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Abstract 

 

Inteins are molecular parasites that have been identified in unicellular organisms from the 

three domains of life. The intein self-excises following translation of the host gene, and 

therefore incurs a fitness cost for its carrier. The symbiotic state of the intein to its host is 

dependent on the presence or absence of a homing endonuclease domain, which 

facilitates horizontal transfer of the molecule. Identification of this domain provides 

information on the evolutionary history of the intein, as well as patterns of horizontal 

gene transfer in microbial communities. I have therefore developed Hidden Markov 

Models (HMMs) to identify homing endonuclease domains in biological sequence data. 

Following validation, the HMMs were used to assign symbiotic states to inteins found in 

the haloarchaea. This search method expands upon previous approaches to characterizing 

inteins, and provides molecular evidence for the presence of homing endonuclease 

domains. I have also created an agent-based model for the competition between intein 

states in a simulated microbial population. The model incorporates spatial interactions, 

measured efficiencies of gene transfer, and environmental perturbations to determine the 

conditions under which inteins spread. These simulations determined that inteins actively 

spread in a population that is in stationary growth phase, while carriers are outcompeted 

during exponential phases of growth. My computational analysis provides a new method 

for assessing the symbiotic state of inteins, as well as a platform for exploring the life 

cycle of inteins under a variety of environmental scenarios. 
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Introduction 

 

Inteins are parasitic genetic elements that reside within the open reading frames of other 

genes. Found in unicellular organisms from all three biological domains, inteins are 

excised after the translation of their protein hosts (known as exteins), whose function is 

restored after removal of the intein (Perler 2002; Gogarten et al. 2002). Inteins are made 

up of splicing and homing endonuclease (HEN) domains. The splicing domains, located 

at both the N- and C-terminal ends of the sequence, carry out the protein splicing activity 

of the intein. Their catalytic activity excises the intein from the translated amino acid 

sequence. Following excision, the splicing domains ligate the extein, which folds to yield 

the functional protein product of the gene, while the intein exists as a freestanding 

molecule (Perler 1998). The intein HEN domain functions as a homing endonuclease, and 

catalyzes strand breaks in DNA at recognition sites 12 to 40 base pairs long (Belfort & 

Roberts 1997). HENs act as highly specific endonucleases due to the extended length of 

the recognition site. HENs vary in the strand breaks they catalyze (single-strand “nicks” 

versus double-strand breaks, nucleotide overhangs, etc.), as well as in their taxonomic 

distribution (Belfort & Perlman 1995). The HEN domain facilitates intein homing by 

creating strand breaks in un-invaded recognition sites (Duan et al. 1997). Inteins that 

insert at a given extein recognition site constitute an intein allele. A number of structural 

families of HENs have been identified, and are characterized by their conserved motifs. 

These include the GIY-YIG, HNH, and His-Cys, as well as the most widely distributed 

LAGLIDADG type, named for two of its four motifs that are involved in DNA binding 

(Duan et al. 1997; Perler 1998). 
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Inteins show a preference for recognition sites in protein hosts with key roles in DNA 

replication, repair, homeostasis, and other integral cellular functions (Novikova et al. 

2015). Additionally, inteins are located in the most conserved regions of their host 

proteins, often in domains with nucleotide or DNA binding functionality (Swithers et al. 

2009; Novikova et al. 2015). The products of these genes typically cannot accommodate 

mutations without deleterious effect on the organism, especially at such highly conserved 

sites; there is little ability, then, for the insertion site of the intein to be modified so as to 

render the gene “immune” to invasion. HENs are generally tolerant of synonymous 

substitutions, and rarely non-synonymous substitutions, in their recognition sites, 

allowing homing to proceed despite evolutionary attempts by the host protein to “evade” 

cleavage (Barzel et al. 2011b). Furthermore, deletion of the intein must be precise, as 

disruption of the host protein will interrupt key cellular processes and kill the organism 

(Swithers et al. 2009). The slow evolution of host proteins enhances the survival of 

inteins, increasing the likelihood that target sites in intein-free organisms are similar, 

even between distantly related organisms. 

 

Whereas the extein sequence is typically under strongly purifying selective pressure, a 

much higher frequency of substitution is observed for the intein sequence (Soucy et al. 

2014). Within the intein sequence, a higher rate of substitution is observed in the HEN 

domain than in the splicing domains; the activity of the splicing domains is required to 

preserve the function of the host protein from which the intein is excised, which itself is 

often integral to cell survival (Novikova et al. 2015). Loss of the activity of the HEN 
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domain renders the intein incapable of further lateral transfer, but does not compromise 

the ligation of the extein sequence (Butler et al. 2006).  

 

Considering the fitness cost to the host organism, there are three possible allelic states for 

each intein-containing gene, depicted in Figure 1. Full size inteins possess two splicing 

domains that flank a central HEN domain, and are capable of insertion into empty 

recognition sites via homing (Soucy et al. 2014). Mini-inteins lack the HEN domain; they 

are the product of decay in full size inteins; the accumulation of mutations to the HEN 

domain leads to its inactivation and eventual loss, resulting in the mini-intein allele 

(Soucy et al. 2014). Genes containing the intact recognition site are termed intein-free, 

and are susceptible to homing by full-size inteins. 

 

Parasitism	(Spreads	laterally	using	host	resources)	

Commensalism	(Splicing	activity	retained,	escape	possible	via	recombination)	

Full	Size	Intein	 	 		

No	Intein	 	

Mini	Intein	 			

Vertical	and	Horizontal	Gene	Transfer	

Vertical	Gene	Transfer	

Vertical	Gene	Transfer	

Un-invaded	(Lowest	fitness	cost,	susceptible	to	invasion	via	homing)	

Figure 1: Symbiotic states of inteins. The blue, yellow, and orange regions 

correspond, respectively, to the extein, splicing domains, and HEN domain. 

Modes of transmission and symbiotic relationship to the host for each state are 

included beneath the graphical representation of that state (Soucy et al. 2014). 
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The relationship between the intein and the host gene can be thought of as genetic 

symbiosis, with the nature of the symbiotic relationship dependent on the state of the 

intein. Full size inteins are capable of homing, and HEN functionality is integral to 

horizontal transfer of the intein (Chevalier & Stoddard 2001). However, the large size of 

the HEN domain in a highly expressed protein will have a significant impact on host 

fitness (Unpublished data from personal communication with the Gophna Lab). The 

intein, therefore, benefits from a parasitic relationship with its host. The cost of 

transcribing and translating the intein is borne by the host while expressing the extein. 

Moreover, the activity of the HEN domain ensures that the host cannot escape via precise 

deletion, as the intein is capable of continually reinvading the recognition site. In 

contrast, mini-inteins consist only of the splicing domains. They possess the ability to 

self-excise from their translated host proteins, but these genetic elements have lost the 

mobility conferred by the HEN domain (Derbyshire et al. 1997). The relationship 

between the mini-intein and its host is a form of commensalism, with the loss of the HEN 

domain a “compromise” between the parties; splicing activity is retained, but the host can 

eliminate the intein via recombination. Complete loss of the intein incurs the lowest 

fitness cost of the three states, as the host organism escapes the burden of the intein. The 

presence or absence of the HEN domain causes a shift in the symbiotic relationship 

between the intein and host organism, as well as the ability of the molecule to propagate 

horizontally (Soucy et al. 2014; Barzel et al. 2011a). Assignment of the symbiotic state of 

an intein, mini-intein or full-intein using the HEN domain can be used to infer the 

evolutionary history of the mobile genetic element within the population (Soucy et al. 

2014). 
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Figure 2: The homing cycle is one model of intein mobility in a population. During 

the invasion phase, the full-intein invades all empty recognition sites. Selection 

pressure for HEN activity is then lost, decay renders the domain nonfunctional, and 

mini-inteins are generated. Through precise deletion of the intein, the un-invaded 

allele may be reintroduced and eventually goes to fixation (Goddard & Burt 1999; 

Gogarten & Hilario 2006).	

 

The homing cycle outlined in Figure 2 is one representation of the life cycle of inteins 

within a population. This homing cycle was first used to describe the mobility of an intein 

in the vma1-a site of vineyard yeasts (Goddard & Burt 1999). Full size inteins are capable 

of homing, but must be exposed to an un-invaded extein in order to do so, and therefore 

rely on conjugation, cellular fusion, incorporation of exogenous DNA, or another 

mechanism of horizontal gene transfer for propagation (Soucy et al. 2014; Thomas & 
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Nielsen 2005). In this phase of expansion, selective pressure prevents decay of the 

endonuclease domain, allowing the intein to propagate horizontally when exposed to 

empty recognition sites (Gogarten & Hilario 2006). The intein will eventually go to 

fixation under this model, invading every empty recognition site in the population (Barzel 

et al. 2011a). At this time, however, the presence of the HEN domain will not confer a 

selective advantage on the intein-containing allele, and the HEN domain begins the 

process of decay, accumulating substitutions that eventually rendered the domain 

nonfunctional. The mini-intein, which has lost the bulky HEN domain and is less of a 

fitness burden on its host, may then go to fixation, persisting as a molecular parasite 

(Goddard & Burt 1999; Gogarten & Hilario 2006). Although the cost of carrying a mini-

intein is reduced in comparison to the full size intein, it will nonetheless impose a fitness 

cost due to the additional resources required for translation. In some individuals, it may 

be lost via precise deletion; these intein-free members of the population enjoy a 

replicative advantage, cannot be invaded (as they cohabitate only with mini-inteins), and 

come to dominate the population bringing the cycle back to the beginning (Barzel et al. 

2011a). The homing cycle posits that each intein state will go to fixation before 

eventually being outcompeted in the population by its fitter successor (Barzel et al. 

