductase.  Indeed, many denitrifying organisms possess an auxiliary Nap nitrate 
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reductase enzyme, which is located in the bacterial periplasm.  Rhodobacter sphaeroides, a 

photo-heterotrophic bacterium possessing only Nap, has been shown to fractionate the O and N 

isotopes of nitrate at a ratio below 1 in culture (~0.6,) suggesting that Nap fractionates oxygen 

and nitrogen isotopes differently from the other nitrate reductases (Granger et al, 2008). 

Similarly, Frey et al. (2014) recently measured a 18ε:15ε of  ~0.5 during the growth of an 

autotrophic sulfide-oxidizing Epsilon-proteobacteria, Sulfurimonas gotlandica, which also 

possesses Nap as its sole nitrate reductase enzyme.  For organisms that possess both Nap and 

Nar, the organism level isotope effect, εorg, should be determined by the ratio of efflux to uptake 

(f, as described above) and the combined enzymatic isotope effect of Nar and Nap. With this 

assumption, we might expect the δ18O:δ15N during nitrate respiration of organisms possessing 

both Nar and Nap to be below 1:1 depending on the relative activity of Nap to Nar.  This perhaps 

could come into play in freshwater systems, where redox conditions could favor the expression 

and activity of Nap and thus lower the observed 18ε:15ε.  

In order to provide additional constraints on the 18ε:15ε associated with nitrate consumption 

and to further establish the O-to-N coupling as robust benchmark to interpret nitrate isotope 

distributions in the environment, we measured the nitrate N and O isotope fractionation imposed 

on nitrate by various nitrate reductase enzymes in cell homogenates or in purified enzymatic 

extracts.  Our results confirm trends observed previously for other eukaryotic assimilatory nitrate 

reductases, and provide novel observations of the N and O isotope effect imparted by the 

respective prokaryotic Nar and Nap enzymes.    
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Materials and Methods: 

Sources of Nitrate Reductase 

Enzymatic assays were conducted on (a) cell homogenates from the denitrifying bacterial 

strain Paracoccus denitrificans (American Type Culture Collection [ATCC] 19367) cultured 

under anaerobic vs. aerobic conditions, on (b) cell homogenates from the photo-heterotrophic 

bacterial strain Rhodobacter sphaeroides (Deutsche Sammlung von Mikroorganismen [DSM] 

158) cultured aerobically, and on (c) purified extracts of recombinant eukaryotic assimilatory 

nitrate reductases (EukNR) from the flowering plant Arabidopsis thaliana (AtNaR: 	  E.C.	  1.7.1.1) 

and from the yeast Pichia angusta (YNaR1: E.C. 1.7.1.2), both purchased from NECi 
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(nitrate.com). 

(a) Paracoccus denitrificans cell concentrate preparations 

Paracoccus denitrificans culture medium contained 30 g L-1 Fisher Scientific Bactro™ 

tryptic soy broth supplemented with 300 µmol L-1 KNO3, 1 mmol L-1 NaNH4, and 100 µmol L-1 

K2HPO4. NH4
+ was added in excess to inhibit the expression of assimilatory nitrate reductase, 

Nas, and ensure that all NO3
- was instead being reduced by Nar or Nap (Bender and Friedrich 

1990).  Media were then sterilized by autoclaving for 1 hour. A large culture was initiated in an 

acid washed 2 L Erlenmeyer flask and grown at room temperature while continuously purged 

with lab air. After 3 days, when cell density was maximal, the flask was sealed to cut off the 

oxygen supply and to allow for the inception of denitrification. The culture was thus left for 14 

hours, after which it was tested for presence of NO3
- and NO2

- to confirm complete removal.  

Cells were harvested by centrifugation for 20 minutes at 12,000 g.  The cell pellet was 

resuspended in a 100 µM potassium phosphate buffer solution [pH 7.9] containing Thermo 

Scientific Halt™ Protease Inhibitor Cocktail  and 100 µmol L-1 ethylenediaminetetraacetic acid 

(EDTA,) immediately flash frozen in liquid nitrogen, and transferred to a -80º freezer for long 

term storage.   

An additional culture of P. denitrificans was grown under aerobic conditions to favor the 

expression of Nap and the suppression of Nar.  Media specifications and growth conditions were 

the same as above. The culture, however, was purged with air continuously until harvest, to 

inhibit the expression of Nar but not Nap (Korner and Zumft, 1989).  Prior to harvest, the culture 

was kept on ice during transport to the centrifuge in hopes to minimize any possible expression 

of Nar when cells were not being purged with air.  Cell pellets were resuspended in buffered 

solution and flash frozen as above. 
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(b)  Rhodobacter sphaeroides cell concentrate preparations 

In order to provide cellular extracts for Nap reductase assays, the photo-heterotrophic 

bacterial strain Rhodobacter sphaeroides was grown in a modified RCV medium (Weaver et al. 

1975) containing 4 g L-1 Bactro™ tryptic soy broth amended with 300 µM KNO3, 4 g L-1 

MgSO4, 1.5 g L-1 CaCl2, 40 mL L-1 1% wt/vol EDTA and 0.05 g L-1 NaNH4. NH4
+ was added in 

excess to inhibit the expression of the prokaryotic assimilatory nitrate reductase Nas and ensure 

all NO3
- was being reduced by Nap.  After autoclaving for 1 hr, the medium was further amended 

with 0.2 µM filter sterilized, 0.2 M phosphate buffer [pH 6.8], 1 mL L-1 Teknova T1001 trace 

metal mix, and 1 mL of f/2 vitamins (Guillard 1975). A large batch culture was initiated in an 

acid washed 2 L Erlenmeyer flask and grown at room temperature while continuously purged 

with lab air. Cells were harvested by centrifugation, and resuspended in buffered solution as 

above. 

