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At low energies, scattering phase shifts, the difference in phases between the incoming and 

outgoing spherical waves in scattering, for different partial waves follow a similar pattern. The 

phase shift curves, which are a function of the angular momentum quantum number ℓ for different 

scattering energy, obtain resonances after reaching their maxima, and as energy is increased, these 

resonances become smaller and eventually disappear. Using numerical methods involving the use 

of Chebyshev polynomials, we solve the wave equation for a scattering potential to obtain the 

radial equation. From the radial equation we then find the scattering phase shift for a particular 

energy and partial wave. The numerical methods for this project are used through code in 

MATLAB. By analyzing the phase shifts across different partial waves, we seek to find a relation 

between the scattering energy and the shape of the phase shift curves related to the disappearance 

of resonances. 

I. Introduction 

Scattering theory is based off of the concepts of classical scattering. In classical scattering theory, 

a particle incident on a scattering center has an incoming energy 𝐸 and impact parameter 𝑏 (the 

distance between the initial trajectory of the incoming particle and the scattering center), and it has 

an outgoing scattering angle 𝜃. Using classical scattering, 𝜃 can be calculated given 𝐸 and 𝑏. In 
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classical elastic scattering, the cross section 𝜎 represents the area of the scattering center that will 

cause scattering in a collision with the incoming particle. In non-elastic cases and quantum 

scattering theory, the scattering cross section is a measure of probability that scattering will occur 

in a collision between the incoming particle and the scattering center. The cross section in classical 

scattering theory can be calculated by considering that particles incident within an infinitesimal 

patch of cross-sectional area 𝑑𝜎 will scatter into an infinitesimal solid angle 𝑑Ω. The 

proportionality factor 
𝑑𝜎

𝑑Ω
 is called the differential scattering cross section. The total cross section 

is found by taking the integral of the differential scattering cross section over all solid angles: 

 
𝜎 = ∫

𝑑𝜎

𝑑Ω
𝑑Ω 

(1) 

In quantum scattering theory, an incident plane wave is considered instead of an incident particle. 

The plane wave is typically represented by 𝜓(𝑧) = 𝐴𝑒𝑖𝑘𝑧 traveling in the 𝑧 direction. This wave 

interacts with a scattering potential, producing an outgoing spherical wave. The spherical wave is 

calculated by finding solutions to the Schrödinger equation of the general form 

 
𝜓(𝑟, 𝜃) ≈ 𝐴 (𝑒𝑖𝑘𝑧 + 𝑓(𝜃)

𝑒𝑖𝑘𝑟

𝑟
 ) 

(2) 

where 𝑟 is large and 𝑓 is the amplitude of the outgoing spherical wave. The wave number 𝑘 is 

related to the energy of the incident particle 𝐸 by 

 
𝑘 =

√2𝑚𝐸

ℏ
 

(3) 

where ℏ is the reduced Planck constant and 𝑚 is the mass of the particle. Solving for the scattering 

amplitude 𝑓(𝜃) will give the probability of scattering in a given direction 𝜃. This value is related 

to the differential cross section by the equation 
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 𝑑𝜎

𝑑Ω
= |𝑓(𝜃)|2 

(4) 

The scattering amplitude can be calculated using partial wave analysis. The Schrödinger equation 

for a spherically symmetrical potential 𝑉(𝑟) produces the solutions 

 𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌ℓ
𝑚(𝜃, 𝜙) (5) 

where 𝑌ℓ
𝑚 is a spherical harmonic and 𝑢(𝑟) = 𝑟𝑅(𝑟) satisfies the radial equation: 

 
−

ℏ2

2𝑚

𝑑2𝑢

𝑑𝑟2
+ (𝑉(𝑟) +

ℏ2

2𝑚
+

ℓ(ℓ + 1)

𝑟2
) 𝑢 = 𝐸𝑢 

(6) 

At large 𝑟 (𝑘𝑟 ≫ 1), the potential and centrifugal contribution become negligible, so 
𝑑2𝑢

𝑑𝑟2 ≈ −𝑘2𝑢. 