2011a). 

 

The validity of the homing cycle has been called into question due to the observed and/or 

predicted ability of states to coexist in populations over evolutionarily significant time 

periods. The preservation of HEN domain function over long periods of evolutionary 

time has been observed, suggesting the continuous presence of DNA targets, 
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domestication to perform other functions, or other scenarios that select for the 

maintenance of endonuclease activity (Butler et al. 2006; Gogarten & Hilario 2006).  

Intransitive fitness relationships, depicted in Figure 3, provide another explanation for the 

long-term persistence of the intein in a population. Intransitive fitness relationships liken 

the fitness of the intein alleles to a game of “molecular rock-paper-scissors,” with each 

allele outcompeting another allele, and being outcompeted by the third; these models 

allow multiple states to coexist without any going to fixation, as a result of their relative 

fitness advantages (Barzel et al. 2011a). Models simulating the interaction of intein-free 

and intein-containing individuals have predicted the ability for the allele variants to stably 

exist in a well-mixed population. Under these conditions, the intein can persist over long 

periods of evolutionary time (Yahara et al. 2009; Barzel et al. 2011a).  

Figure 3: The relative fitness costs of the intein statuses represent an intransitive 

fitness relationship. The un-invaded intein recognition site (X) requires the fewest 

resources for gene expression, and can be recovered through precise deletion of the 
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intein. However, it is susceptible to homing by the intein with a functional HEN 

domain (Y). Carrying the full size intein incurs a fitness cost due to the translation 

of the intein along with the extein. Mini-inteins (Z) are smaller than full-size inteins, 

and contribute a reduced fitness burden. The cyclical advantage enjoyed by each 

intein state over the previous is known as an intransitive fitness relationship, and 

can explain the persistence of inteins in well-mixed populations (Barzel et al. 2011a).	

 

The presence of the intact HEN domain is indicative of the molecule’s mobility. The 

distribution of intein alleles has been used to describe gene exchange within a population 

(Soucy et al. 2014). In previous analyses, homing endonuclease (HEN) domains were 

identified indirectly, using a length-based assessment. The length of each sequence in an 

intein allele (i.e., all of the inteins found at a giving extein insertion site) was determined. 

A gap of at least 100 amino acids within an intein was used to indicate the loss of the 

HEN domain, yielding a mini-intein; inteins without such a gap between the two splicing 

domains were regarded as full size, and containing a HEN domain (Soucy et al. 2014). 

This method of symbiotic state determination provides no molecular information on the 

HEN domain and relies on a large and variable collection of inteins for assignment to 

characterize the intein. This method is error prone and cannot be used for new or rare 

intein sequences. We have developed a tool that can identify HEN domains in intein 

sequences using molecular information from a large collection of HEN sequences. This 

tool can be used on rare intein sequences, and identified several mini-inteins that were 

not assigned as such using previous methods.  
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Hidden Markov Models (HMMs) are statistical models of systems in which the observed 

objects are output based on unobserved, or hidden, states. They are used in computational 

biology as statistical measures of sequence homology (Finn et al. 2011). Multiple 

sequence alignments are used to build HMMs, which infer the probability of specific 

nucleotides or residues, as well as gaps and insertions, existing at each position in the 

alignment. Query sequences are then evaluated on how well they fit the model, based on 

the expected “output” at each position (Finn et al. 2011). HMMs are similar to Position 

Specific Scoring Matrices (PSSMs), which also provide positional data on biological 

sequences, with the added ability to score position-dependent insertions and deletions in 

the query sequence (Stojmirović et al. 2008). This is useful in the analysis of inteins, 

which display significant variation not only in length, but also in sequence similarity. 

Although LAGLIDADG-type HEN domains show conservation of four motifs between 

all intein alleles, their consensus sequences are unresolved at a number of positions, 

highlighting the high degree of substitution observed in the HEN domain (Perler 2002). 

Aligned sequences are used to build a profile HMM, which is then used to score query 

sequences; the score correlates with the relatedness of the query to the HMM. These 

models have been used to characterize protein families, as well as identify new members 

of these families (Finn et al. 2010). HMMs are an ideal tool for identifying sequences 

with high substitution rates, such as HEN domains.   

 

Additionally, agent-based modeling programs such as NetLogo (Wilensky 1999) offer a 

platform for the simulation of the intein life cycle in a population. These models are 

comprised of agents that can act and interact independently within the environment, 
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allowing for the simulation of complex scenarios (Macal & North 2010). Agent-based 

modeling systems have been used to model ecological interactions, such as Lotka-

Volterra equations for predator-prey dynamics (Wilensky 1997). The NetLogo language 

is highly modular (Wilensky 1999), and can be used to designate procedures for life 

processes, as well as biological phenomena emergent at the individual, population, and 

community levels. Unlike genetic observations and mathematical modeling, agent based 

modeling incorporates random and dynamic events such as horizontal gene transfer, 

genetic drift, and interaction frequencies. Most importantly, the results can be compared 

to data gathered from the observation of real populations, and the simulation refined 

between iterations to most accurately model the population dynamics of mobile genetic 

elements such as inteins. 

	

These modeling tools are useful for the analysis of intein-containing populations, such as 

the Halobacteria, colloquially referred to as the haloarchaea. The haloarchaea live in 

hypersaline environments, such as Deep Lake in Antarctica, where they are isolated by 

low salinity borders (DeMaere et al. 2013). The genetic isolation increases the reliance of 

these organisms on horizontal gene transfer to generate variation. Mating through cell 

fusion is observed in Haloferax volcanii and other haloarchaeal species, and is a 

mechanism by which plasmids and chromosome-sized regions of genetic material can be 

exchanged (Naor et al. 2012). Successful fusion brings inteins into contact with empty 

recognition sites, facilitating homing and the lateral transfer of the molecule (Barzel et al. 

2011a). Additionally, high viral loads, sometimes 10 to 100 times the cell density, are 

observed in these hypersaline bodies of water, leading to predation and persistent 
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infection of the haloarchaea (Porter et al. 2007; Luk et al. 2014). The combination of 

these factors creates sequestered communities of haloarchaeal species in which genes, 

including inteins, can be actively exchanged through horizontal gene transfer. Using 

HMM-based search methods, I will elucidate the symbiotic state of inteins, while agent-

based modeling will allow me to describe the interaction of intein states in a dynamic 

environment. This information will allow me to characterize the life cycle of inteins, as 

well as the evolutionary history of their movement in microbial populations.  
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Materials and Methods 

 

Identifying Homing Endonucleases Using Hidden Markov Models 

Building HMMs to Identify HENs 

Hidden Markov Models (HMMs) were generated from protein alignments of 

LAGLIDADG-type homing endonucleases (HENs) obtained from InBase, a publically 

available database of intein sequences with annotated HEN domains (Perler 2002). Each 

InBase entry includes annotations of the functional motifs for that intein. Motifs “A,” 

“B,” “F,” and “G” make up the N and C terminal splicing domains, which flank the HEN 

domain. Motifs “C,” “D,” “E,” and “H,” as well as the intervening residues, correspond 

to the HEN domain (Perler 1998). Sequences selected for inclusion in the alignments 

used to build the HMMs contained all four of these annotated motifs (i.e., C, D, E, and 

H). A complete list of accession numbers for the proteins from which HEN sequences 

were selected is included as Appendix A. Ultimately, 252 sequences were selected for 

inclusion and collated in a multiple fasta file. Sequences in this file were aligned using 

Muscle with default parameters (Edgar 2004). All alignments were visualized in SeaView 

(Gouy et al. 2010). The HMMer software package (Finn et al. 2011) was then used with 

default settings to create a Hidden Markov Model (HMM) for HENs from each domain 

of life (bacterial, archaeal, and eukaryotic HENs), and also for all HENs concatenated 

into a single file. 
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Testing HMMs 

A test database was constructed using 542 intein sequences listed in InBase and 1,492 

“Gold Standard” restriction endonuclease sequences from ReBase (a restriction 

endonuclease database) (Roberts et al. 2015). The test database thus included a positive 

control (i.e., inteins containing HEN domains), as well as two different kinds of negative 

controls: inteins with partial or missing HEN domains, and restriction endonucleases. The 

selectivity of the profile HMM was assessed based on its ability to distinguish full-size 

inteins (i.e., inteins with a HEN domain) from restriction endonucleases and mini-inteins 

(inteins with missing or decaying HEN domains). The domain-specific models were also 

evaluated on their ability to preferentially identify HEN domains from the InBase input 

sequences that originated from the domain of life designated for that profile HMM. 

 

Identifying Intein States with HMMs 

The profile HMM was used as a query against searched against the test database using 

the hmmsearch command, another function included in the HMMer package, with 

custom output flags designated (Finn et al. 2011). HMM profiles that did not identify any 

of the negative controls as containing HEN domains were used in subsequent searches. 

The validated profile HMM was used to search new intein sequences for HEN domains. 

Intein sequences were identified in isolate genomes from two haloarchaeal communities 

found in hypersaline environments. The Deep Lake, Antarctica dataset contained 12 

intein sequences from seven intein alleles, from four species (DeMaere et al. 2013). The 

Aran-Bidgol Lake, Iran dataset was isolated from the same lake, and divided into 

phylogroups (Soucy et al. 2014; Fullmer et al. 2014). A total of 43 inteins identified in 17 
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species of the genus Halorubrum were queried. The same six intein alleles were analyzed 

for all phylogroups identified in Aran-Bidgol Lake. 

 

Building Intein Phylogenies 

The phylogeny for the Rir1-b inteins was built from intein sequences reported in Soucy et 

al. 2014. RAxML was used with a Gamma GTR model and 1000 bootstraps. Random 

seeds for rapid bootstrapping and parsimony inference for the starting tree were set at 

12345 and 15647, respectively (Stamatakis 2014).    