 

 

 

(c) Commercial stocks of purified eukaryotic nitrate reductases (EukNR) 

Freeze dried commercially prepared purified eukaryotic nitrate reductase (EukNR) enzyme 

preparations from Arabidopsis thaliana and Pichia angusta were purchased from NECi 

(nitrate.com) and reconstituted in 1 mL of the accompanying assay buffer solution (25 mmol L-1 

KH2PO4 [pH 7.5], 25% glycerol vol/vol,  25 µmol L-1 EDTA) to an activity of 1 unit, defined as 

sufficient enzyme activity to reduce 1 µmol L-1 min-1 at 25º C.   

Enzymatic assay preparations: 
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Initial Nar assays (1 and 2) used the anaerobically-grown P. denitrificans cell suspension 

directly from the frozen stock with no additional preparation.  In all subsequent cell suspension 

assays (P. denitrificans and R. sphaeroides),  the frozen stock of cell suspension was thawed in 

ice water to minimize enzyme degradation, and working fractions were supplemented with 1% 

v/v Triton-X 100 and subjected to 2 freeze-thaw cycles in liquid nitrogen to further promote 

membrane breakdown and protein solubilization. 

P. denitrificans assays were conducted either at room temperature (~20º C) or in a cold room 

maintained at 4º C to assess potential temperature effects on the enzymatic isotope effect of 

dissimilatory nitrate reductases. Prior to performing these experiments, all reagents were pre-

chilled to 4º C in the cold room.  All R. sphaeroides and EukNR assays were conducted at room 

temperature. 

Assays contained 0.5 or 1 mL of cell suspension or of commercially purified EukNR 

buffered solution, 1 mL of 200 µmol L-1 reducing agent – either membrane-permeant benzyl 

viologen dichloride [Sigma-Aldrich, CAS: 1102-19-8], methyl viologen dichloride hydrate 

[Sigma-Aldrich, CAS: 75365-73-0], or hydroquinone (for dissimilatory reductases only; [MP 

Organics]) –  0.2 or 1 mL 10 mmol L-1 KNO3 to a final concentration of 200 or 1000 µmol L-1, 

and the remaining volume of 100 mmol L-1 phosphate buffer [pH 7.9] containing 100 µmol L-1 to 

a final assay volume of 10 mL.  After removing an (initial) aliquot of 1 mL (sample) for 

quantitation of [NO3
-] and [NO2

-], the denitrification reaction was commenced by the addition of 

1 mL of 57 mmol L-1 sodium dithionite in 29 mmol L-1  sodium bicarbonate, which reduces the 

electron donor. Initial [NO3
-] and [NO2

-] values are corrected for this dilution.  Sequential 1 mL 

samples were drawn approximately every 90 seconds during room temperature assays and every 

3 minutes during assays conducted at 4°C. Samples were mixed vigorously on a vortex mixer for 
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30 s immediately upon collection to halt the reaction through oxidation of the methyl or benzyl 

viologen or hydroquinone.  In selected assays, additional ~ 50 µL samples were also drawn 

throughout the assay reactions for determination of [NO2
-] and were measured immediately. In 

order to ensure complete cessation of enzyme activity, samples placed in an 80º C water bath for 

2 to 10 minutes.  NO2
- was then removed from the samples via the addition of 55 µL 4% (wt/vol) 

sulfamic acid in 10% vol/vol HCl (Granger and Sigman 2009; Karsh et al. 2012).  For two assays 

(see Supplement Materials SI), subsets of samples were also subject to an alternate NO2
- removal 

method using ascorbic acid under He purging (Granger et al. 2006) to compare NO2
- removal 

effectiveness at elevated [NO2
-] to [NO3

-] ratios.  Following nitrite removal, samples were 

returned to neutral pH with the addition of concentrated NaOH and frozen for short-term storage.  

Determination of [NO2
-] and  [NO3

-] 

[NO2
-] was measured in the 50 µL samples by chemiluminescence detection on a NOx 

analyzer (model T200 Teledyne Advanced Pollution Instrumentation) following reduction to 

nitric oxide (NO) in a heated iodine solution (Garside 1982).  [NO3
-] was also determined by 

chemiluminescence detection on the NOx analyzer following conversion to NO in a heated 

vanadium solution (Braman and Hendrix 1989).  Nitrite had been previously removed from these 

samples, as vanadium reduces both nitrate and nitrite to NO. 