The general solution is 𝑢(𝑟) = 𝐶𝑒𝑖𝑘𝑟 + 𝐷𝑒−𝑖𝑘𝑟. However, since the first term represents an 

outgoing spherical wave, and the second term represents an incoming spherical wave, 𝐷 = 0 for 

the scattered wave. Thus 𝑅(𝑟)~
𝑒𝑖𝑘𝑟

𝑟
. If 𝑟 is slightly smaller than the previous case such that the 

potential is negligible, but the centrifugal term is not, then the radial equation becomes 

 𝑑2𝑢

𝑑𝑟2
−

ℓ(ℓ + 1)

𝑟2
𝑢 = −𝑘2𝑢 

(7) 

and the general solution becomes a combination of spherical Bessel functions 

 𝑢(𝑟) = 𝐴𝑟𝑗ℓ(𝑘𝑟) + 𝐵𝑟𝑛ℓ(𝑘𝑟) (8) 

In order to find linear combinations analogous to the incoming and outgoing spherical wave terms, 

spherical Hankel functions are used instead of spherical Bessel functions: 

 ℎℓ
(1)(𝑥) = 𝑗ℓ(𝑥) + 𝑖𝑛ℓ(𝑥); ℎℓ

(2)(𝑥) = 𝑗ℓ(𝑥) − 𝑖𝑛ℓ(𝑥) (9) 

This makes the exact wave function outside the scattering region 

 
𝜓(𝑟, 𝜃, 𝜙) = 𝐴 (𝑒𝑖𝑘𝑧 + ∑ 𝐶ℓ,𝑚ℎℓ

(1)(𝑘𝑟)𝑌ℓ
𝑚(𝜃, 𝜙)

ℓ,𝑚

) 
(10) 
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where the first term represents the incident plane wave, and the second summation term represents 

the scattered wave. In the case of a spherically symmetric potential, all terms with 𝑚 ≠ 0 go to 

zero. 

 

𝑌ℓ
0(𝜃, 𝜙) = √

2ℓ + 1

4𝜋
𝑃ℓ(cos 𝜃) 

(11) 

where 𝑃ℓ is the ℓth Legendre polynomial. Defining the expansion coefficient in the 𝑚 = 0 case as 

𝐶ℓ,0 = 𝑖ℓ+1𝑘√4𝜋(2ℓ + 1)𝑎ℓ, the wave function becomes 

 
𝜓(𝑟, 𝜃) = 𝐴 (𝑒𝑖𝑘𝑧 + 𝑘 ∑ 𝑖ℓ+1(2ℓ + 1)𝑎ℓℎℓ

(1)(𝑘𝑟)𝑃ℓ(cos 𝜃)

∞

ℓ=0

) 
(12) 

𝑎ℓ is called the ℓth partial wave amplitude. For large 𝑟, the behavior of the Hankel function causes 

the wave function to approach 

 
𝜓(𝑟, 𝜃) ≈ 𝐴 (𝑒𝑖𝑘𝑧 + 𝑓(𝜃)

𝑒𝑖𝑘𝑟

𝑟
 ) 

(13) 

where 

 
𝑓(𝜃) = ∑(2ℓ + 1)𝑎ℓ𝑃ℓ(cos 𝜃)

∞

ℓ=0

 
(14) 

Hence this makes the total cross section 

 
𝜎 = 4𝜋 ∑(2ℓ + 1)|𝑎ℓ|2

∞

ℓ=0

 
(15) 

In order to solve for the partial wave amplitudes, the wave function must be written completely in 

spherical coordinates. The explicit expansion of a plane wave in terms of spherical waves is 

Rayleigh’s formula: 
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𝑒𝑖𝑘𝑧 = ∑ 𝑖ℓ(2ℓ + 1)𝑗ℓ(𝑘𝑟)𝑃ℓ(cos 𝜃)

∞

ℓ=0

 
(16) 

This formula can be used to express the wave function solely in spherical coordinates: 

 
𝜓(𝑟, 𝜃) = 𝐴 ∑ 𝑖ℓ(2ℓ + 1) (𝑗ℓ(𝑘𝑟) + 𝑖𝑘𝑎ℓℎℓ

(1)(𝑘𝑟)) 𝑃ℓ(cos 𝜃)

