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Abstract 

Major Depressive Disorder (MDD) is characterized by symptoms such as cognitive dysfunctions, 

inflammatory changes, and motivational symptoms such as amotivation, fatigue, and anergia. 

While depressed people are commonly treated by traditional antidepressants such as serotonin 

reuptake inhibitors (SSRIs), previous studies have reported that SSRI medications do not treat 

fatigue and anergia symptoms well, and in some cases, can even worsen those symptoms. 

Subjects treated with dopamine (DA) uptake inhibitors, on the other hand, have been less likely 

to report symptoms of anergia and fatigue compared to those treated with SSRIs. Common DA 

uptake inhibitors such as methylphenidate and amphetamines, however, have undesirable side 

effects, so development of atypical DA uptake inhibitors to combat these side effects is needed. 

Several highly selective atypical DA uptake inhibitors have recently been developed, which are 

currently being assessed for their effects on effort-based decision making in rodents to model 

motivational symptoms seen in humans with MDD. This project is assessing a novel atypical 

DAT inhibitor, CE-158, for its effects on extracellular DA levels in the nucleus accumbens. 

Microdialysis and high-performance liquid chromatography with electrochemical detection is 

being used to measure extracellular DA changes at various time points after administration. 

Elevated nucleus accumbens dopamine has been linked to increases in effort-based decision 

making and other aspects of motivation, so findings from this study may reveal whether CE-158 

could ultimately be used as a suitable treatment option for effort-related motivational dysfunction 

in humans suffering from MDD. Through this study it was determined that injections of CE-158 

significantly increased extracellular DA levels in the nucleus accumbens.  

Keywords: dopamine, depression, nucleus accumbens, microdialysis, fatigue   
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Introduction 

Individuals diagnosed with Major Depressive Disorder (MDD) suffer from a range of 

symptoms, including cognitive dysfunctions, inflammatory changes, and motivational symptoms. 

The motivational symptoms often reported in people with MDD are fatigue, anergia, and 

psychomotor slowing. These conditions of fatigue and anergia are correlated with the general 

severity of symptoms seen in patients with depression (Stahl, 2002; Gullion & Rush, 1998). 

Additionally, these symptoms can have long-term functional limitations and debilitating effects 

on individuals (Stahl, 2002; Demyttenaere et al., 2005; Salamone et al, 2006; Friedman el al., 

2007; Treadway & Zald, 2011; Fava et al., 2014; Rothschild et al., 2014; Chong et al., 2015; 

Salamone et al., 2016a,b,c; Salamone et al., 2017). Fatigue and psychomotor deficits are primary 

symptoms in depression, but are very difficult to treat. Studies have shown that about half of 

patients being treated for depression do not report sufficient symptom improvement and 

commonly experience psychomotor deficits as a residual symptom (Tylee et al., 1999).  

 The most commonly used antidepressant medications are serotonin selective reuptake 

inhibitors (SSRIs). However, research shows that SSRIs do not treat the primary symptoms of 

anergia and fatigue well, and in some cases may even worsen these conditions (Katz et al., 2004; 

Nutt et al., 2007; Padala et al., 2012; Stenman & Lilja, 2013; Rothschild et al., 2014; Fava et al., 

2014; Yohn et al., 2016a,b). Frequently patients treated with SSRIs suffer from residual 

symptoms, including sleepiness, fatigue, and anergia, even if symptoms associated with mood 

and anxiety improved (Targum & Fava, 2011; Fava et al. 2014; Cooper et al., 2014; Rothschild 

et al., 2014; Ferguson et al., 2014). Motivational symptoms can be extremely detrimental to daily 

life, and can interfere with many basic functions such as physical activity and effort expenditure. 
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Thus, recent studies have been investigating other possible treatment options to improve the 

motivational dysfunction seen in depression and related disorders.  