 

Agent Based Modeling of Intein-containing Populations 

The NetLogo Agent-Based Modeling Platform 

The agent-based modeling platform NetLogo was used to simulate the population 

dynamics of a theoretical community of haloarchaea containing inteins (Wilensky 1999). 

NetLogo designates four types of agents: patches, representing subdivisions of the 

modeled space; turtles, the agents that are capable of movement; links, which form 

connections between designated turtles; and the observer, which allows the operator to 

influence other agents via a command line interface (Wilensky 1999). Links and the 

observer were not used in this simulation. Turtles were used to represent organisms in a 

microbial population. Individuals were assumed to be clonal, apart from the status of the 

intein allele, to control for differing replication rates, relative fitness, resource usage, and 

quorum sensing functions between species. Two breeds of turtles were used to represent 

two states; one contains an empty recognition site, termed the “intein-minus” state, while 

the “intein-plus” state carries an intein with a functional HEN domain. This scenario was 
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used to explore the potential for these two states to coexist stably in a spatially distributed 

population subject to varying environmental conditions. For this reason, the third, mini-

intein state was not used.  

 

Timekeeping 

NetLogo uses “ticks” as the timekeeping unit within models; designated procedures, such 

as agent movement, were executed on every turn, after which the tick counter advanced 

by one tick (Wilensky 1999). In the model, one tick was designated as the equivalent of 

one minute in real time. Procedures for movement, cellular fusion and recombination, 

replication, and viral infection were executed on every turn of the model. In addition, 

timekeeping procedures were assigned to track the passage of time between host 

replication and viral predation events, and to track the passage of time over the course of 

a year.  

 

Movement and Cell Mating 

On each turn, agents moved forward after rotating between one and 360 degrees, chosen 

randomly, approximating Brownian motion. When occupying the same patch in the 

environment, organisms were capable of mating via fusion (Naor et al. 2012; Lindås et al. 

2013). This is one mechanism by which inteins propagate into empty allelic sites (Soucy 

et al. 2014). For mating to occur, organisms must undergo fusion and recombination, the 

process by which genetic material is exchanged. The fusion efficiency was set at 1.0x10-4 

(i.e. 1 in every 10,000 interactions), based on the measured frequency of intra-species 

chromosomal fusion for Haloferax volcanii, a member of the haloarchaea (Naor et al. 
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2012). Homologous recombination, which is necessary for intein invasion, was 

determined to occur in 62% of successful fusions in the same study of Haloferax 

volcanii, and thus 0.62 was used as the recombination efficiency (Naor et al. 2012). Two 

agents occupying the same location within the model could therefore “mate” 

probabilistically at a rate based on the efficiencies identified above (i.e., the effective 

homing rate is equal to the product of the fusion and recombination efficiencies). 

 

Replication and Fitness Costs 

Organisms were capable of replicating, producing two individuals of the same allele 

which then independently acted within the model. A counting variable was assigned to 

each turtle and advanced towards a designated value, representing the generation time of 

the organism, in minutes. Individuals with the intein-minus allele replicated every 250 

minutes, based on unpublished data from the Gogarten Lab. There was a fitness cost of 

8% incurred by the intein-plus allele, due to the additional resources associated with 

transcription and translation of the intein; the replication time for carriers of the allele is 

270 minutes, 8% longer than that of individuals not carrying the intein (Unpublished data 

from the Gogarten Lab). Agents generated during setup of the model were randomly 

assigned a value for their “replication counter” less than their allele-specific generation 

time, simulating non-discrete generations in a population of independently replicating 

individuals.  

 

No explicit carrying capacity was designated for the model. However, a “limiting 

environmental factor” was instituted, rendering replication sensitive to local 
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environments within the model. On each turn of the model, agents were assumed to 

gather the “resources” required to successfully replicate; an individual in complete 

isolation would thus replicate according to its ideal generation time. However, resources 

were shared between organisms occupying the same patch. The replication counter 

therefore advanced on every turn by the fraction of resources that each individual 

acquired from the shared location (e.g., an isolated individual advances their counter by 

one, while four individuals on the same patch each accrue 0.25 on their counter). Once 

the counter for a given individual exceeds the generation time, the probability of 

replicating was expressed as the inverse of the number of individuals within a designated 

radius. In this way, agents were responsive to the population density of the local 

environment. Replication was controlled by their competition for resources and space in 

the environment.   

 

Homing 

Although all individuals in the population were capable of mating, their clonal nature 

restricted observable changes to successful mating between alleles. Two microbes 

carrying the same allele resulted in no change to the genome of either party, as the 

presence or absence of the intein is the only genetic variant in the population. After 

agents successfully underwent fusion and recombination, homing converted the intein-

minus allele of one organism into the intein-plus allele of the other (Soucy et al. 2014). 

All other characteristics of the agent, such as location in the model and time since the 

previous replication, were retained, although generation time is extended due to the 

fitness cost associated with the intein.  
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Viral Infections 

The hypersaline environments in which the haloarchaea are found also host numerous 

viruses; a viral load of 10 to 100 times as many viruses as microbes is frequently 

observed (Porter et al. 2007; Luk et al. 2014). The modeled population was therefore 

subject to transient viral infections that caused the death of all individuals in a given 

radius. These events occurred periodically and at random locations within the 

environment. Depending on the position of the randomly selected epicenter, between 

17.39% and 69.57% of the modeled space was encompassed by each “viral event.” 

Infections were assumed to occur instantaneously, and agents were free to migrate into 

the affected area following the event. While microbial evolution selects for phenotypes 

that avoid infection (Porter et al. 2007), this process was not considered significant to the 

model. The high viral loads allowed for the assumption of continuous viral innovation, as 

well as the presence of multiple viruses capable of infecting the population (Luk et al. 

2014). Infections occurred at regular time intervals, measured in minutes.  

 

Simulation Parameters 

The model undergoes setup procedures prior to each run. Simulations were conducted 

with an initial population size of 2,000 agents, equally distributed between the allelic 

variants. Organisms were randomly placed throughout the environment, and were 

assigned a starting value for their individual replication value. The period of viral 

infections was increased from 400 to 650 minutes at intervals of 25 minutes, and 

simulations were repeated for each experimental time (n = 5). The end condition for the 

model was defined as fixation of either allele in the population. At that point, the 
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population is completely clonal, and mating and homing are no longer observed. See 

Appendix B for the complete source code for the model. 
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Results 

 

Identifying Homing Endonucleases Using Hidden Markov Models 

Validation of Hidden Markov Models 

Hidden Markov Models (HMMs) were generated for LAGLIDADG-type homing 

endonucleases (HENs) derived from inteins found in each of the three domains of life. 

Individuals HMMs were prepared for each domain, in addition to an omnibus model 

based on an alignment of all of the 252 HEN sequences that met the selection criteria. A 

subsection of the multiple sequence alignment used to construct the largest HMM, 

highlighting the four conserved domains required for inclusion, is displayed in Figure 4. 

Figure 4: Muscle alignment of modeled HEN domains. LAGLIDADG-type HEN 

domains collected from InBase were aligned using Muscle with standard options 
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enabled. A total of 252 sequences were included, including representatives from 

inteins found in the Eukarya, Archaea, and Bacteria. The four conserved motifs 

found in HEN domains are boxed and labeled. Columns depicted as containing only 

gaps in the conserved motifs are due to rare insertions (i.e., those occurring in less 

than 5% of aligned sequences). 

 

The four HMMs were successfully validated using the test database. The models 

correctly identified sequences that contained HEN domains, to the exclusion of sequences 

representing restriction endonucleases and mini-inteins that lacked the HEN domains. In 

addition to the expected hits to full-size inteins, a number of hits to smaller inteins, as 

well as to sequences derived from ReBase, were observed. These sequences were 

searched against the Conserved Domain Database for confirmation, and were universally 

found to contain the LAGLIDADG motif (Marchler-Bauer et al. 2005). The HEN 

domains of introns and inteins are utilized in some commercially available 

endonucleases, explaining the presence of these sequences in the ReBase Gold Standards 

database. The highest e-value returned corresponding to a sequence containing a HEN 

domain was 0.11, and this was assigned as the cutoff value for HEN-containing 

sequences. For each of the domain-specific profile HMMs, the lowest e-values 

corresponding to inteins from the modeled domain clustered several orders of magnitude 

lower than those hits for inteins sourced from the other two domains of life. These profile 

HMMs were considered to preferentially retrieve the HEN domains of inteins from the 

domain of life of that model. 
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Incidence of Inteins in the Haloarchaea of Deep Lake and Aran-Bidgol Lake 

(a) cdc21-a gyrB-b polB-b polB-c pol-II-a rir1b-b top6B 
DL31               
DL1               
H. lac               
tADL               

 

(b) cdc21-a cdc21-b polB-b pol-II-a rir1-b rpolA 
Phylogroup A 

Ga36 
      Ec15 
      LG1 
      Fb21 
      Ga2p 
      G37 
      LD3 
      Phylogroup B 

Ea1 
      Eb13 
      IB24 
      Ea8 
      Hd13 
      Phylogroup C 

Cb34 
      Phylogroup D 

E3 
      C3 
      E8 
      Other 

C49 
       

  Full Intein with recognized HEN domain 
  Mini Intein with no HEN domain (length-based assessment) 
  Previously characterized full intein not recognized by HMMs 

 

Figure 5: Incidence and status of inteins in the haloarchaea. Environmental samples 

were derived from hypersaline bodies of water in (a) Deep Lake, Antarctica 
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simulations and values of V. Over the course of a viral cycle, the model is repopulated by 

individuals carrying both alleles, which also interact via mating and homing. The number 

of new intein-plus individuals per generation (based on the replication time of the intein-

minus state) is described as by the following equation: 

!!
!"# ! ! ! ! ! ! !" ! ! ! ! ! ! !! !  