∞

ℓ=0

 
(17) 

In this case, the incident plane wave has no angular momentum in the 𝑧 direction, but it contains 

all values of the total angular momentum for every partial wave. Each partial wave scatters 

independently with no change in amplitude since angular momentum is conserved by a spherically 

symmetric potential. However, the partial waves scatter with change in phase. In the case of no 

potential, the ℓth partial wave is 

 𝜓0
ℓ = 𝐴𝑖ℓ(2ℓ + 1)𝑗ℓ(𝑘𝑟)𝑃ℓ(cos 𝜃) (18) 

For large 𝑟 (𝑘𝑟 ≫ 1), this becomes 

 
𝜓0

ℓ ≈ 𝐴
(2ℓ + 1)

2𝑖𝑘𝑟
(𝑒𝑖𝑘𝑟 − (−1)ℓ𝑒−𝑖𝑘𝑟)𝑃ℓ(cos 𝜃) 

(19) 

𝑒𝑖𝑘𝑟 represents the outgoing wave, and (−1)ℓ𝑒−𝑖𝑘𝑟 represents the incoming wave. When a 

scattering potential is introduced, the incoming wave is unchanged, but the outgoing wave receives 

a phase shift 𝛿ℓ: 

 
𝜓ℓ ≈ 𝐴

(2ℓ + 1)

2𝑖𝑘𝑟
(𝑒𝑖(𝑘𝑟+2𝛿ℓ) − (−1)ℓ𝑒−𝑖𝑘𝑟)𝑃ℓ(cos 𝜃) 

(20) 

By comparing the asymptotic version of (12): 

 
𝜓ℓ ≈ 𝐴 (

(2ℓ + 1)

2𝑖𝑘𝑟
(𝑒𝑖𝑘𝑟 − (−1)ℓ𝑒−𝑖𝑘𝑟) +

(2ℓ + 1)

𝑟
𝑎ℓ𝑒𝑖𝑘𝑟) 𝑃ℓ(cos 𝜃) 

(21) 

with (20), the partial wave amplitudes can be found in terms of the phase shifts: 

 
𝑎ℓ =

1

2𝑖𝑘
(𝑒2𝑖𝛿ℓ − 1) =

1

𝑘
𝑒𝑖𝛿ℓ sin(𝛿ℓ) 

(22) 



Faezi 6 

It follows from (14) that 

 
𝑓(𝜃) =

1

𝑘
∑(2ℓ + 1)𝑒𝑖𝛿ℓ sin(𝛿ℓ) 𝑃ℓ(cos 𝜃)

∞

ℓ=0

 
(23) 

and (15) that 

 
𝜎 =

4𝜋

𝑘2
∑(2ℓ + 1) sin2(𝛿ℓ)

∞

ℓ=0

 
(24) 

II. Numerical Approach 

The wave equation can be solved numerically for the radial equation using a method which 

involves the use of Chebyshev polynomials. The Chebyshev polynomial of degree 𝑛, 𝑇𝑛(𝑥), has 

𝑛 zeroes in the interval [−1,1] at the points 

 

𝑥𝑘 = cos (
𝜋 (𝑘 −

1
2

)

𝑛
) , 𝑘 = 1,2, … , 𝑛 

(25) 

and has 𝑛 + 1 extrema at the points 

 
𝑥̃𝑘 = cos (

𝜋𝑘

𝑛
) , 𝑘 = 0,1, … , 𝑛 

(26) 

The Chebyshev polynomials are orthogonal in the interval [−1,1] and satisfy discrete 

orthogonality relationships. Thus if 𝑥𝑘 are the 𝑁 zeroes of 𝑇𝑁(𝑥) according to (25), then 

 
∑ 𝑇𝑖(𝑥𝑘)𝑇𝑗(𝑥𝑘)

𝑁

𝑘=1

= 𝛼𝑖𝛿𝑖𝑗  

(27) 

where 𝑖, 𝑗 < 𝑁 and 𝛼𝑖 = {
𝑁

2
, 𝑖 ≠ 0

𝑁, 𝑖 = 0
. Similarly if 𝑥̃𝑘 are the 𝑁 + 1 extrema according to (26), then 

the discrete orthogonality relation is 

 
∑ 𝑇𝑖(𝑥̃𝑘)𝑇𝑗(𝑥̃𝑘)