Considerable evidence has pointed towards significant involvement of the central 

dopamine (DA) systems and striatal areas of the brain in motivational functions related to 

depression (Stahl, 2002; Salamone et al., 2006; Treadway & Zald, 2011). There has been a 

correlation found between striatal DA neurotransmission and willingness to exert effort for large 

rewards, even when reward probability is low (Treadway et al., 2012). Additionally, some 

studies have shown that stimulating this DA neurotransmission can improve motivational 

symptoms in humans (Stotz et al., 1999; Papakostas et al., 2006). Importantly, when compared to 

SSRIs, depressed patients who were treated with bupropion, an antidepressant drug that acts on 

DA and norepinephrine (NE), were less likely to report suffering residual symptoms of 

sleepiness and fatigue (Cooper et al., 2014). Moreover, drugs that inhibit DA transporters (DAT), 

including d-amphetamine and methylphenidate, improve motivational function (Stotz et al., 

1999). While these psychomotor stimulants that block DAT have benefits to treating 

motivational symptoms, they also have undesirable effects, including abuse liability and 

induction of psychotic symptoms (Todtenkopf & Carlezon, 2016; Ostlund et al., 2014; Dong et 

al., 2017). Due to these effects, studies have been focused on developing drugs that are both 

highly selective towards DAT and contain atypical neurochemical characteristics to attenuate 

undesirable side effects.  

 There has been recent interest in the compound known as modafinil, in terms of its ability 

to act as a DAT inhibitor with atypical characteristics. Modafinil is a nonamphetamine nootropic, 

or cognitive enhancing, drug that mimics that action of central nervous system catecholamines 

(Rang et al., 2016; Katzung & Trevor, 2018; Warner et al., 2018; Dinis-Oliviera, 2014; Dinis-
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Oliviera, 2015; Dinis-Oliviera, 2017; Sousa & Dinis-Oliveira, 2020). Figure 1 depicts the 

chemical structures of the R- and S-enantiomers of modafinil. Modafinil has effects on DA levels 

within various areas of the brain by binding to DAT, blocking DA reuptake, and causing an 

increase in DA (Mignot et al., 1994; Ballon & Feifel, 2006; Solinas et al., 2006; Zolkowska et 

al., 2009; Dell’Osso et al., 2014, Mereu et al., 2017; Sousa & Dinis-Oliveira, 2020). One unique 

property about modafinil compared to other psychostimulants, such as cocaine, is its 

pharmacokinetic profile. When binding to DAT, modafinil preferentially binds to a conformation 

similar to that of an atypical DAT inhibitor, and different from the cocaine-bound conformation 

(Loland et al., 2012; Reith et al., 2015; Cao et al., 2016; Sousa & Dinis-Oliveira, 2020). 

Interestingly when compared with other psychostimulants that also increase DA transmission, 

modafinil stimulates distinct brain areas, specifically in the striatum and cortex, inducing 

neurological activation more directed towards wakefulness, with reports suggesting contrasting 

epigenetics and transcriptional consequences leading to the varying clinical effects (Ballon & 

Feifel, 2006; Ishizuka et al., 2012; Gonzalez et al., 2019). While modafinil is typically used as a 

wakefulness agent for the treatment of narcolepsy and other disorders, modafinil also has been 

Figure 1. Chemical structure of R-Modafinil (A) and S-Modafinil (B).  

B A 
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employed in psychiatry to help improve symptoms in patients with MDD and bipolar depression 

(Dell’Osso et al., 2014; Perugi et al., 2017; Barateau & Dauvilliers, 2019; Greenblatt & Adams, 

2019; Sousa & Dinis-Oliveira, 2020). Studies are suggesting that modafinil may be a beneficial 

treatment for depressed individuals suffering from cognitive impairments, specifically sleepiness 

and fatigue (Perugi et al., 2017; Dell’Osso & Ketter, 2013; Dell’Osso et al., 2013a,b). 

Furthermore, Teodorini et al. (2020) suggests that patients diagnosed with a psychiatric disorder 

reported higher perceived benefits of modafinil when used more frequently, while there was no 

association between increased frequency of use and perceived risks. An additional significant 

benefit to modafinil includes its seemingly low abuse potential in comparison to other 

catecholaminergic agents, like amphetamines (McGregor et al., 2008; Schmitt & Reith, 2011; 

Dackis et al., 2012; Loland et al., 2012; Sangroula et al., 2017; Sousa & Dinis-Oliveira, 2020; 

Teodorini et al., 2020).  