The effective growth rate of each allelic population is reduced by space-dependent cell 

density, which decreases as a function of time, the random movement of organisms, and 

the location as well as the frequency of infections. 

 

The frequency of viral infections can be related to intein fixation as follows. Prior to the 

first viral event, the cell density across the modeled space is uniform and maximized, so 

that the population is in near-stationary growth phase. The first infection then opens an 

area of local exponential growth within the environment, which gradually closes as 

movement and replication equilibrate the cell density across the model. The time period 

during which the population approaches stationary phase is V. When infections occur at 

intervals no longer than twice the generation time of carriers of the intein-minus allele, 

regions of exponential growth are generated by viral events before the cell density can 

approach uniformity across the model: 

! ≤ !" 

In exponential phase, the intein-minus allele outcompetes the intein-plus allele and 

increases its relative proportion in the population. The cost incurred by the intein has a 

noticeable effect on the relative growth rate of carriers of the molecular parasite; the 

fitness advantage of the intein-minus allele means that those individuals are more 
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effectively able to exploit the time-sensitive replication advantage conferred by viral 

events, and the intein-minus allele goes to fixation under these conditions. Alternatively, 

when V is at least twice the generation time of the intein-plus allele, then all individuals 

are able to replicate to a comparable degree, and the population spends a greater fraction 

of time in stationary or near-stationary phase: 

! ≥ !"(!+ !) 

Neither allelic variant can increase its proportion in the population through replication, as 

the high cell density reduces both of their growth rates. The intein instead spreads 

laterally via homing, giving the allele a growth advantage. As long as carriers of the 

intein-plus allele can replicate twice for every viral event, the population spends enough 

time in stationary phase for the intein to go to fixation. The length of the viral cycle, V, 

when considered in relation to the allele-specific replication times R and R(1+f), can be 

used to predict the fitness of the intein in the modeled population.	
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Discussion 

 

Assignment of the symbiotic state of an intein is important for describing its mobility in 

microbial populations. The decay and eventual loss of the HEN domain also represents a 

domestication event; the intein continues to be inherited vertically, and remains within 

the lineage, but can no longer spread laterally via homing. This immobility indicates that 

the intein has been present in the insertion site for a significant length of time, and is 

indicative of its evolutionary history in the population. Because only full-size inteins may 

invade empty allele sites, the functionality of the HEN domain is necessary for inteins to 

spread through horizontal gene transfer. HMM analysis of inteins can be applied to both 

the identification and characterization of homing endonucleases. By annotating inteins as 

full-size or mini, patterns of horizontal gene transfer as well as HEN decay can be 

elucidated, providing valuable information about gene exchange in communities of 

haloarchaea or other organisms. 

 

The datasets studied here have previously been characterized based on the distribution of 

amino acid sequence lengths for the inteins of a given allele, an indirect approach to 

intein and HEN identification. In the case of the GyrB-b intein, decay appears to be 

occurring through insertions rather than deletions, and this kind of decay cannot be 

detected using size based state assignment. Furthermore, size based assignment relies on 

a large collection of inteins of the same allele for comparison; using an HMM allows 

assignment of intein state on newly discovered intein alleles. Profile HMMs were highly 

successful in identifying HEN domains containing the LAGLIDADG motif, to the 
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exclusion of other types of endonucleases. The models also corrected the full-size status 

previously assigned to the GyrB-b intein of halophilic archaeon DL31, with sequence 

analysis confirming the decay of the C and H motifs in the HEN domain. This new 

approach provides support for the presence of these domains using homology to 

previously characterized sequences, and therefore offers a more specific approach to 

locating HENs within biological sequence data.  

 

Moreover, the ability to build customized profile HMMs allows users to tailor their 

searches within broader protein families. Models can be built using sequences of a 

particular subtype, such as those found only within a single domain of life. In this study, 

we attempted to determine the domain of origin for inteins, bacterial or archaeal. The 

presence of HEN domains in the haloarchaea that are most similar to those found in 

bacterial inteins suggests a history of inter-domain transfer events. Complete agreement 

within alleles as to the domain of origin could be the result of an ancient incidence of 

horizontal transfer, with subsequent vertical propagation throughout the population of 

intein-carrying organisms. Alternatively, the distribution could be the result of 

“colonization” of a haloarchaeal community with empty homing sites by inteins from a 

single host. Of particular interest among the inteins studied is PolB-b. In the Deep Lake 

dataset, the allele is most similar to HENs found in the archaea, whereas all instances of 

the PolB-b intein in the Aran-Bidgol Lake samples responded most strongly to the HMM 

derived from bacterial HEN domains. A possible explanation for this delineation is that 

one intein, present in the archaeal and bacterial domains of life, invaded the empty 

recognition sites of species found in Deep Lake and Aran-Bidgol Lake at different points 
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in time, and from different hosts. Each would have acquired mutations over time, 

independently, prior to their respective homing events, explaining the contrasting 

homology of the HEN domains from each environment. 

  

There are limitations to the detective power of profile HMM-based analyses. At the 

current time, analysis by domain-specific profile HMMs is unable to resolve the 

competing explanations offered above for the PolB-b intein putative domain of origin. 

The detective power of this approach is also limited by the inability, at this time, to detect 

inter-domain transfers in the inteins that constitute the profile HMMs. Additional 

research, testing, and refinement of the HMMs could make such domain assignments 

possible, and provide valuable insight into the evolutionary history of these mobile 

genetic elements. Furthermore, the identification of a HEN domain using profile HMMs 

does not provide information as to whether that domain is functional. Even in instances 

where the four conserved motifs are present, mutations to these sequences or to the linker 

regions between them may render a HEN domain inactive. The current method cannot be 

used to differentiate between functional and decayed HEN domains. However, 

experimental confirmation of homing activity, performed in concert with computational 

analysis, could potentially elucidate the relationship between structural changes to the 

HEN domain and loss of function. The selection of sequences for inclusion in the HMMs 

may also prove difficult, especially when extending such analysis to other mobile genetic 

elements. InBase provides a curated database of inteins containing LAGLIDADG-type 

HENs. However, no similar database exists for other subtypes of HENs, such as the GIY-

YIG and H-N-H variants. While sequences can be found using NCBI and other 
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databases, sampling bias may be introduced when choosing sequences based on BLAST 

hits, which are returned based on similarity to the provided input sequences. Non-uniform 

annotation of inteins and HEN domains has also proved to be a continuing issue when 

attempting to identify these elements in large datasets. 

 

Regardless of these challenges, the basic experimental pipeline outlined here can readily 

be applied to the study of a variety of mobile genetic elements. Careful selection of inputs 

can produce profile HMMs capable of retrieve narrowly tailored targets, and are capable 

of delineating between subgroupings of related sequences. Following profile HMM 

generation and validation, these models provide a powerful statistical tool for the 

detection of sequence homology between mobile genetic elements such as inteins.  

 

In addition to the “molecular modeling” conducted using profile HMMs, agent-based 

modeling of a microbial population containing inteins explored the dynamics of homing 

in a population subject to movement, growth, and death. Previous models of HEN 

dynamics have taken mathematical approaches to describing the frequency of mating and 

homing (Yahara et al. 2009; Barzel et al. 2011a). Agent-based modeling takes these 

efficiencies into account while also accounting for the spatial structure of populations, 

cell motility, as well as periodic viral infections that kill off portions of the community.  

 

The interplay between these spatial dynamics produces complex scenarios under which 

the alleles compete for dominance. Left unperturbed by die offs, microbes are able to 

replicate to the point of saturating the model. Although the individuals that do not carry 
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the intein enjoy a fitness advantage and can replicate more quickly, they are susceptible 

to homing, and will continue to be so in stationary phase. Under these conditions, the 

intein will reproducibly go to fixation. However, environmental perturbations produce 

random population inequalities across the model; in these new openings, the cell density 

is drastically reduced, exponential phase is maintained, and agents repeatedly 

“recolonize” these spaces. Under these conditions, the intein will be lost every time, 

outcompeted by fitter organisms with an empty recognition site. The stochastic nature of 

these conditions makes mathematical modeling difficult, as the effective growth rate of 

the population is reduced by spatially dependent factors such as cell movement and the 

location of viral infections. Despite these uncertainties, the above scenarios describe the 

relationship between homing efficiency, generation times, and viral infections, and can be 

used to predict the outcome of competition between the intein alleles.   

 

The range over which the transition from intein-minus to intein-plus fixation occurs is 

narrow and reproducible in this model. When the frequency of viral events is less than 

double the generation time of the intein-plus allele, the intein-minus allele goes to 

fixation. Under these conditions, individuals lacking the intein are optimally able to 

replicate twice for every viral event, whereas microbes carrying the intein can only 

replicate once. Individuals that die in the viral infection before replicating are unable to 

double, a loss that reduces their respective allelic frequency in the population. This effect 

is exaggerated as infections occur more frequently, with the time to fixation decreasing as 

the time between events decreases. The random nature of viral events suggests that each 

allelic population is sensitive to these die-offs relative to their proportion in the overall 
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population. For intein-plus individuals, the “missed opportunity” to replicate has 

significant impact on their survival in the population. 

 

A number of assumptions were made in modeling the populations that limit the direct 

applicability of the results to real populations containing inteins. Most notably, 

environmental data does not exist for the mating, recombination, and homing efficiencies 

of the haloarchaea. The rates used in these simulations are based on cultured populations 

of Haloferax volcanii, a model organism; their values may differ not only between 

species of haloarchaea, but also between members of the same species under different 

environmental conditions. Moreover, precise deletion, resulting in back-conversion of the 

intein-plus to the intein-minus allele, is considered a rare process (Barzel et al. 2011a), 

and was assumed to occur at a rate insignificant for inclusion in the model.  