Determination of nitrate δ15N and δ18O 

NO3
- δ15N and δ18O were determined with the denitrifier method (Sigman et al. 2001; 

Casciotti et al. 2002), wherein denitrifying bacteria lacking terminal nitrous oxide reductase (P. 

chlororaphis f. sp. aureofaciens ATCC 1398) quantitatively convert sample NO3
- to N2O gas, 

which is then extracted, purified and analyzed through a modified Thermo-Scientific Gas Bench 

II and Delta V Advantage gas chromatograph isotope ratio mass spectrometer.  Samples were 
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standardized through comparison to reference standards IAEA-N3, USGS-34, and USGS-32, 

which have δ15N (vs air N2) and δ18O (vs V-SMOW) of 4.7‰ and 25.6‰, -1.8‰ and -27.9‰, 

and 180‰ and 25.6‰ respectively (Gonfiantini et al. 1995; Böhlke et al. 2003) after individually 

being referenced to pure N2O injections from a common reference gas cylinder. Samples were 

also corrected for a bacterial ‘blank’ when present, defined as any N2O produced by bacteria in 

the absence of sample injection.  

The N and O isotope effects, 15ε and 18ε, were derived from the slope of the linear fit of  

[NO3
-] vs. δ15N or δ18O according to the Rayleigh approximation for fractionation of a substrate 

in a closed system (Mariotti et al. 1981).  Error on the slope – and thus on the isotope effect – 

was calculated using model II geometric mean regression analysis that factors error associated 

with individual measures on both the x- and y-coordinates (Sokal and Rohlf 1995) .  Standard 

deviations for δ15N and δ18O were calculated from analytical replicates. Measurement errors for 

[NO3
-] were assigned a 3% of the reported [NO3

-], a representative estimate based on the mean 

precision of [NO3
-] measured from standards of known concentrations.   	  

 

Results 

[NO3
-] decreased with time in all nitrate reductase assays.  In assays where [NO2

-] was 

measured concurrently, it accumulated to a concentration equivalent of the coincident NO3
- 

drawdown.  Dissimilatory Nar and Nap nitrate reductase assays with methyl viologen reacted 

faster than corresponding assays with hydroquinone, and assays at 4ºC also proceeded more 

slowly than corresponding assays at room temperature.  NO2
- removal with sulfamic acid was 

only effective to a point around 1:25 to 1:50 [NO3
-]:[NO2

-], evidenced in part by a tendency for 

nitrate concentrations to plateau at low concentrations (around 20-40 µM) in association with 
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haphazard O vs. N isotope ratios. In two assays in which NO2
- was removed with the ascorbic 

acid method revealed complete NO3
-drawdown and coherently linear Rayleigh distillation at 

lower [NO3
-]. Thus, estimates of isotope effects describe the linear portion of the Rayleigh 

linearization and other points were discarded. 

For all assays with anaerobic and aerobic cell suspensions of P. denitrificans, the respective 

magnitudes of the change in δ15N and δ18O were roughly similar in all assays, regardless of cell 

growth conditions, of initial [NO3
-], reductant type, or assay temperature (Table 1, Figure 2a).  

The ratios of 18ε to 15ε, determined by the change in δ18O (δ18O minus δ18Oinitial) vs. the change in 

δ15N (δ15N minus δ15Ninitial), hereafter referred to as Δδ18O: Δδ15N, were thus consistently near 1.  

The magnitude of the 15ε (and coupled 18ε) determined by Rayleigh linearization varied 

among P. denitrificans assays, between 6.6 and 33.0‰.  The lowest 15ε and 18ε, on the order 

of 6 to 9‰ were only observed for assays fuelled by benzyl viologen with unlysed cell 

suspensions.  Assays with lysed cell suspensions fuelled by either benzyl viologen or methyl 

viologen yielded isotope effects ranging from 26.0 ± 1.9 to 28.9 ± 1.0 ‰ with an average of 27.7 

± 0.6 ‰. An analogous assay with methyl viologen conducted at 4˚C yielded an identical 15ε  of 

27.6 ± 1.9‰.  

Assays of lysed P. denitrificans homogenate fuelled by hydroquinone as the reductant 

yielded a broader 15ε (and 18ε) range, from 22.9‰ to upwards of 33.0‰. The hydroquinone 

assays with 1 mmol L-1 [NO3
-] conducted at room temperature differed among batches (i.e., 

assay dates) ranging from 29.9 ± 3.3‰ to as high as 33.0 ±4.3‰ on one occasion vs. 26.5 ± 0.9 

‰ and 27.5 ± 1.0 ‰ at a second occasion.  Hydroquinone assays at lower temperature yielded 

isotope effects between 26.1 ± 10.3 ‰ and 27.3 ± 1.4‰, indistinguishable from some  
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Figure 2: NO3
- δ15N vs ln [f] (where f is the fraction NO3

- remaining: [NO3
-]/ [NO3

-]initial) [left panels] and the 
change in δ18O of NO3

-vs the change in δ15N of NO3
- with 1:1 line shown for reference [right panels] for assays 

conducted with (a) cell suspensions of P. denitrificans, (b) cell suspensions of R. sphaeroides and (c) commercially 
prepared extracts of EukNR.  The δ18O and δ15N are normalized to initial δ18O and δ15N values in all panels.  The 
values for individual assays are reported in Table 1.  In (a),  shape represents reductant used (circle, square, and 
triangle for benzyl viologen, methyl viologen and hydroquinone, respectively).  Shape fill represents [NO3

-] (open: 
1000 µmol L-1, shaded: 200 µmol L-1) and color represents temperature at which the assay was conducted (black: 
room temperature, grey: 4°C). For (c), shape indicates type of commercially prepared EukNR; Crosses represent 
EukNR from Arabidopsis thalania (AtNar) and diamonds represent EukNR from the yeast Pichia Angusta (YNaR). "
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corresponding assays at higher temperature. Two hydroquinone-fuelled assays conducted 

with 200 µM [NO3
-] produced isotope effects of 22.9 ± 1.5 and 25.6 ± 3.3 ‰.   