Investigation of modafinil analogs is being done to discover a distinct class of drugs that 

have pharmacological profiles similar to modafinil, that show possible benefits in terms of their 

ability to treat motivational symptoms, like fatigue. In order to serve as a promising candidate for 

clinical use, an important component of the analogs being tested is their ability to significantly 

inhibit DA-reuptake with high specificity, without causing an efflux of DA, as seen in 

amphetamines (Kalaba et al., 2017; Sousa & Dinis-Oliveira, 2020). A recent study showed 

analogs with their amide group replaced with 2-methypyrimidine-4-ol, 2-thiophenyl, and 3-

thiophenyl groups had higher DAT inhibition activity than modafinil (Kalaba et al., 2017). For 

example, a recently synthesized analog of modafinil, known as (S)-CE-123, has shown to be 

highly selective for DAT inhibition. (S)-CE-123 has shown a 100-fold selectivity for DAT 

relative to the NE transporter (NET), while modafinil only has a 25-fold selectivity for DAT 
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relative to NET (Kalaba et al., 2017; Kristofova et al., 2018). Results from a recent study 

conducted by Rotolo et al. (2019) determined that systemic injections of (S)-CE-123 in rats 

produced a significant increase in extracellular DA in the nucleus accumbens compared to 

baseline.  

The effect of DA on motivational dysfunction can be modeled through tasks that measure 

effort-related choice behavior in animals (Salamone et al., 2006; Salamone et al., 2016a,b,c; 

Salamone et al., 2018). These tasks offer animals a choice between high-effort instrumental 

actions leading to highly valued reinforcers versus low-effort options leading to low reward 

options. Effort-related choice impairments are induced through injections of the vesicular 

monoamine transporter type-2 inhibitor tetrabenazine (TBZ), seen as a reduction in high effort 

behavior (lever pressing) and an increase in low effort (chow intake) behavior in the fixed ratio 5 

(FR5)/chow feeding choice task (Nunes et al., 2013; Randall et al., 2014; Yohn et al., 2015a,b). 

The administration of (S)-CE-123 showed a significant, but partial reversal of the effects of TBZ 

(Rotolo et al., 2019), signifying a potential to improve motivational function in depressed 

humans. Several other highly selective atypical DA uptake inhibitors are also being assessed for 

their effects on effort-based decision making in rodents to model motivational symptoms seen in 

humans with MDD (Rotolo et al., 2020, manuscript in prep). It is important to continue 

investigations into this family of compounds to determine which is the most effective at 

reversing effort-related impairments and increasing extracellular DA without an abuse potential. 

In this present study, a recently synthesized novel atypical DAT inhibitor modafinil 

analog, CE-158, is being investigated for its ability to increase extracellular DA levels within the 

nucleus accumbens in rats. This experiment will use the process of microdialysis and high-

performance liquid chromatography with electrochemical detection to determine the changes in 
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extracellular DA levels at various time points after systemic administration of CE-158. These 

findings, in conjunction with behavioral testing being conducted in parallel, will determine 

whether CE-158 could be used as a suitable treatment option for effort-related motivational 

dysfunction in humans suffering from MDD.  

Methods 

Subjects 

 Adult male, drug-naïve, Sprague Dawley rats (n = 9, weight 279-299 g upon arrival) were 

housed in a colony that was kept at 23oC and 12-hour light/dark cycles (lights on at 07:00 hours). 

The rats were housed in pairs presurgical procedures, and individually housed postsurgical 

procedures. Rats were provided standard laboratory chow and water ad libitum in their home 

cages. Animal protocols were approved by the University of Connecticut Institutional Animal 

Care and Use Committee, and were in accordance with National Institutes of Health guidelines.  