 

Equilibrium between the two alleles was not achieved under any of the tested conditions; 

the intransitive fitness relationship model, which included three competitive alleles, has 

demonstrated the ability of the alleles to coexist over many generations (Barzel et al. 

2011a). This observation may be due to the exclusion of the intermediate mini-intein 

allele, but may also be an artifact of the small size of the modeled environment and 

population; originating more than 2,000 agents during model setup was difficult given the 

available hardware. A population of this size first experiences exponential growth in the 

modeled area before transitioning to stationary growth. Due to these realistic growth 

phases, the initial population size of 2,000 was considered representative of a small 

population without immigration or emigration. However, small populations are more 
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susceptible to gene drift via population bottlenecks and other events that can suddenly 

and drastically affect the allelic distribution of a community. Previous models have also 

shown instability in allele frequency oscillations when observing small populations 

(Barzel et al. 2011a). A larger modeled population subject to the same conditions may 

demonstrate stable equilibrium, and a major initiative for future experiments will be to 

scale up the simulated environment. 

 

The long-term coexistence of the intein-plus and intein-minus alleles may possibly be 

achieved by modeling a heterogeneous environment with limited mixing. In the above 

analyses, stationary growth phases led to fixation of the intein-plus allele, whereas 

exponential growth maintained by viral predation allowed the intein-minus allele to 

dominate the population. When viral infections are randomly distributed, the model 

undergoes positive frequency dependent selection for one of the two alleles. If the 

population is allowed to saturate between viral infections, the fraction of intein carriers in 

the population increases, and empty allele sites are at heightened risk of conversion; 

alternatively, the growth advantage of the intein-minus allele leads to it increasingly 

“crowding out” the intein-plus allele when the frequency of extinction events increases. 

However, two isolated populations undergoing infection at different frequencies could 

concurrently experience different growth phases, leading to the fixation of opposing 

alleles; if migration occurs at low levels between these populations, the outcome will be 

maintained. Restricting viral events to one area of the model may reproduce this scenario. 

If viral infections are non-randomly distributed, then the affected region will constantly 

undergo exponential growth, while the other is allowed to saturate and approach a 
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stationary growth phase. Limited mixing will occur at the junction of the regions; without 

the disruptions caused by random extinction events, the population will retain enough 

information in local areas to maintain both intein alleles. Whereas allele fixation was 

observed invariably in our model, stable coexistence of the two intein alleles may be 

possible in a non-homogenous population. This hypothesis will be explored through 

additional simulations.  

 

While the canonical homing cycle has previously been used to describe the life cycle of 

inteins within a population, evidence now suggests that intein alleles, including un-

invaded exteins and full-size inteins with functional HEN domains, can coexist in well-

mixed populations (Yahara et al. 2009; Barzel et al. 2011a). Agent based modeling adds 

to these studies by incorporating spatial and environmental parameters inherent in the 

interaction of organisms in physical space. As individualized actors within the model, 

agents representing the various intein alleles were capable of movement, fusion, and 

homing in real time and space. They were also responsive to the environment, including 

viral infections as well as the surrounding individuals with which they competed for 

resources. In this model, the growth phase of the population in large part determined the 

success of the intein. Hypersalinity and high viral load constitute extreme environmental 

conditions that influence the growth of the haloarchaea; these factors must be accounted 

for when describing the life cycle of genetic elements such as inteins that have a 

measurable impact on the fitness of their organismal hosts.  
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The major push of future analyses will be to marry the efforts of the HMM- and ABM-

based approaches to modeling the intein life cycle. Further refinement of profile HMMs 

will allow for the description of patterns of HEN decay. This will require a more 

complete understanding of how decay is initiated; using large collections of haloarchaeal 

Cdc21-a and Pol-II-a inteins, we will look at independent sequence decay events as 

determined by intein phylogenies. The proximity of decay to the conserved motifs will be 

assessed and compared both within and between intein alleles. After developing a 

generalized understanding of HEN decay across these alleles, a decay rate can be 

estimated and directly incorporated into agent-based modeling of intein-containing 

communities. In the current iteration of the model, mini-inteins were excluded, as a 

meaningful decay rate could not be estimated. With this value integrated, we will be able 

to simulate the loss of the HEN domain, and study how the three intein states coexist in 

the microbial community. The modeling conducted here represents a concrete baseline 

from which mobile genetic elements such as inteins can be identified and characterized, 

and their life cycles described. 
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Appendix A: Intein Sources of HEN Domains for HMMs 

 

Listed are the inteins from which HEN domains were sourced to build the HMMs. The 

custom fasta headers indicate the domain of life of the host organism, as well as the 

length of the HEN domain, separated by “|” characters from the original header 

contents. HEN domains were obtained by collecting all sequence data between the C and 

H motifs of the intein (Perler 2002). 

 

>|arc|146|gi|22405605|ref|ZP_00000480.1|[22405605] Fac-Fer1 RIR1 intein 

>|arc|144|gi|22406063|ref|ZP_00000920.1| Fac-Fer1 SufB (Fac Pps1) intein 

>|arc|146|GI:44922119 | NS_000030 | Fac-TypeI RIR1 intein 

>|arc|144|NS_000030 | Fac-typeI SufB (Fac Pps1) intein 

>|arc|130|ABR56619.1 GI:150014168 | Maeo RNR intein 

>|arc|134|ABR55683.1 GI:150013232 | Maeo-N3 Helicase intein 

>|arc|170|YP_001324338.1 GI:150400572| Maeo-N3 RtcB intein 

>|arc|147|ZP_01799256|GI:145643717| NZ_AAZL01000001.1 | Maeo-N3 UDP GD  

intein 

>|arc|87|ZP_04790538.1 GI:241905914 | Mein-ME PEP intein 

>|arc|142|ZP_04790519.1 GI:241905895 | Mein-ME RFC intein 

>|arc|131|GI:125861989 |ABN57178.1 | Memar MCM2 intein 

>|arc|136|ZP_06214852.1 GI:270497887 | Mesp-FS406 PolB-3 intein 

>|arc|139|ZP_06213967.1 GI:270496991 | Msp-FS406-22 LHR intein 

>|arc|139|ACV25272.1 GI:256794603 | Mfe-AG86 Pol-2 intein 
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>|arc|136|gi|2127939|pir||C64477| Mja GF-6P intein 

>|arc|134|gi[15669311]NP_248116|gi|2127858|pir||C64440| Mja Helicase intein 

>|arc|131|gi|2495884|sp|Q57710| Mja IF2 intein 

>|arc|135|gi|2499461|sp|Q57962| Mja PEP intein 

>|arc|133|gi|2129234|pir||E64477| Mja RFC-1 intein 

>|arc|148|gi|2129234|pir||E64477| Mja RFC-2 intein 

>|arc|161|gi|2129234|pir||E64477| Mja RFC-3 intein 

>|arc|128|gi|2496131|sp|Q58242| Mja RNR-1 intein 

>|arc|141|gi|2129243|pir||H64403 Mja RNR-2 intein 

>|arc|170|gi|2501617|sp|Q58095| Mja RtcB (Mja Hyp-2) intein 

>|arc|120|gi|2129309|pir||F64397 Mja TFIIB intein 

>|arc|147|gi|2129344|pir||E64431| Mja UDP GD intein 

>|arc|130|gi|2129239|pir||G64488[2129239] Mja r-Gyr intein 

>|arc|133|gi|2127865|pir||B64430| Mja rPol A" intein 

>|arc|132|gi|19886871|gb|AAM01701.1|[19886871]MK0486| Mka CDC48 intein 

>|arc|165|gi|19888413|gb|AAM02895.1|[19888413] Mka RtcB intein 

>|arc|124|gi|19888400|gb|AAM02886.1|[19888400]MK1673| Mka VatB intein 

>|arc|147|YP_003246412.1 GI:261402188 | Mvu-M7 UDP GD intein 

>|arc|127|gi|5459000|emb|CAB50486.1| Pab Lon intein 

>|arc|135|gi|7519988|pir||H75112| Pab Moaa intein 

>|arc|117|gi|7514225|pir||C75198| Pab RFC-1 intein 

>|arc|159|gi|7514225|pir||C75198| Pab RFC-2 intein 

>|arc|85|gi|7521620|pir||B75009| Pab RIR1-1 intein 
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>|arc|145|gi|7521620|pir||B75009| Pab RIR1-2 intein 