For assays conducted with cell suspensions of R. sphaeroides, the magnitude of the change in 

δ15N and δ18O diverged during the [NO3
-] drawdown, with δ15N increasing to a greater extent 

than the corresponding δ18O at a given [NO3
-].  The magnitude of the N isotope effect averaged 

37.4 ± 3.9‰ in two assays and the magnitude of the corresponding O isotope effect averaged 

18.7 ± 1.9‰, resulting in  a Δδ18O:Δδ15N of 0.50 ± 0.01 (Table 2, Figure 2b). 

Assays conducted with commercial stocks of purified EukNR from Pichia angusta (yeast- 

YNar) and Arabidopsis thaliana (AtNar) yielded N isotope effects ranging from 25.6 ± 1.1‰ to 

28.0 ± 2.5‰.  The Δδ18O:Δδ15N was near 1, averaging of 0.96 ± 0.03 (Table 3, Figure 2c).   

 

Discussion 

N and O isotope behavior for nitrate reduction by the respiratory nitrate reductase, Nar 

The O vs. N isotope coupling  (Δδ18O:Δδ15N) among all anaerobic P. denitrificans cell 

suspension nitrate reductase assays was consistently on the order of 1 regardless of reductant 

type, initial nitrate concentration, or assay temperature. This confirms that Nar, the enzyme 

responsible for respiratory nitrate reduction by denitrifiers, fractionates the heavy N and O 

isotopologues of nitrate equivalently.  The characteristic isotopic signal mirrors that observed in 

pure cultures of denitrifiers (Granger et al. 2008, Kritee et al. 2012, Wunderlich et al. 2012), 

corroborating unequivocally that bond breakage by the Nar nitrate reductase enzyme is the 

dominant fractionating step during respiratory denitrification (Granger et al. 2008). The coupling 

near unity is also consistent with that associated with water-column denitrification in marine 

systems (Sigman et al. 2003; 2005).  
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The average magnitudes of 15ε (and 18ε) among all assays conducted with lysed cell 

suspensions of P. denitrificans were on the order of~27‰. The lower 15ε and 18ε values of ~6-10 

‰ observed with unlysed cell suspensions likely reflect incomplete equilibration of intracellular 

vs. external nitrate pools, thus dampening the propagation of the enzymatic isotope effect to the 

external buffer. The isotope effect observed for lysed cell suspensions, in contrast, ostensibly 

reflects the enzyme-level isotope effect, 15εNar and 18εNar, unfettered by the effects of uptake and 

export of nitrate from a cell, which can serve to lower the observed isotope effect observed in 

vivo. The value of 27‰ observed here is in the general range of maximum isotope effects 

observed for denitrification in cultures (Wellman et al. 1968, Barford et al. 1999, Granger et al. 

2008) and in in the environment (Brandes et al. 1998, Voss et al. 2001). A recent study, however, 

reported a more elevated 15ε for Nar purified from Escherichia. coli of 31.6‰ using benzyl 

viologen as a reductant (Carlisle et al. 2014). This estimate, however, derived from a 2 point 

regression on the δ15N of the nitrite product and is thus subject to considerable uncertainty.  

Nevertheless, there are reports of higher denitrification isotope effects in vivo (Wellman et al. 

1968, Barford et al. 1999), including some observation of a 15εorg upwards of 31‰ for P. 

denitrificans grown in our laboratory (R. Dabundo, personal communication).  

Some of our individual Nar assays with hydroquinone as a reductant yielded 15ε and 18ε 

equally elevated, although not consistently so.  It is possible that the type of enzymatic reductant 

used in the assays could influence the magnitude of the enzyme level isotope effect, such as has 

been observed for nitrite reductase (Bryan et al. 1983). For a unidirectional enzyme-mediated 

reaction, the magnitude of the observed isotope effect depends on the degree to which the 

isotopically sensitive step of catalysis is rate-limiting.  Enzyme mediated chemical reactions 

often involve multiple steps in addition to the chemical reaction itself.  For example, Nar-
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mediated nitrate reduction requires the succeeding reduction of three enzyme subunits as 

electrons are transferred from the quinol pool to the molybdenum active site of enzyme before 

the final reduction can take place. The speed of this electron transfer could affect the overall 

reaction rate of Nar and consequently that of the isotope effect.  

Consider the irreversible enzymatic reaction outlined below: 

        [1] 

Once a substrate bonds with its enzyme at a specific reaction rate (kforward) to form an 

enzyme-substrate complex it has one of two fates- either it is converted to product by the 

enzyme, also called catalysis at a specific reaction rate (kcatalysis; kcat), or it is released from the 

enzyme at a specific reaction rate kback and rejoins the substrate pool.  Theoretically, the observed 

isotope effect is dependent on the relative reaction rates of catalysis and release [Eq. 2; O’Leary 

1980, Karsh et al. 2012].  

  [2] 

where εintrisic is the isotope effect associated with the catalytic step, quantified as 

lightkcat/heavvkcat. If all substrate that binds is converted to product, the isotope effect will be zero, 

assuming no fractionation associated with binding; this occurs if the rate of catalysis (kcat) is fast 

relative to the rate of unbinding (kback), such that the ‘commitment to catalysis,’ kcat / kback , is 

large , dampening the expression of the intrinsic enzymatic isotope effect, εintrinsic (Equation 1).  