Pharmacological agents and selection of doses 

CE-158 was obtained from the Lubec Laboratory (University of Vienna, Austria) and 

dissolved in dimethyl sulfoxide (DMSO), Tween 80, and 0.9% saline. The DMSO/Tween 

80/saline solution was administered as the vehicle control. The dose of CE-158 used in the 

microdialysis experiment was selected based on extensive pilot studies and information about its 

relative affinity for DAT. Recent behavioral pharmacology experiments revealed that a dose of 

8.0 mg/kg CE-158 significantly reversed the effort-related motivational impairments caused by 

1.0 mg/kg tetrabenazine on a fixed ratio 5 feeding choice task, and increased lever pressing and 

decreased chow consumption on a progressive ratio feeding choice task when administered alone 

(Rotolo et al. 2020, manuscript in prep). 
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In Vivo Microdialysis 

 Surgery. Adult male, drug-naïve, Sprague Dawley rats were anesthetized with 

intraperitoneal (IP) injections of 100 mg/mL ketamine and 10.0 mg/mL xylazine. Rats were 

placed in a stereotaxic apparatus (incisor bar 5.0 mm above interaural line), and a guide cannula 

(Bioanalytical Systems) was unilaterally implanted. In accordance with the rat brain atlas of 

Paxinos and Watson (1998), the tip of the guide cannula was implanted 2.0 mm dorsal to the 

accumbens core (anterior/posterior: +2.8 mm, medial/lateral ±1.8 mm, dorsal/ventral: -6.8 mm 

from bregma). The rats were counterbalanced by four implanted with the guide cannula on the 

left and five implanted on the right. The guide cannulae were secured to the skulls with three 

stainless steel screws and cement. A stainless-steel stylet was also inserted through the guide 

cannula to insure integrity. Following surgery, rats were individually housed and allowed a 7-day 

postsurgical recovery period.  

 Microdialysis and HPLC. The day before the samples were collected, the cannula 

implanted rats were habituated in Plexiglass chambers for 8 hours. On the sampling day, dialysis 

probes (Bioanalytical Systems; 2.0 mm active surface) that were connected to infusion pumps 

were inserted through the cannulas. An artificial cerebrospinal fluid (aCSF; 147.2 mm NaCl, 2.4 

mm CaCl2, 4.0 mm KCl) was pumped through the system at a rate of 2.0 μL/min by a syringe 

pump, and samples collected every 30 minutes. The samples were collected in microcentrifuge 

tubes that contained 2.0 μL of ascorbic acid and sodium metabisulfite to prevent oxidation of 

DA. Samples were collected starting 1 hour after the initial probe insertion. Up to 7 samples 

were used to establish a stable DA level. The last three of those baseline samples were used as 

the statistical baseline. The additional samples were collected after rats received an IP injection 

of either vehicle or 8.0 mg/kg CE-158. Samples were either frozen and analyzed the following 
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day, or immediately analyzed for DA content using reverse-phase high performance liquid 

chromatography with electrochemical detection. The electrochemical parameters were: channel 1 

= –100 mV, channel 2 = +200 mV, and guard cell = +350 mV. The mobile phase contained 27.5 

g sodium phosphate monobasic, 7.0% methanol, 750 μL of 0.1 m EDTA, and 2200 μL of 0.4 m 

sodium octyl sulfate dissolved in deionized ultrapure H2O with a final pH of 4.5 per liter. The 

flow rate was 1.0 mL/min. After sampling, the probe was removed and placement was verified 

through histological analysis.  

 Histology. After completion of microdialysis experiments, each rat was anesthetized with 

CO2, perfused intracardially with physiological saline, and then with a 3.7% formaldehyde 

solution. The brains of the rats were removed and stored in formaldehyde. A vibratome was used 

to slice 60.0 μm sections that were then mounted on glass microscope slides. Microscopic 

observations of the cresyl violet stained slides were performed to verify correct placement of the 

probe. Any rat with an improper placement or significant damage to the injection site was 

excluded from the analysis. 

Statistical Analysis 

Changes in extracellular DA levels were calculated as the percent change from baseline, 

with the mean of the three samples immediately preceding the drug injections serving as the 

100% baseline level. A 2 × 7 factorial ANOVA with the treatment (drug vs. vehicle) factor being 

between groups, and the sample factor (samples collected after drug injection) being repeated 

measures, was used to test for post-injection differences in extracellular levels of DA. The raw 

DA levels of the baseline samples were analyzed using t test to verify that the baseline DA levels 

were not different between conditions. Nonorthogonal planned comparisons were performed 
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using the error term from the between-subjects analysis to assess differences between the two 

treatments at each particular sample.  