>|arc|132|gi|7521620|pir||B75009| Pab RIR1-3 intein 

>|arc|162|gi|7517838|pir||C75175| Pab RtcB (Pab Hyp-2) intein 

>|arc|134|gi|7436316|pir||D75028| Pab VMA intein 

>|arc|141|YP_001153873.1 GI:145591871 | NC_009376.1 | Par RIR1 intein 

>|arc|136|gi|18893047|gb|AAL81118.1|[18893047] Pfu KlbA intein 

>|arc|137|gi|18892440|gb|AAL80591.1|[18892440] Pfu Lon intein 

>|arc|124|gi|18892003|gb|AAL80216.1|[18892003] Pfu RFC intein 

>|arc|140|gi|1688292|gb|AAB36947.1| Pfu RIR1-1 intein 

>|arc|132|gi|1688292|gb|AAB36947.1| Pfu RIR1-2 intein 

>|arc|165|gi|18893765|gb|AAL81739.1|[18893765] Pfu RtcB (Pfu Hyp-2) intein 

>|arc|134|gi|18892111|gb|AAL80306.1|[18892111] Pfu VMA intein 

>|arc|134|gi|7518763|pir||C71110| Pho KlbA intein 

>|arc|132|gi|3257526|dbj|BAA30209.1| Pho LHR intein 

>|arc|156|gi|3256855|dbj|BAA29538.1| Pho Lon intein 

>|arc|115|gi|3913526|sp|O59610| Pho Pol I intein 

>|arc|124|gi|7521348|pir||F71231| Pho RFC intein 

>|arc|132|gi|3256754|dbj|BAA29437.1| Pho RIR1 intein 

>|arc|127|NT01PH1611 |PH1602| Tigr database| Pho RtcB (Pho Hyp-2) intein 

>|arc|134|gi|436494|gb|AAA67132.1|[436494] Psp-GBD Pol intein 

>|arc|142|gi|2293389|emb|CAA73475.1| Tag Pol-1 (Tsp-TY Pol-1) intein 

>|arc|134|gi|2293389|emb|CAA73475.1| Tag Pol-2 (Tsp-TY Pol-2) intein 

>|arc|142|gi|3913528|sp|P74918| Tfu Pol-1 intein 
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>|arc|159|gi|3913528|sp|P74918| Tfu Pol-2 intein 

>|arc|134|gi|11602745|emb|CAC18555.1|[11602745] Thy Pol-1 intein 

>|arc|140|gi|11602745|emb|CAC18555.1|[11602745] Thy Pol-2 intein 

>|arc|137|gi|57641788|ref|YP_184266.1|[57641788] Tko KlbA intein 

>|arc|138|gi|57640699|ref|YP_183177.1|[57640699] Tko LHR intein 

>|arc|142|gi|2129415|pir||S71551| P77933 Tko Pol-1 (Psp-KOD Pol-1) intein 

>|arc|133|gi|2129415|pir||S71551|P77933 Tko Pol-2 (Psp KOD Pol-2) intein 

>|arc|131|gi|57642153|ref|YP_184631.1|[57642153] Tko RFC intein 

>|arc|132|gi|57641671|ref|YP_184149.1|[57641671] Tko RIR1-1 intein 

>|arc|132|gi|57641671|ref|YP_184149.1|[57641671] Tko RIR1-2 intein 

>|arc|128|gi|57640405|ref|YP_182883.1|[57640405] Tko r-Gyr intein 

>|arc|134|gi|543522|pir||S42459 Tli Pol-1 intein 

>|arc|140|gi|543522|pir||S42459 Tli Pol-2 intein 

>|arc|134|ACR33068.1 GI:237880813 | Tma Pol intein 

>|arc|137|YP_002306997.1 GI:212223761 | Ton-NA1 LHR intein 

>|arc|134|gi|83338486|gb|ABC11972.1|[83338486] Ton-NA1 Pol intein 

>|arc|140|gi|3252720|dbj|E13953.1||pat|JP|1997252776|2[3252720] | Tpe Pol intein 

>|arc|156|YP_002993506.1 GI:242398082 | Tsi-MM739 Lon intein 

>|arc|134|YP_002994326.1 GI:242398902 | Tsi-MM739 Pol-1 intein 

>|arc|148|YP_002993518.1 GI:242398094 | Tsi-MM739 RFC intein 

>|arc|165|ZP_04879086.1 GI:254172411 | Tsp AM4 RtcB intein 

>|arc|139|ZP_04878981.1 GI:254172305| Tsp-AM4 LHR intein 

>|arc|156|ZP_04878759.1 GI:254172083 | Tsp-AM4 Lon intein 
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>|arc|140|ZP_04880584.1 GI:254173913 |Tsp-AM4 RIR1 intein 

>|arc|134|gi|10799895|emb|CAC12850.1|[10799895] Tsp-GE8 Pol-1 intein 

>|arc|140|gi|10799895|emb|CAC12850.1|[10799895] Tsp-GE8 Pol-2 intein 

>|arc|134|gi|86753391|gb|ABD14869.1|[86753391] Tsp-GT Pol-1 intein 

>|arc|140|gi|86753391|gb|ABD14869.1|[86753391] Tsp-GT Pol-2 intein 

>|arc|134|GI:117958105| ABK59374 | Tsp-OGL-P20 Pol intein 

>|arc|134|unpublished sequence ,Damien Marsic | Tthi Pol intein 

>|arc|134|gi|86753389|gb|ABD14868.1|[86753389] Tzi Pol intein 

>|arc|146|Gi|52548443|gb|AAU82292.1|[52548443] Unc-ERS PFL intein 

>|arc|126|gi|52548271|gb|AAU82120.1|[52548271] Unc-ERS RNR intein 

>|bac|138|gi|7521621|pir||A70431| Aae RIR2 intein 

>|bac|220|gi|78701429|ref|ZP_00865879.1|YP_741431.1|[78701429] Aeh DnaB-1 intein 

>|bac|144|gi|78701429|ref|ZP_00865879.1|YP_741431.1|[78701429] Aeh DnaB-2 intein 

>|bac|139|YP_001765176 | YP_001765176.1 GI:170733229 | NC_010508.1 | Bce-MCO3  

DnaB intein 

>|bac|139|gi|84354845|ref|ZP_00979742.1|[84354845] Bce-PC184 DnaB intein 

>|bac|120|ZP_02170299.1 GI:163763236 | Bse-MLS10 TerA intein 

>|bac|152|gi|15211863|emb|CAC51100.1|[15211863] BsuP-M1918 RIR1 intein 

>|bac|152|gi|9630286|ref|NP_046713.1| BsuP-SPBc2 RIR1 intein 

>|bac|155|JGI_18Nov03-24:13043-8505| Cag RIR1 intein 

>|bac|155|gi|78170878|gb|ABB27974.1|[78170878] Cch RIR1 intein 

>|bac|106|ZP_04365119.1 GI:229240723 | Cfl-DSM20109 DnaB intein 

>|bac|137|gi|78044854|ref|YP_359531.1|[78044854]| Chy RIR1 intein 
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>|bac|169|ABQ23668.1 GI:146337057 | Ckl PTerm intein 

>|bac|150|YP_002481043.1 GI:220905732 | Csp-PCC7425 DnaB intein 

>|bac|120|gi|48860529|ref|ZP_00314454.1|[48860529]|ZP_00061239.1| Cth-ATCC27405  

TerA intein 

>|bac|120|ZP_05428544.1 GI:256003554 | Cth-DSM2360 TerA intein 

>|bac|146|gi|94986136|ref|YP_605500.1|[94986136 | Dge DnaB intein 

>|bac|142|gi|23114639|ref|ZP_00099929.1| Dha-DCB2 RIR1 intein 

>|bac|142|gi|89893068|ref|YP_516555.1|[89893068] Dha-Y51 RIR1 intein 

>|bac|142|gi|7473796|pir||D75281|DR_2374| TIGR sequenced strain| Dra RIR1 intein 

>|bac|133|AF512685 |Brooks and Murray strain| Dra-ATCC13939 Snf2 intein 

>|bac|130|ABY49883.1 GI:163955733 | EU311208.1| EP-Min27 Primase intein 

>|bac|187|CAJ65470 | Fal DnaB intein 

>|bac|198|GI:121588855| ABM61435 | Hhal DnaB intein 

>|bac|137|AAR89731[gi:40769425] MP-Be DnaB intein 

>|bac|122|ABE67925 | MP-Catera gp206 intein 

>|bac|123|gi|29424612|gb|AAN01623.1|[29424612] MP-Mcjw1 DnaB intein 

>|bac|123|gi|29425473|gb|AAN12655.1|[29425473] MP-Omega DnaB intein 

>|bac|141|ZP_06215945.1 GI:270499003 | Mau-ATCC27029 GyrA intein 

>|bac|108|ABK66051| Mav-104 DnaB intein 

>|bac|108|ZP_05214640.1 GI:254773124 | Mav-ATCC25291 DnaB intein 

>|bac|108|AF259901| GI:12958160| AAK09265.1| Mav-ATCC35712 DnaB intein 

>|bac|188|gi|41394517|gb|AAS02388.1|[41394517] Mav-PT DnaB intein 

>|bac|141|gi|31792655|ref|NP_855148.1|[31792655] Mbo Pps1 intein 
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>|bac|143|gi|31619503|emb|CAD94941.1|[31619503] Mbo RecA intein 

>|bac|141|NP_855148| Mb1496 | Mbo SufB (Mbo Pps1) intein 

>|bac|147|GI:121491615| CAL70073.1| Mbo-1173P DnaB 

>|bac|147|gi|31791235|ref|NP_853728.1|[31791235] Mbo-AF2122 DnaB intein 

>|bac|171|gi|53757105|gb|AAU91396.1|[53757105] Mca RIR1 intein 

>|bac|141|gi|2501244|sp|Q49166|CAA92433.1| Mfl GyrA intein 

>|bac|188|gi|89340273|ref|ZP_01192545.1|[89340273] Mfl-PYR-GCK DnaB intein 

>|bac|141|gi|11558104|emb|CAC17731.1|[11558104] Mga GyrA intein 

>|bac|136|gi|13661022|emb|CAC37008.1|[13661022] Mga SufB (Mga Pps1) intein 

>|bac|188|GI:145221472 | YP_001132150 | Mgi-PYR-GCK DnaB intein 

>|bac|141|YP_001132093.1 GI:145221415 | NC_009338.1 | Mgi-PYR-GCK GyrA intein 

>|bac|141|gi|2501245|sp|Q49467| Mgo GyrA intein 

>|bac|107|gi|11127927|gb|AAG31144.1|AF307984.1 Min-1442 DnaB intein 

>|bac|141|ZP_05225903.1 GI:254820902 | Min-ATCC13950 GyrA intein 

>|bac|141|gi|2501246|sp|Q49608| Mkas GyrA intein 

>|bac|141|ZP_04750756.1 GI:240172097 | Mkas-ATCC12478 GyrA intein 

>|bac|141|YP_002502765.1 GI:221229349 | Mle-Br4923 GyrA intein 

>|bac|141|gi|2501247|sp|Q57532| Mle-TN GyrA intein 

>|bac|134|gi|2398707|emb|CAB16172.1| Mle-TN SufB (Mle Pps1) intein 

>|bac|141|gi|2546990|emb|CAA05167.1| Mma GyrA intein 

>|bac|148|GI:118473168| YP_891092.1 | Msm DnaB-2 intein 

>|bac|106|gi|92913886|ref|ZP_01282514.1|ABL94640.1[92913886] Msp-KMS DnaB  

intein 
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>|bac|141|gi|92913834|ref|ZP_01282462.1|[92913834] Msp_KMS GyrA intein 