At the other limit, when kback is extremely fast relative to kcat, the full intrinsic isotope effect 

εintrinsic will be expressed in the residual substrate.  In our experiments, kcat for Nar was likely 

εobserved =
εintrinsic +

kcat
kback

1+ kcat kback
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modulated by the reductant type. The viologen reductants used here donate electrons directly to 

the molybdenum active site (Campbell 2001), whereas hydroquinone, which is the in vivo 

electron donor, donates to the cytochrome b subunit of Nar, requiring the electrons to 

sequentially reduce the Fe-sulfur clusters of the other two Nar subunits in turn before reaching 

the active site (Figure 3).    

 

Figure 3: Schematic depicting the structure of dissimilatory nitrate reductase (Nar) and the locations of 
electron transfer by reductants hydroquinone (in vivo reductant) and benzyl or methyl viologen (artificial 
reductant).  Cyt b denotes the transmembrane b-type cytochrome subunit, and 3Fe-4S and 4Fe-4S indicate 
iron-sulfur clusters of varying forms within both the secondary and catalytic subunit. Mo[MGD]2 denotes 
the molybdenum active site in the catalytic subunit. Figure reproduced from Berks et al. 1995. 

 

 

Thus the use of artificial viologen reductants in lieu of hydroquinone, by speeding up kcat 

relative to kback and thereby decreasing the commitment to catalysis, could lower the isotope 

effect observed in the residual nitrate pool with methyl viologen compared to hydroquinone.  

This would suggest that the rate of internal electron transfer influences the overall enzymatic 

reaction rate, such that the isotopically sensitive step of N-O bond breakage is not entirely rate 

limiting in the enzymatic reaction. However, a higher N isotope effect was not observed 

consistently across all assays conducted with hydroquinone.  It is possible the high isotope effect 

assays were a result of analytical error; however, this seems unlikely given that the nitrate 
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analyses and the isotopic analyses were conducted across multiple days with internal standards 

behaving as expected. Thus, it is unclear whether the observed isotope effect with either 

reductant is that intrinsic to bond breakage at the catalytic site of Nar, or whether the expression 

of the intrinsic isotope effect of Nar can be modulated as a function of the rate of internal 

electron transfer of the enzyme. 

Perhaps even more confounding are the low N and O isotope effects observed for assays 

conducted with hydroquinone and 200 µmol L-1 [NO3
-], of 22.9 ± 1.5 ‰ and 25.8 ± 3.3 ‰.  

While the latter 15ε estimate is not significantly lower than that for corresponding assays 

conducted at 1000 µmol L-1 [NO3
-] with hydroquinone, the former value is anomalously low.  

This could indicate an effect of [NO3
-] on the enzymatic isotope effect, wherein lower substrate 

concentrations render substrate binding partially rate-determining relative to the catalytic rate, 

thereby reducing the proportion of substrate unbinding from the enzyme. However, we did not 

observe a reduced isotope effect for 200 µmol L-1 [NO3
-] assays conducted with methyl or benzyl 

viologen, where this dynamic should be even more given the increase in kcat promulgated by 

viologen.  It is difficult to invoke a mechanism wherein [NO3
-] affects the expression of the 

isotope effect for one reductant but not the other. Nevertheless, hydroquinone does seem to 

generally produce more variable isotope effect magnitudes.   

Based on the above reasoning connecting the commitment to catalysis to the observed 

isotope effect, we might expect temperature to have an effect on the magnitude of the isotope 

effect, due to the temperature sensitivity of the rate of enzymatic reactions. We hypothesized that 

reducing temperature would slow kcat, leading to an elevated kback/ kcat and thus an elevated 

isotope effect.  However, assays conducted at 4ºC showed no significant difference in isotope 

effect from those at room temperature.  It is possible the decrease in temperature did not impact 
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the catalytic rate sufficiently to create an observable difference in the isotope effect or that in 

addition to slowing kcat, the reduction in temperature slowed kback proportionally such that the 

relative rates of the two processes did not change significantly with the temperature decrease and 

the commitment to catalysis remained roughly the same.  This result is surprising, however, 

given the possible sensitivity of commitment to catalysis and thus the isotope effect to changes in 

kcat brought about by reductant.   

Although the work of Karsh et al. (2012) strongly suggests an invariant isotope effect near 

27‰ for nitrate reduction by EukNR, the authors recognized the possibility of its sensitivity to 

reductant type by way of its effect on kcat.  Their assays were conducted using methyl viologen, 

and they were not able to directly test the isotope effect using the in vivo electron donors NADH 

and NAD(P)H  due to their incompatibility with the nitrite removal method with sulfamic acid 

(Granger and Sigman 2009).  Although they expected a slower kcat with NADH and NAD[P]H, 

based on the magnitude of the N isotope effect observed for assimilation in cultures of the same 

algal species (T. weissflogi  εorg<23.5 ‰: Needoba et al. 2004) and in one nitrate reduction assay 

study with EukNR from spinach leaves and NAD[P]H (εNAD[P]H=15‰: Ledgard et al. 1985) they 

inferred that for EukNR, εNAD[P]H ~εMeVi.  In order for the rate of electron transfer to not 

influence the magnitude of the isotope effect, they speculated that either NO3
- would only bind to 

a reduced molybdenum center that had already received electrons and thus electron transfer rate 

is irrelevant or that NO3
- binds to an oxidized Mo center but the substrate is in a state of rapid 

equilibrium with the enzyme and thus the rate of dissociation (kback)>> rate of catalysis (kcat).  