Results 

Extracellular DA levels in the nucleus accumbens were significantly increased after 

administration of CE-158, as seen in Figure 2. Factorial ANOVA revealed that there was a 

significant overall difference between treatment groups (vehicle control vs. CE-158) across the 

seven samples [F(1,7)=703.162, p<0.001]. Additionally, the factorial ANOVA with repeated 

measures on the sample factor revealed a significant overall difference across samples 

[F(6,42)=3.339, p<0.01], and a significant sample x treatment interaction [F(6,42)=3.011, 

p<0.05]. There also was a significant quadratic trend for the sample x treatment interaction 

Figure 2. Effect of vehicle or CE-158 on extracellular 

DA levels in the nucleus accumbens. Mean (± SEM) 

extracellular DA (expressed percent baseline) 

measured by microdialysis in 30-minute intervals. 

Three baseline (BL) samples collected before injection, 

and seven samples (S1-7) collected post injection of 

vehicle or 8.0 mg/kg CE-158. **Significant difference 

from vehicle at S2, p < 0.01. *Significant difference 

from vehicle at S3, p < 0.05. 

Figure 3. Histology slide (left) 

displaying the microdialysis probe 

placement within the nucleus accumbens 

in comparison to the atlas drawing 

(right) from Paxinos and Watson (1998).  
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[F(1,7)=912.422, p<0.01]. Nonorthogonal planned comparisons was used to assess the difference 

between the vehicle and CE-158 treatments. There revealed to be a significant difference at 

sample 2 (S2) [F(1,7)=14.376, p<0.01] and sample 3 (S3) [F(1,7)=10.509, p<0.05].  Figure 3 

depicts the histology slide and atlas drawing of a representative microdialysis probe placement in 

the nucleus accumbens core. 

Discussion 

 This experiment assessed the effects of the novel atypical DAT inhibitor CE-158 on 

extracellular DA levels in the nucleus accumbens. These studies were undertaken to provide a 

neurochemical profile of this experimental drug. Injections of CE-158 resulted in a significant 

increase in the extracellular DA in the nucleus accumbens as measured by microdialysis. In 

comparison to the vehicle injection, the significant increases occurred in sample 2 collected 30-

60 minutes after the injection of CE-158, as well as in the 60-90-minute post-injection sample 3 

(Figure 2). Specifically, the largest difference between the CE-158 treatment group and the 

vehicle group was detected at sample 2. Additionally, the treatment group by sample interaction 

revealed an overall quadratic trend in the sample data. Through analysis of this relationship 

between the drug treatment group and vehicle group, it can be determined that it is the effects of 

the drug CE-158 that induces a peak in extracellular DA over a certain time span before 

returning back to baseline DA levels. These results expand on the information about the 

pharmacological profile and characteristics of CE-158. The importance of the increase of DA 

within the nucleus accumbens in the present study is that previous work has discovered this area 

of the striatal complex that is most critical for regulating effort-based choice, which is a 

behavioral model that is being used to study human motivational dysfunction (Salamone et al., 

2006; Salamone et al., 2016a,b,c; Salamone et al., 2018). 
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 Behavioral experiments on the effects of CE-158 were conducted in conjunction with the 

current microdialysis study to provide meaningful insight into the presented results. One of the 

experiments performed by Rotolo et al. (2020, manuscript in prep) was designed to determine the 

ability of CE-158 to reverse the effort-related effects of TBZ by measuring effort-based choice in 

an animal model. That experiment trained rats on a FR5/chow feeding choice task that when 

treated with TBZ shifted the rodents’ behaviors from the high-effort option of lever pressing to 

the low-effort option of chow intake (Rotolo et al., 2020, manuscript in prep), which is consistent 

with previous studies in modeling motivational symptoms in animal models (Nunes et al., 2013; 

Randall et al., 2014; Yohn et al., 2015a; Yohn et al., 2016b,c). It was then determined that the 

co-administration of TBZ with 8.0 mg/kg CE-158 produced a significant reversal of the effect of 

TBZ, represented by the increased lever pressing and decreased chow intake (Rotolo et al., 2020, 

manuscript in prep).  