>|bac|106|gi|91764116|ref|ZP_01266073.1|[91764116] Msp-MCS DnaB intein 

>|bac|141|gi|108796988|ref|YP_637185.1| Msp_MCS GyrA intein 

>|bac|141|gi|6686194|sp|O53152|for H37Rv|AAK45772.1 for CDC1551| Mtu SufB (Mtu  

Pps1) intein 

>|bac|143|ZP_04926163.1 GI:254232836| Mtu-C RecA intein 

>|bac|147|gi|13879107|gb|AAK44286.1|[13879107] MT0064 Mtu-CDC1551 DnaB intein 

>|bac|143|ZP_05765226.1 GI:260187752 | Mtu-CPHL RecA intein 

>|bac|143|CAA03857.1 GI:2598000 | Mtu-Canetti RecA intein 

>|bac|143|ZP_03429592.1 GI:215431673 | Mtu-EAS054 RecA intein 

>|bac|147|ABR04400.1 |GI:148719775] Mtu-F11 DnaB intein 

>|bac|147|YP_001281341.1 GI:148659818| Mtu-H37Ra DnaB intein 

>|bac|147|gi|3250719|emb|CAB02519.1| Mtu-H37Rv DnaB intein 

>|bac|143|gi|132229|sp|P26345| Mtu-H37Rv RecA intein 

>|bac|147|ZP_04982560.1 GI:254366516 | Mtu-Haarlem DnaB intein 

>|bac|143|ZP_05773535.1 GI:260206044 | Mtu-K85 RecA intein 

>|bac|143|ZP_05142239.1 GI:254551792 | Mtu-R604 RecA-n N-terminal intein fragment 

>|bac|143|gi|2598002|emb|CAA03856.1|[2598002] Mtu-So93 RecA intein 

>|bac|143|ZP_03537818.1 GI:219558742 | Mtu-T17 RecA-c C-terminal intein fragment 

>|bac|143|ZP_05769352.1 GI:260201861 | Mtu-T46 RecA intein 

>|bac|143|ZP_03433740.1 GI:215446988 | Mtu-T85 RecA intein 

>|bac|143|ZP_03426083.1 GI:215428164 | Mtu-T92 RecA intein 

>|bac|188|gi|90199132|gb|EAS25891.1|YP_956789|[90199132] Mvan DnaB intein 
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>|bac|141|GI:119953853| CP000511.1|YP_950864| ABM10858.1| Mvan GyrA intein 

>|bac|148|gi|54027550|ref|YP_121792.1|[54027550] Nfa DnaB intein 

>|bac|150|gi|23129113|ref|ZP_00110946.1| Npu DnaB intein 

>|bac|125|gi|71365763|ref|ZP_00656313.1|[71365763] Nsp-JS614 DnaB intein 

>|bac|108|gi|71156494|gb|EAO06904.1|ABL81457 |[71156494] Nsp-JS614 TOPRIM  

intein 

>|bac|150|gi|17228074|ref|NP_484622.1|[17228074] Nsp-PCC7120 DnaB intein 

>|bac|146|gi|17231527|ref|NP_488075.1|[17231527] Nsp-PCC7120 RIR1 intein 

>|bac|135|gi|82657877|emb|CAG27133.1|[82657877] PP-PhiEL ORF39 intein 

>|bac|137|YP_002730690.1 GI:225850456 | Pma-ExH1 DnaE intein 

>|bac|150|gi|84713443|ref|ZP_01021208.1|[84713443] Pna RIR1 intein 

>|bac|144|YP_001155208.1 GI:145588611 | Pnuc (Punc?) DnaB intein 

>|bac|154|gi|54032920|ref|ZP_00365051.1|[54032920] Posp-JS666 RIR1 intein 

>|bac|150|gi|2335167|gb|AAB66912.1|AF006675.1| Rma DnaB intein 

>|bac|150|YP_003289312.1 GI:268315593 | Rma-DSM4252 DnaB intein 

>|bac|143|YP_003291188.1 GI:268317469 | Rma-DSM4252 DnaE intein 

>|bac|147|gi|85704837|ref|ZP_01035938.1|[85704837] Rsp Rir1 intein 

>|bac|131|GI:125631932 |ABN47335 | SaP-SETP3 Helicase intein 

>|bac|133|gi|29606319|dbj|BAC70382.1|[29606319] Sav RecG (ReG?) Helicase intein 

>|bac|131|gi|56750075|ref|YP_170776.1|[56750075] Sel-PC6301 RIR1 intein 

>|bac|131|gi|45513096|ref|ZP_00164662.1|[45513096] Sel-PC7942 RIR1 intein 

>|bac|130|gi|110616113|gb|ABF04780.1|[110616113] ShP-Sfv-5 Primase intein 

>|bac|156|YP_444285.1 GI:83816554 | Sru RIR1 intein 
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>|bac|150|gi|2833462|sp|Q55418| Ssp DnaB intein 

>|bac|148|ZP_05037241.1 GI:254423523 | Ssp-PCC7335 RIR1 intein 

>|bac|154|BAF73073.1 GI:151425570| Susp-NBC371 DnaB intein 

>|bac|145|gi|48894083|ref|ZP_00327281.1|[48894083] Ter Snf2 intein 

>|bac|132|gi|72161207|ref|YP_288864.1|[72161207] Tfus RecA-1 intein 

>|bac|140|ACI21751.1 GI:206742694 | CP001147.1 | Tye RNR-1 intein 

>|euc|316|EEH11039.1 GI:225562760 | Aca-G186AR PRP8 intein 

>|euc|317|gi|93359506|gb|ABF13297.1|[93359506] Aca-JER2004 PRP8 intein 

>|euc|384|gi|83274377|gb|ABC00915.1|[83274377]] Afu-Af293 PRP8 intein 

>|euc|384|gi|56418438|gb|AAV91021.1|[56418438] Afu-FRR0163 PRP8 intein 

>|euc|384|gi|83274377|gb|ABC00915.1|[83274377] Afu-NRRL5109 PRP8 intein 

>|euc|372|gi|49094398|ref|XP_408660.1|EAA60866.1[49094398] Ani-FGSCA4 PRP8  

intein 

>|euc|369|gi|77806552|gb|AAID01001533.1|[77806552] Bci PRP8 intein 

>|euc|161|gi|83415453|gb|ABC17934.1|[83415453] Bde-JEL197 RPB2 intein 

>|euc|218|gi|116294843|gb|AATT01000040.1|[116294843]| Bde-JEL423 PRP8-2 intein 

>|euc|161|gi|116294805|gb|AATT01000078.1|[116294805]| Bde-JEL423 RPC2 intein 

>|euc|342|XP_001554611.1 GI:154310560 | Bfu-B05 PRP8 intein 

>|euc|140|gi|94323213|gb|DQ491002.1|[94323213] CV-NY2A ORF212392 intein 

>|euc|161|gi|29420853|dbj|BAC66648.1|[29420853] Cgl VMA intein 

>|euc|294|gi|61105788|gb|AAX38551.1|[61105788] Cla PRP8 intein 

>|euc|181|gi|68300856|gb|DQ020659.1| AAY89365| Cre RPB2 intein 

>|euc|91|ADO67359.1 GI:309386499 | CroV Top2 intein 
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>|euc|178|gi|1076955|pir||A46080 Ctr VMA intein 

>|euc|178|XP_002547851.1 GI:255725850 | Ctr-MYA3404 VMA intein 

>|euc|164|gi|58761325|gb|AAW82371.1|[58761325] Dhan GLT1 intein 

>|euc|372|DAA01258] Eni-FCSGA4 PRP8 intein 

>|euc|316|Obtained from Paul Liu| Hca PRP8 intein 

>|euc|200|gi|27528478|emb|CAC86353.1|[27528478] Kex-CBS379 VMA intein 

>|euc|134|gi|27526577|emb|CAC86345.1|[27526577] Kla-CBS683 VMA intein 

>|euc|134|gi|29420855|dbj|BAC66649.1|[29420855] Kla-IFO1267 VMA intein 

>|euc|134|gi|49644461|emb|CAG98033.1| Kla-NRRLY1140 VMA intein 

>|euc|340|EEQ33074.1 GI:238843412 | Mca-CBS113480 PRP8 intein 

>|euc|283|gi|61191907|gb|AAX39417.1|[61191907] Nfi PRP8 intein 

>|euc|325|EEH36374.1 GI:226280808 | Pabr-Pb01 PRP8 intein 

>|euc|336|EEH18760.1 GI:225680476 | Pabr-Pb03 PRP8 intein 

>|euc|164|U-psud_arachne10x-384:19519-10643 | Pan GLT1 intein 

>|euc|336|ABC00920| Pbr-Pb18 PRP8 intein 

>|euc|163|NCBI-TDB_19Sep04 | Pgu GLT1 intein 

>|euc|163|Broad Instidute genome sequencing project | Pgu-alt GLT1 intein 

>|euc|164|gi 62183494, bp 178697-180601 | Pno GLT1 intein 

>|euc|154|gi|126094817|gb|ABN64963.1| Pst VMA intein 

>|euc|396|gi|144686405|gb|AAXI01000505.1|[144686405] | Ptr PRP8 intein 

>|euc|225|gi|27528482|emb|CAC86355.1|[27528482] Sca-CBS4309 VMA intein 

>|euc|225|BAC66650 |BAC66650.1 | GI:29420857 | Sca-IFO1992 VMA intein 

>|euc|149|gi|27528472|emb|CAC86344.1|[27528472] Scar VMA intein 
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>|euc|149|gi|67951|pir||PXBYVA | Sce VMA intein 