This leads to a commitment to catalysis approaching zero and thus an observed isotope effect 

equal to that of the intrinsic isotope effect for N-O bond rupture regardless of electron transfer 

rate.  Our results for Nar, however, indicate that εhydroquinone may be greater than εMeVi under some 
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conditions, which suggests both that NO3
- is binding with an oxidized Mo center and that 

substrates are not in rapid equilibrium with the enzyme, causing rate of electron transfer to affect 

commitment to catalysis and thus the observed isotope effect.  Results where εhydroquinone< εMeVi 

are, however, difficult to reconcile under this scenario and suggest a degree of malleability to εNar 

that cannot be completely explained by internal rate of electron transfer and commitment to 

catalysis. 

 

N and O isotope behavior for nitrate reduction by periplasmic nitrate reductase, Nap 

In contrast to Nar, the periplasmic dissimilatory nitrate reductase, Nap, assayed from 

Rhodobacter sphaeroides cell suspensions does not fractionate N and O in a ratio near unity, but 

rather, with a Δδ18O: Δδ15N on the order of 0.5. This trend resembles that observed in a previous 

study during nitrate drawdown in cultures of the same strain of R. sphaeroides, with a Δδ18O: 

Δδ15N ≅ 0.6 (Granger et al. 2008), albeit slightly lower. This difference is difficult to reconcile, 

given the high precision and accuracy of the N and O isotope ratio measurements with the 

denitrifier method. The discrepancy could reflect different strains in spite of appearances to the 

contrary, differences imparted by incomplete nitrite removal (although unlikely), or from nitrite 

reoxidation during prolonged storage of samples (in the case of Granger et al. 2008).  

Nevertheless, the Δδ18O: Δδ15N of 0.5 observed here is analogous to that observed recently in 

cultures of the autotrophic Epsilon-protoebacterium, S. gotlandica, which oxidizes sulfide for 

autotrophic carbon fixation while using nitrate as an electron donor via the periplasmic Nap 

nitrate reductase (Frey et al. 2014).  The unique Δδ18O: Δδ15N coupling of Nap affirmed in two 

distantly related strains clearly suggests there is something fundamentally different about the 

way in which Nap binds with nitrate or reduces nitrate compared to the other nitrate reducing 
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enzymes, despite the structural and functional similarities of Nap to Nar enzymes.  It is puzzling 

that Nap fractionates N and O differently even though it performs the same chemical function as 

both Nar and EukNR, the N-O bond rupture during nitrate reduction. The isotopic signal should 

theoretically reflect the energetic difference of the breaking bonds for a ‘heavy’ vs. a ‘light’ 

nitrate molecule bound to a hexadentate molybdenum atom, and therefore should be the similar 

for all nitrate reductases, given a similar binding configuration of nitrate to the Mo atom.  

Furthermore, Nap is more closely related to Nar genetically than Nar is to EukNR (Richardson et 

al. 2001), although both of the latter fractionate N and O analogously. Nap and Nar are both 

classified as part of the DMSO family of molybdoenzymes, but differ marginally in their 

coordination of the Mo active sites; both are coordinated by two molybdopterin guanidine 

dinucleotide (MGD) molecules providing two bidentate dithiolene ligands. The coordination of 

Nap’s Mo atom is completed with a cysteine or selenium-cysteine ligand, whereas Nar’s is 

completed with an asparginine ligand (Moreno-Vivian et al. 1999, Sparacino-Watkins et al. 

2014).	  Both also possess additional oxo/hydroxo/ water ligands While their coordination sites are 

similar, Nap has two enzyme subunits to Nar’s three; it possesses a catalytic subunit with a 

MGD-cofactor and [4Fe-4S] cluster and a c-type cytochrome whereas Nar has a soluble subunit 

consisting of three [4Fe-4S] clusters and one [3Fe-4S] cluster and a membrane bound bi-heme 

cytochrome b subunit that receives electrons from the quinol pool in addition to the catalytic 

subunit with an MGD-cofactor and [4Fe-4S] cluster (Moreno-Vivian et al 1999). The active site 

of Nap is reportedly specific to nitrate, but Nar’s is relatively nonspecific and has been observed 

binding with other mono-charged anions such as fluoride, nitrite, formate, chlorate and bromate 

(George et al., 1985, Jormakka et al. 2004). How these differences could translate to differences 
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in the ratio of O to N isotope effects, however, remains unclear and is beyond the scope of this 

project.   