 In an additional experiment, CE-158 was administered to rats trained on the progressive 

ratio (PROG)/chow feeding choice task in the absence of TBZ in order to assess the effects of 

CE-158 on the performance of effort-based choice without any pharmacologically induced 

impairment (Rotolo et al., 2020, manuscript in prep). The PROG schedule provides a stringent 

work requirement, because the number of lever presses required for receiving reinforcement 

gradually increases throughout the session. Through the use of this task, the ability of drugs to 

enhance the selection of high-effort PROG lever pressing is assessed (Randall et al., 2012; 

Randall et al., 2015). It was determined that treatment with CE-158 at a 4.0 mg/kg dose and an 

8.0 mg/kg dose significantly increased lever presses, as well as significantly decreasing chow 

intake compared to the vehicle (Rotolo et al., 2020, manuscript in prep). In comparison, the NET 

inhibitors desipramine and atomoxetine, and the SERT inhibitor fluoxetine do not increase 
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PROG lever pressing (Yohn et al., 2016d), while all the following DAT inhibitors increase 

selection of PROG responding: bupropion, lisdexamfetamine, PRX-14040, MRZ-9547, and 

GBR12909 (Sommer et al., 2014; Randall et al., 2015; Yohn et al., 2016b,c,d). Through 

evaluation of these additional studies, it can be determined that an effective dose of CE-158 is 

8.0 mg/kg, as shown in both the TBZ reversal and PROG/chow feeding choice studies (Rotolo et 

al., 2020, manuscript in prep). The results of these experiments initiated the investigation of 8.0 

mg/kg CE-158 in the current microdialysis study (Rotolo et al., 2020, manuscript in prep).  

 The current study determined that 8.0 mg/kg CE-158 also has the ability to significantly 

increase the extracellular DA in the nucleus accumbens. This increase in DA in the present 

experiment was well aligned with the time course of the CE-158 in the behavioral experiments. 

In those experiments, the drug was injected 30 minutes prior to run time, thus showing the 

behavioral TBZ reversal effects during the same 30-60-minute time span as the extracellular DA 

peak seen in the microdialysis (Rotolo et al., 2020, manuscript in prep). The relationship between 

the increased extracellular DA and the behavioral studies illustrates that this novel atypical DAT 

inhibitor modafinil analog has the potential to be a suitable treatment option for motivational 

dysfunction. Previous studies have shown evidence of some DAT inhibitors having pro-

motivational effects in animal models (Nunes et al., 2013; Randall et al., 2015; Sommer et al., 

2014; Yohn et al., 2016a,b,c,d). However, there is a large variety of drugs with varying 

characteristics that fall into this DAT inhibitor category, including cocaine and d-amphetamine. 

With this heterogeneity among the DAT inhibitor drug class comes limits on which are suitable 

treatment options for motivational dysfunction. A main concern is that most classical DAT 

inhibitors, for example cocaine, have a high abuse liability (Todtenkopf & Carlezon, 2006; 

Ostlund et al., 2014; Dong et al., 2017). Drugs with high abuse liability have limited therapeutic 
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utility in psychiatry for treating motivational dysfunction, however not all DAT inhibitors have 

the same pharmacological profile and abuse liability. Recently, there has been investigation into 

atypical DAT inhibitors, that differ from cocaine, through development of drugs that bind to 

alternative functional configurations of the DAT.  

 CE-158 is a modafinil analog that binds to one of the atypical configurations of the DAT 

(Schmitt & Reith, 2011; Cao et al., 2016). The interest in the development of a modafinil analog 

comes from its beneficial pharmacological profile. Modafinil is a DAT inhibitor that increases 

extracellular DA over a long period of time (Mereu et al., 2017), while also having a relatively 

low abuse liability (Mereu et al., 2013; Müller et al., 2013). In regards to its effects on 

motivational dysfunction, there has been evidence that modafinil has pro-motivational effects; 

this drug has been seen to improve fatigue symptoms in patients suffering from depression (Lam 

et al., 2007). Additionally, modafinil has shown to reverse the TBZ induced low-effort bias in 

rats (Salamone et al., 2016a; Yohn et al., 2016c). Since CE-158 is an analog of modafinil, there 

is the possibility that this drug will maintain similar beneficial characteristics, or even to a better 

capacity. 