>|euc|149|gi|16417188|gb|AAL18609.1|[16417188] Sce-DH1-1A VMA intein 

>|euc|149|EEU05498.1 GI:256270281 | Sce-Jay291 VMA intein 

>|euc|149|gi|29420841|dbj|BAC66642.1|[29420841] Sce-OUT7091 VMA intein 

>|euc|149|gi|29420843|dbj|BAC66643.1|[29420843] Sce-OUT7112 VMA intein 

>|euc|149|gi|151941820|gb|EDN60176.1|[151941820] Sce-YJM789 VMA intein 

>|euc|207|gi|27528474|emb|CAC86346.1|[27528474] Sda VMA intein 

>|euc|200|gi|29420861|dbj|BAC66652.1|[29420861] Sex-IFO1128 VMA intein 

>|euc|175|gi|116048508|gb|AATM01000037.1|[116048508]| Sja VMA intein 

>|euc|149|gi|29420869|dbj|BAC66656.1|[29420869] Spa VMA intein 

>|euc|125|gi|27528480|emb|CAC86354.1|[27528480] Sun VMA intein 

>|euc|149|gi|27528476|emb|CAC86352.1|[27528476] Tgl VMA intein 

>|euc|149|gi|27529083|emb|CAC86351.1|[27529083] Tpr VMA intein 

>|euc|145|gi|27526579|emb|CAC86347.1|[27526579] Vpo VMA intein 

>|euc|149|gi|27529077|emb|CAC86348.1|[27529077] Zba VMA intein 

>|euc|146|gi|27529079|emb|CAC86349.1|[27529079] Zbi VMA intein 

>|euc|147|gi|27529081|emb|CAC86350.1|[27529081] Zro VMA intein 
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Appendix B: Code for NetLogo Model of Intein Life Cycle 

 

Note: The semicolon character (“;”) comments out the line that follows it. Procedures 

are written beginning with the line “to PROCEDURE_NAME,” are finished with the 

command “end,” and are invoked by writing the name of the procedure as a command. 

Custom interface options (e.g. sliders, value outputs, and plots) are not included in the 

code, instead being generated by the user on the NetLogo graphical user interface. 

 

;;; Intein Life Cycle Simulations  

 

;;; BREEDS and GLOBALS ;;; 

 

;; Names the two intein alleles 

;; "hens" carry the intein and a functional HEN domain 

;; "nointeins" have an empty recognition site 

 

breed [hens hen] 

breed [nointeins nointein] 

 

;; Counting variables for global time, time since last viral infection, total population, and 

the number of deaths in a viral event 

 

globals [time viraltime census died] 
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;; Tracks intein allele-specific generation time for each individual 

 

turtles-own [reptime] 

 

;;; SETUP PROCEDURES ;;; 

 

to setup 

  clear-all 

  clear-output 

  setup-patches 

  set-default-shape turtles "gene" 

  setup-hens 

  setup-nointeins 

  set time 0 

  set viraltime 0 

  reset-ticks 

  end 

 

;; Sets the color (blue) of the patches 

 

to setup-patches 

  ask patches [set pcolor blue] 
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  end 

 

;; Setup procedure for each intein allele 

;; Assumes random distribution 

;; Sets random starting point in life cycle (i.e. time since last replication) for each 

individual   

 

to setup-hens 

  create-hens number_intein+ 

  ask hens [set color red] 

  ask hens [set reptime random 270] 

  ask hens [setxy random-xcor random-ycor] 

  end 

 

to setup-nointeins 

  create-nointeins number_intein- 

  ask nointeins [set color green] 

  ask nointeins [set reptime random 250] 

  ask nointeins [setxy random-xcor random-ycor] 

  end 

 

;;; GO PROCEDURES ;;; 
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;; Timekeeping variables advance with every tick 

;; Output file names must be altered manually between simulations 

;; Model stops if either intein allele has gone to fixation 

;; Turtles can move, mate, and replicate, during each turn 

;; Homing occurs following successful mating (i.e. fusion and recombination), and the 

procedures are nested as such 

;; Viral infections occur once the "viraltime" variable reaches the designated value 

 

to go 

  ;; Stop procedures 

  if count nointeins = 0 [ 

    export-output "netlogo_525_5.out" 

    stop 

    ] 

  if count hens = 0 [ 

    export-output "netlogo_525_5.out" 

    stop 

    ] 

  ;; Timekeeping and population counting 

  yeartime 

  virustime 

  popcount 

  ;; Life processes 
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  move 

  mate 

  reptimer 

  replicate 

  death 

  ;; Reporting 

  writeout 

  tick 

  end 

 

;; Advances global time 

;; Each "1" refers to a minute 

;; Time counter resets after one "year" in minutes elapses 

 

to yeartime 

  ifelse time < 525960 

    [set time time + 1] 

    [set time 0] 

  end 

 

;; Advances counter for time since last infection 

;; Infection_Frequency is assigned to a slider in GUI that controls the number of ticks 

between infections 
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to virustime 

  ifelse viraltime < Infection_Frequency - 1 

    [set viraltime viraltime + 1] 

    [set viraltime 0] 

  end 

 

;; Takes census for total population in the model 

 

to popcount 

  set census count turtles 

  end 

 

;; Turtles move randomly around the modeled space (approximates Brownian motion) 

 

to move 

  ask turtles [ 

     right random 360 

     forward 1 

     ] 

  end 

 

;; Mating procedure modeling cellular fusion and recombination  
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;; Requires two turtles to share the same patch 

;; Fusion (1E-4) and recombination (0.62) efficiencies based on Naor et al. 2012 

;; Fusion and recombination must occur for homing to occur 

;; Mating between un-invaded individuals produces no significant effect (population is 

assumed clonal other than the presence/absence of the intein)  

 

to mate 

  ask hens [ 

    if count turtles-here >= 2 [ 

      if random 10000 < 1 [ 

        if random 100 < 62 [homing] 

        ] 

      ] 

    ] 

  ask nointeins [] 

  end 

 

;; Homing only occurs on the successful mating of intein+ and intein- individuals 

;; Converts intein- individual to intein+ 

;; Invaded individual retains progress towards replication, but adopts generation time of 

the intein+ allele  

 

to homing 
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  let emptysite one-of nointeins-here 

  if count nointeins-here != 0 [ 

    let temptime [reptime] of emptysite 

    hatch-hens 1 [ 

      set color red 

      set reptime temptime 

      ] 

    ask emptysite [die] 

    ] 

  end 

 

;; Replication timers continuously advance (can be varied to account for seasonality by 

altering the inequality) 

;; Individuals approach replication more quickly when local cell density is low 

;; e.g. per turn, completely isolated individual gains +1 on replication time, whereas 10 

individuals in radius "share resources" and each gain +1/10 on timers 

 

to reptimer 

  if time <= 525960 [ 

    ask turtles [ 

      let density count turtles-here 

      set reptime reptime + ( 1 / density ) 

      ] 
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    ] 

  end 

 

;; Replication occurs continuously (can alter inequality to account for seasonality) 

;; No explicit carrying capacity is designated, but growth levels off as population 

increases (approaches stationary phase)  

;; Generation time for intein- individuals is 250 minutes 

;; Intein confers 7.5% fitness cost, resulting in generation time of 270 minutes 

;; Replicative ability decreases as local cell density increases  

;; Counter resets following replication 

 

to replicate 

  if time <= 525960 [ 

    ask hens [ 

      if reptime >= 270 [ 

        if random 100 < ( 100 - ( count turtles in-radius 5 ) ) [ 

          hatch-HENs 1 [ 

              set color red 

              set reptime 0 

              ] 

            set reptime 0 

            ] 

          ] 
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        ] 

    ask nointeins [ 

      if reptime >= 250 [ 

        if random 100 < ( 100 - ( count turtles in-radius 5 ) ) [ 

          hatch-nointeins 1 [ 

              set color green 

              set reptime 0 

              ] 

            set reptime 0 

            ] 

          ] 

        ] 

      ] 

  end 

 

;; Infection_Frequency is set by slider in GUI 

;; Infection epicenter is randomly assigned 

;; All turtles in designated radius of epicenter die 

;; Between 17.4% and 69.6% of environment is covered by each infection event (avg. 

41.8 +/- 0.3%, determined after analyses)  

 

to death 

  if viraltime = Infection_Frequency - 1 [ 
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    ask patch random-xcor random-ycor [ 

      if any? turtles in-radius 16 [ 

        set died count turtles in-radius 16 

        ask turtles in-radius 16 [ 

          die 

          ] 

        ] 

      ] 

    ] 

  end 

 

;; Global time, total population prior to event, and total number of deaths are reported 

following each viral infection 

 

to writeout 

  if viraltime = Infection_Frequency - 1 [ 

    output-type time 

    output-type "," 

    output-type census 

    output-type "," 

    output-print died 

    ] 

  end 