The magnitude of the enzymatic N isotope effect of Nap observed here (38.5 ± 3.0 ‰) is 

significantly higher than that observed for both Nar and EukNR.  Like the deviation from Δδ18O: 

Δδ15N≅ 1, the high magnitude of the N isotope effect further suggests there is something 

fundamentally different about the mechanism by which Nap reduces nitrate.  Because the 

reaction rate difference between the heavy and light molecule is greater when Nap facilitates 

reduction, the energy difference between a 15N-16O-Mo and a 14N-16O-Mo bond must be greater 

when Nap binds the enzyme compared with the other nitrate reductases.  Given the context of the 

greater specificity for substrate of Nap compared to Nar, this perhaps suggests a more complex 

binding interaction of the nitrate molecule with the enzyme’s reaction center.  The oxygen 

isotope effect, however, is lower for Nap than for Nar, which perhaps indicates Nap does not 

bind to an 18O and only interacts with the 16Os on a 14N16O16O18O nitrate molecule or if it does, 

the 18O-Mo bond has a favorable energy which makes N-O bond breakage slightly more 

favorable than breaking the 18O-Mo bond of the enzyme bound transition state.  

Nap is unique in that the physiological purpose served by its nitrate reduction differs between 

organisms and in different growth conditions (Hartsock and Shapleigh 2011).  Because it does 

not generate a proton gradient across the cell membrane, nitrate reduction via Nap is generally 

cited as not directly coupled to energy production as it is for Nar (Sparacino-Watkins et al. 

2014). In some cases, Nap is thought to act as means of disposing of excess reducing power 

through the reduction of nitrate (Richardson et al. 2001, Ellington et al. 2002, Gavira et al. 2002).  

This is especially important for redox balancing during growth on reduced carbon sources and 

during photoheterotrophic growth, for which the turnover of the photosystem depends on the 
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supply of oxidized quinone from the quinone/quinol pool (reviewed by Berks et al. 1995). The 

product nitrite can then too, be used downstream in the remainder of the denitrification pathway 

for respiratory purposes (Bedzyk et al. 1999, Bedmar et al. 2005) including for dissimilatory 

nitrate reduction to ammonium (DNRA).  In certain strains, including P. denitrificans, Nap has 

also been shown to be preferentially expressed under aerobic growth conditions (Gavira et al. 

2002). And as in other organisms who possess both Nap and Nar, Nap in P. denitrificans has 

been shown to be required for transition to anaerobeosis, facilitating denitrification under 

conditions where the expression of Nar or transport of nitrate into the cytoplasm would be 

inhibited by the presence of oxygen (Bedzyk et al. 1999, Alefounder and Ferguson 1980, Moir 

and Wood 2001).  Because of this, we hypothesized that assays conducted with cell suspensions 

of aerobically grown P. denitrificans would result in a Δδ18O: Δδ15N < 1, reflecting the activity 

of Nap; however, these assays showed no difference from assays with anaerobically grown P. 

denitrificans cell suspensions.  Both fractionated N and O equivalently. This suggests either the 

Nar in our assays was active even though the cells were grown aerobically, or that catalysis by 

the P. denitrificans’ Nap fractionates with a Δδ18O: Δδ15N of 1, and thus differs from catalysis by 

Nap in R. sphaeroides or in S. gotlandica.  Although this latter scenario seems unlikely, this is 

not impossible given a comparatively high degree of functional and genetic diversity within the 

Nap group of nitrate reductases, compared to Nar or EukNR which are more highly conserved 

(Richardson et al. 2001, Hartsock and Shapleigh 2011). 

The magnitude of the N isotope effect of 37.4‰ associated with R. sphaeroides Nap is much 

greater than the magnitude observed in vivo in cultures of R. sphaeroides and of S. gotlandica, 

where N isotope effects were on the order ~15‰ and 23.8 ± 2.5‰ respectively.  While for Nar 

and EukNR, the discrepancy between the enzymatic isotope effect and that observed in culture or 
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the environment is expected due to the diluting effects of uptake and export on the enzymatic 

isotope effect imparted internally, we anticipated less of a difference in isotope amplitude for 

Nap, whose location in the periplasm of the cell we hypothesized should isolate it from the 

effects associated with active membrane transport and enable homogenization of the periplasmic 

pool with the external nitrate pool.  Therefore, this result is surprising, and even more so because 

the discrepancy is greater than that between the magnitude of the N isotope effect of cultures of 

denitrifying bacteria and Nar, whose location at the cell interior renders the expression of its 

isotope effect subject to the effects of membrane transport.  In previous studies, diffusion 

limitation across a cell boundary layer has been discussed as a mechanism that could serve to 

lower the isotope effect of denitrifiers but has been disregarded based on the reasoning that 

bacterial cells are too small and nitrate concentrations too high in these studies (>1 mmol L-1) to 

result in a diffusive boundary layer (Kritee et al. 2012, Pasciack and Gavis 1974, Frey at al. 

2014).  Interestingly, Frey et al (2014) reported a higher isotope effect for cultures of S. 

gotlandica that were shaken during growth vs. stationary cultures. They attributed this result to 

diffusion limitation imposed by a vertical [NO3
-] gradient within the media arguing that dense 

cells settled near the bottom consumed nitrate more rapidly than those at the top.  This would 

result in a gradient of δ15N and δ18O with greater values near the bottom coincident with a higher 

degree of nitrate consumption. However, as our 15ε for Nap (38.5 ‰) was higher than their high 

15ε for shaken cultures (19.4-27.7 ‰) and considerably higher than that observed in vivo for non-

shaken cultures (13.2 –18.4 ‰), a different or additional mechanism is required to explain the 

low isotope effect observed in cultures. We suggest the possibility of a mixing limitation of 

enriched residual substrate in the periplasmic space with external media.  Although porin 

channels in the outer membrane of gram negative bacteria allow the free diffusion of small 
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hydrophilic molecules such as NO3
- in and out of the periplasmic space (Galdiero et al. 2012), it 

is likely that there is incomplete homogenization between the periplasmic and external nitrate 

pools of roughly equal chemical but not isotopic composition, leading to an under expression of 

the enzymatic isotope effect in the external media.  Shaking may thus affect a greater exchange 

of the periplasmic and external nitrate pool.   