 Results from a recent study on the effects of (S)-CE-123 were used as a foundation for 

the current study, as each compound is being investigated for the potential to serve as a suitable 

DA uptake inhibitor treatment for motivational dysfunction (Rotolo et al., 2019). (S)-CE-123 

provides a comparison of modafinil analogs for the current study on CE-158 to be used for 

further development of atypical DAT inhibitors. In the present study, injection of CE-158 

exhibited a significant increase of extracellular DA in the nucleus accumbens from baseline of 

approximately 145% at sample 2 (30-60 minutes post-injection) and 135% at sample 3 (60-90 

minutes post-injection), followed by insignificant variance between the treatment group and 
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vehicle for the remaining samples (Figure 2). (S)-CE-123, however, showed a significant 

increase of extracellular DA from baseline of approximately 190% at sample 2 (20-40 minutes 

post-injection), 220% at sample 3 (40-60 minutes post-injection), and then hovers near a 180% 

significant increase from baseline for samples 4-9 (60-180 minutes post-injection) (Rotolo et al., 

2019). An initial comparison would reveal that (S)-CE-123 shows a larger and more prolonged 

significant increase in extracellular DA than CE-158. A similarity, though, between the two 

drugs is that both CE-158 and (S)-CE-123 experience maximum DA levels at the 30-60-minute 

post injection time span. Something to consider, however, is the effective dose determined for 

(S)-CE-123 was 24.0 mg/kg (Rotolo et al., 2019), while CE-158 has a much lower effective dose 

of 8.0 mg/kg. Although (S)-CE-123 had a larger effective dose, CE-158 actually reverses the 

effects of TBZ in the behavioral experiments to much greater magnitude. (S)-CE-123 showed a 

partial reversal of TBZ-induced changes in performance with an approximate 45% restoration of 

responding in lever presses (Rotolo et al., 2019), while CE-158 had an approximate 80% 

restoration of response (Rotolo et al., 2020, manuscript in prep). This indicates that CE-158 has a 

higher efficacy for reversing the effects of TBZ compared to (S)-CE-123.  While the 

microdialysis may not be the same for these two modafinil analogs, the combination of the 

behavioral and neurochemical results suggests the overall greater potency of CE-158 than (S)-

CE-123. The relative affinity for DAT of CE-158 will need to be investigated further because 

affinity is potentially related to these differences in potency. Drugs, including d-amphetamine, 

methylphenidate, PRX-14040, and GBR12909, that have shown a high potency for reversing 

TBZ induced effects, have also had a high affinity for DAT (Salamone et al., 2016a; Yohn et al., 

2016a,b,c). While in comparison, relatively low affinity to DAT drugs, such as bupropion, 
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modafinil, and (S)-CE-123, have shown a lower magnitude of reversal of the effects of TBZ 

(Nunes et al., 2013; Salamone et al., 2017; Rotolo et al., 2019). 

Conclusion 

 Additional studies should further develop and examine atypical DAT inhibitors in order 

to investigate the neurochemical characteristics from a larger group of these compounds. Future 

studies should compare DAT affinity, selectivity and binding locus, dynamics of effects on 

extracellular DA, and effort-related behavioral effects of these atypical DAT inhibitors. It is 

essential for further studies to also explore the abuse liability for modafinil analogs such as CE-

158, as well as other atypical DAT blockers, because although classic DAT inhibitors have 

shown the possibility to improve motivational function in depressed patients (Stotz et al., 1999), 

many, like amphetamine, have a high abuse liability. The recent interest in atypical DAT 

inhibitors is critical due to these drugs showing signs of improving motivational function in 

depressed people (Lam et al., 2007), but with much lower abuse liability.  Through the present 

study discovering the effects CE-158 has on the extracellular DA in the nucleus accumbens, and 

recent developments on its effort-related behavior effects, it is reasonable to suggest similar 

novel modafinil analogs may ultimately be used as a suitable treatment option for effort-related 

motivational dysfunction in humans suffering from MDD.  
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