    𝑁′′

𝑘=0

= 𝛽𝑖𝛿𝑖𝑗  

(28) 
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where 𝑖, 𝑗 < 𝑁 and 𝛽𝑖 = {
𝑁

2
; 𝑖 ≠ 0, 𝑁

𝑁; 𝑖 = 0, 𝑁
. The summation with double primes denotes a sum with both 

the first and last terms halved. A continuous and bounded function 𝑓(𝑥) can be approximated in 

[−1,1] by either 

 

𝑓(𝑥) ≈ ∑ 𝑎𝑗𝑇𝑗(𝑥)

  𝑁−1′

𝑗=0

 

(29) 

or 

 

𝑓(𝑥) ≈ ∑ 𝑏𝑗𝑇𝑗(𝑥)

    𝑁′′

𝑗=0

 

(30) 

where 

 

𝑎𝑗 =
2

𝑁
∑ 𝑓(𝑥𝑘)𝑇𝑗(𝑥𝑘)

𝑁

𝑘=1

; 𝑗 = 0, … , 𝑁 − 1 

(31) 

and 

 

𝑏𝑗 =
2

𝑁
∑ 𝑓(𝑥̃𝑘)𝑇𝑗(𝑥̃𝑘)

    𝑁′′

𝑘=0

; 𝑗 = 0, … , 𝑁 

(32) 

The summation with a single prime denotes a sum with the first term halved. (29) is exact at 𝑥 =

𝑥𝑘 according to (25), and (30) is exact at 𝑥 = 𝑥̃𝑘 according to (26). By expanding (25) and (26), 

𝑓′(𝑥) can be approximated as 

 

𝑓′(𝑥) ≈ ∑ 𝑓(𝑥𝑘)
2

𝑁
∑ 𝑇𝑗(𝑥𝑘)𝑇𝑗

′(𝑥)

  𝑁−1′

𝑗=0

𝑁

𝑘=1

 

(33) 

or 

 

𝑓′(𝑥) ≈ ∑ 𝑓(𝑥̃𝑘)
2

𝑁
∑ 𝑇𝑗(𝑥̃𝑘)𝑇𝑗

′(𝑥)

    𝑁′′

𝑗=0

    𝑁′′

𝑘=0

 

(34) 
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In addition, ∫ 𝑓(𝑡)
𝑥

−1
𝑑𝑡 can be approximated as 

 

∫ 𝑓(𝑡)
𝑥

−1

𝑑𝑡 ≈ ∑ 𝑓(𝑥𝑘)
2

𝑁
∑ 𝑇𝑗(𝑥𝑘) ∫ 𝑇𝑗(𝑡)

𝑥

−1

𝑑𝑡

  𝑁−1′

𝑗=0

𝑁

𝑘=1

 

(35) 

or 

 

∫ 𝑓(𝑡)
𝑥

−1

𝑑𝑡 ≈ ∑ 𝑓(𝑥̃𝑘)
2

𝑁
∑ 𝑇𝑗(𝑥̃𝑘) ∫ 𝑇𝑗(𝑡)

𝑥

−1

𝑑𝑡

    𝑁′′

𝑗=0

    𝑁′′

𝑘=0

 

(36) 

This method can be used to solve linear integral equations, integro-differential equations, and 

ordinary differential equations. By increasing 𝑁, more exact values can be found for the solutions 

of the differential equation, and the numerical approximation will be closer to the exact result. This 

Chebyshev method can be used to solve the wave equation in the case of a scattering potential in 

order to find the radial equation. In the case of scattering in a spherically symmetric potential the 

ℓth radial wavefunction takes the form 

 𝑅ℓ(𝑟) = 𝑒𝑖𝛿ℓ(cos 𝛿ℓ 𝑗ℓ(𝑘𝑟) − sin 𝛿ℓ 𝑦ℓ(𝑘𝑟)) (37) 