 

N and O isotope behavior for nitrate reduction by eukaryotic assimilatory nitrate reductase 

EukNR 

The commercially prepared pure extracts of recombinant EukNR from Arabidopsis thalania 

and Pichia angusta both yielded a Δδ18O: Δδ15N ≅ 1.  These results are consistent with 

analogous measurement of Karsh et al. 2012, who also observed a coupling near unity for 

EukNR isolated for Aspergillus sp., and in cell homogenates of the diatom T. weissflogii. The 

magnitude of the N (and O) isotope effect averaged 27‰, also identical to the magnitude 

observed by Karsh et al. (2012).  Our results, however, contradict a recent report of a 15ε for 

recombinant EukNR from P. angusta procured from the same supplier, which were on the order 

of 22‰ (Carlisle et al. 2014). We expected to replicate this result, hypothesizing the discrepancy 

of 15ε amplitude between that and other nitrate reductases could be due to the preparation of the 

enzyme extracts, which were expressed recombinantly in Pichia pastoris and missing parts of the 

native enzyme. However, our results refute this, and rather suggest an isotope effect of 27‰ for 

this enzyme as for other eukaryotic nitrate reductases, at least when fuelled by methyl viologen. 

The 15ε measured by Carlisle et al. (2014) likely owes to a methodological difference; the 

isotopic effect calculated therein is based on a Rayleigh linear fit of only two N isotopic 

measures (beginning and endpoint) of the nitrite product. Because this method relies on only two 
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data points, an under or overestimate of either could easily lead to a miscalculation of the isotope 

effect.   

Both the Δδ18O: Δδ15N coupling and amplitude of the N and O isotope effects observed 

among EukNR enzymes is identical to that measured here for Nar. This clearly owes to 

functional and structural similarity between these enzymes; both reduce nitrate to nitrite and both 

are mononuclear, hexadentate molybdoenzymes. Nevertheless, EukNR is in the sulfite oxidase 

family of molybdoenzymes and is bound to a single molybdopterin (MPT) moiety (Campbell, 

1999), whereas Nar belongs to the dimethyl sulfoxide oxidase (DMSO) reductase family due to 

coordination of the Mo active site by a bis-molybdopterin guanine dinucleotide (MGD; Berks et 

al. 1995). The two reductase types, Nar and EukNR, further belong to distinct genetic clades 

wherein Nar is a distant relative of the monophyletic EukNR enzymes (Stolz and Basu 2002). In 

this respect, the isotopic similarities are remarkable.  

 

Conclusions 

Our results demonstrate that Nar, like EukNR, imparts a consistent coupling on the O and N 

isotopologues of nitrate, where Δδ18O: Δδ15N is on the order of 1. The 15ε (and 18ε) of both Nar 

and EukNR prove to be identical, at least when fuelled by viologen.  Theoretically, and based on 

the variability incurred when quinone as reductant, we posit that a higher enzymatic isotope 

effect is plausible in vivo, whereas a lower isotope effect is difficult to reconcile based on our 

understanding of the enzymatic mechanism. Nevertheless, the elevated 15ε may represent a 

hypothetical upper limit of attainable isotope effects in vivo for both denitrification and nitrate 

assimilation. 
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The distinctive Δδ18O: Δδ15N signature of 1 associated with respiratory denitrification and 

nitrate assimilation provides a benchmark for environmental studies, wherein biological nitrate 

consumption can be identified from nitrate isotope distributions, and distinguished from co-

occurring N transformations. Our data further discredit the notion that the O-N coupling of 

denitrification is variable, which has be suggested by some (Knöller et al. 2011).  Thus, by itself, 

the coupling of unity fails to explain the coupling of 0.5 to 0.7 observed in association with N 

loss in aquifers and lakes.  We suggest that the coupling below 1 is indicative of nitrate 

production, by nitrification or anaerobic ammonium oxidation (anammox), co-incident with 

denitrification, thus overprinting the Δδ18O: Δδ15N of 1.   

  It has also been argued that nitrate reduction mediated by Nap, which results in a nitrate 

reduction signal with a Δδ18O: Δδ15N < 1, could drive the signal observed in freshwater systems.  

While a facile explication, it requires that Nap effectuate the majority of nitrate reduction in 

aquifers and lakes, which seems difficult reconcile with the role of Nap as an auxiliary reductase 

involved in redox balancing. Moreover, it proved difficult to silence the Δδ18O: Δδ15N of 1 for P. 

denitrificans cultures in this study, even when grown in conditions that favor the expression of 

Nap.  We cannot rule out the possibility of environmental conditions where Nap dominates the 

nitrate reduction signal, such as in niches where the microbial community is dominated by 

autotrophic sulfate oxidizing bacteria that possess only Nap (see Wenk et al. 2014; Frey et al. 

2014).  However, the denitrification signal in most environments likely mediated by Nar and 

thus propagates a Δδ18O: Δδ15N of 1 to ambient nitrate. 
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