The logarithmic derivative of the ℓth radial wavefunction is given by 

 
𝛽ℓ = 𝑘𝑟 (

cos 𝛿ℓ 𝑗ℓ
′(𝑘𝑟) − sin 𝛿ℓ 𝑦ℓ

′(𝑘𝑟)

cos 𝛿ℓ 𝑗ℓ(𝑘𝑟) − sin 𝛿ℓ 𝑦ℓ(𝑘𝑟)
) 

(38) 

and thus the phase shift can be found by the equation 

 
tan 𝛿ℓ =

𝑘𝑟𝑗ℓ
′(𝑘𝑟) − 𝛽ℓ𝑗ℓ(𝑘𝑟)

𝑘𝑟𝑦ℓ
′(𝑘𝑟) − 𝛽ℓ𝑦ℓ(𝑘𝑟)

 
(39) 

Therefore, by obtaining the radial equation using the numerical Chebyshev method, the phase shift 

can be found as well. This is computed using code in MATLAB. However, since tan 𝛿ℓ is 

calculated in order to find 𝛿ℓ, the value of 𝛿ℓ found is always in the interval (−𝜋, 𝜋] and correct 

modulo 𝜋. In order to develop continuous plots of the phase shift values, the code manually 

corrects for continuity by adding or subtracting 𝜋 if it detects a difference of greater than 
𝜋

2
 between 
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two consecutive values. However, some resonances in the phase shifts can be missed if the 

difference between two consecutive values is large enough to seem small modulo 𝜋. These 

resonances can be found and shown on the plots if the step size between two phase shift values is 

decreased. 

III. Physical System 

The specific case examined using the Chebyshev numerical method is the case of an atom of 

Cesium (Cs) as the incoming particle with an atomic mass of 132.90545 u. The scattering potential 

used is an inter-atomic potential with long-range behavior of the type 𝑉(𝑅)~ −
𝐶6

𝑅6. It took the form 

of 

 
𝑉(𝑅) = 𝐶𝑤𝑎𝑙𝑙𝑒

−
𝑅

𝑅𝑤𝑎𝑙𝑙 −
𝐶6

𝑅6 + 𝑅𝑐𝑜𝑟𝑒
6 − 𝐶𝑥𝑒

−
𝑅

𝑅𝑥 
(40) 

with 𝐶𝑤𝑎𝑙𝑙 = 60, 𝑅𝑤𝑎𝑙𝑙 = 1, 𝑅𝑐𝑜𝑟𝑒 = 7, 𝐶6 = 6877, 𝐶𝑥 = 0.08, 𝑅𝑥 = 5. The potential is shown in 

FIG. 1, and the interval is reduced in FIG. 2 to better show the asymptotic behavior of the potential. 

 

FIG. 1. Potential in (40) as a function of 𝑅 



Faezi 10 

 

FIG. 2. Potential in (40) as a function of 𝑅 in a smaller interval 

𝑉(𝑅) is a spherically symmetric potential that vanishes as 𝑅 → ∞, so it matches the case 

previously discussed, and the Chebyshev numerical method is valid in finding the scattering phase 

shifts at different energies and partial waves. 

IV. Results 

Using the MATLAB code with the Chebyshev method, phase shifts were found for different partial 

waves and ultracold energies. In plots of the phase shifts with respect to different partial wave 

values, some resonances can be seen, but others are not seen if the code does not detect a problem 

in the continuity of the curve, as previously discussed. In FIG. 3, one resonance can be seen for 

the phase shift curve for the energy 10−6 a.u. An anomaly can be seen afterwards, which is a 

resonance that was missed by the code’s continuity correction. By reducing the step size between 

the phase shifts, the resonance can be detected by changing the values of the phase shifts to the 

“correct” values but keeping them at the same value modulo 𝜋. The other resonance can be seen 
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FIG. 3. Phase shifts for the potential in (40) for 𝐸 = 10−6 a.u. 

 

FIG. 4. Phase shifts for the potential in (40) for 𝐸 = 10−6 a.u. with an extra resonance shown 

in FIG. 4. The phase shift curves can be plotted for different ultracold energies to show the changes 

in the shape of the curve and the number of resonances. In FIG. 5, it can be seen that the curves 

ℓ 

𝛿 ℓ
 

ℓ 

𝛿 ℓ
 



Faezi 12 

obtain resonances after reaching their maxima, and as energy is increased, these resonances 

become smaller and broaden out, becoming an imperceptible part of the curve. In order to calculate 

 

FIG. 5. Phase shifts for the potential in (40) for 91 energy values from 10−6 a.u. to 10−5 a.u. with an interval ∆𝐸 =

10−7, along with 2nd-degree polynomial approximations for the 5 maximum points of the phase shift curves 

the broadness and shape of the phase shift curves, 2nd-degree polynomials are approximated for 

the 5 maximum points of each curve. The 2nd-degree term 𝑎 for each polynomial shows the 

broadness of each corresponding phase shift curve. The broadness of the curve seems to oscillate, 

as seen by the pattern of the polynomial approximations in FIG. 5. This pattern can be seen clearly 

in FIG. 6 as well. In order to see if the shape of the curve corresponds to the disappearance of 

resonances, phase shift curves corresponding to energy intervals representing one period of the 

“oscillation” of 𝑎 were plotted, as shown in FIG. 7 and FIG. 8, and it was found that each period 

corresponds to one resonance in the phase shift curve broadening out, becoming imperceptible, 

and another broadening out to become visible and detected by the continuity correction of the code. 

Thus the shape of the phase shift curve corresponds directly to the disappearance of resonances. 

ℓ 

𝛿 ℓ
 

𝐸 = 10−6 a.u. 

𝐸 = 10−5 a.u. 
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FIG. 6. Positive values of the 2nd-degree coefficient 𝑎 of the approximated polynomials for the phase shift curves 

from 𝐸 = 10−6 a.u. to 𝐸 = 10−5 a.u. 

 

FIG. 7. Phase shifts for the potential in (40) for energy values from 𝐸 = 4.7 ∗ 10−6 a.u. to 𝐸 = 6.2 ∗ 10−6 a.u. with 

an interval ∆𝐸 = 7.5 ∗ 10−8, the energy range for one period of the oscillation of 𝑎 

𝐸 (in a.u.) 

−
𝑎

 

ℓ 

𝛿 ℓ
 

𝐸 = 4.7 ∗ 10−6 a.u. 

𝐸 = 6.2 ∗ 10−6 a.u. 
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FIG. 8. Phase shifts for the potential in (40) for energy values from 𝐸 = 6.2 ∗ 10−6 a.u. to 𝐸 = 7.9 ∗ 10−6 a.u. with 

an interval ∆𝐸 = 8.5 ∗ 10−8, the energy range for one period of the oscillation of 𝑎 

 

FIG. 9. Cross sections for the potential (40) for energy values from 𝐸 = 10−12 a.u. to 𝐸 = 10−5 a.u. 

ℓ 

𝛿 ℓ
 

𝐸 (in a.u.) 

𝜎
ℓ

 

𝐸 = 6.2 ∗ 10−6 a.u. 

𝐸 = 7.9 ∗ 10−6 a.u. 
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The scattering cross section 𝜎ℓ was approximated for a large range of ultracold energies using (24). 

The terms in the sum approach zero since the values of 𝛿ℓ approach 0 modulo 𝜋 for large ℓ. The 

cross section was approximated by summing the terms up to ℓ = 2.5 ∗ ℓ𝑚𝑎𝑥 , where ℓ𝑚𝑎𝑥 is the 

value of ℓ where 𝛿ℓ attains its maximum. As shown in FIG. 9, 𝜎ℓ attains its maximum at 

approximately the energy of 1.3 ∗ 10−9 a.u. 

V. Conclusions 

The Chebyshev numerical method has been shown to reliably approximate scattering phase shifts 

and cross sections at ultracold energies. By quantifying the broadness of each phase shift curve 

with the 2nd-degree term of a 2nd-degree polynomial approximation of the curve, it can be seen 

that this measurement of broadness oscillates as it corresponds to the disappearance of resonances. 

Each period of the oscillation corresponds to the reduction and disappearance of one resonance in 

the phase shift curve. Further investigation could find how the values of the scattering energy 

correspond to the oscillation, as there appears to be a non-linear correlation. 
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