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Abstract 

 

Hyperlipidemia and hyperglycemia frequently occur in obese population. As 

chronic, low-grade inflammation is closely associated with obesity, we investigated 

if polyphenol-rich blackcurrant extract (BCE) can prevent inflammation and diet-

induced metabolic disturbances in mice. Male C57BL/6J mice were given a modified 

AIN-93M control diet containing high fat/high cholesterol (16% fat, 0.25% 

cholesterol by weight) or the same diet supplemented with 0.1% BCE (wt/wt) for 

12 weeks. No significant differences in total body weight or liver weight occurred 

between the two groups. BCE-fed mice had fewer crown-like structures (CLS) with 

concomitant decreases in mRNA abundance of F4/80, CD68, and inhibitor of nuclear 

factor kB kinase e (IKKe) in the epididymal adipose tissue. F4/80 and IKKe mRNA 

levels were positively and significantly correlated with CLS number. BCE-fed mice 

demonstrated a significantly lower plasma total cholesterol (TC) and glucose levels 

than controls, but no significant difference in plasma triglyceride (TG) levels. BCE 

supplementation did not significantly alter mRNA levels of major regulators of 



hepatic cholesterol metabolism, i.e., HMG-CoA reductase (HMGR) and low density 

lipoprotein receptor (LDLR). However, protein expression levels of mature sterol-

regulatory element binding protein 2 as well as LDLR were significantly increased. 

In the livers of mice fed BCE, there was a significant decrease in expression of 

proprotein convertase subtilisin/kexin type 9 (PCSK9), which facilitates LDLR 

protein degradation, as well as one of its transcriptional regulators, i.e., hepatocyte 

nuclear factor 4 alpha. The skeletal muscle of BCE-fed mice showed a significant 

increase in mRNA expression of genes involved in energy expenditure and 

mitochondria biogenesis, including peroxisome proliferator activated receptor 

alpha (PPARalpha), PPARdelta, uncoupling protein 2 (UCP-2), UCP-3, and 

mitochondrial transcription factor A (TFAM). Upon stimulating splenocytes from 

BCE-fed mice with lipopolysaccharides, tumor necrosis factor alpha and interleukin-

1beta mRNA levels were significantly lower than control mice (4). The results 

suggest that BCE supplementation decreases obesity-induced inflammation in 

adipose tissue and splenocytes, at least in part, by modulating energy metabolism in 

skeletal muscle. Beneficial effects of BCE on plasma TC and glucose, liver steatosis 

suggest that this berry may be consumed to prevent metabolic dysfunctions induced 

by diets high in fat and cholesterol.   

 

 

Introduction 

Obesity is a widely-noted global health concern, and in the U.S. current rates 

demonstrate as many as 42% of adults are projected to become obese by the year 



2030 (19). It remains a leader in preventable causes of death, falling close behind 

tobacco smoking and elevated blood pressure (13). Chronic low-grade inflammation 

has been demonstrated to cause obesity-related metabolic diseases, such as insulin 

resistance, hyperlipidemia, hyperglycemia, type 2 diabetes, cardiovascular disease 

(CVD), and non-alcoholic fatty liver disease (NAFLD) (67). However, research has 

uncovered that a subset of obese persons can be metabolically healthy, which 

decreases the risk of secondary pathogenic obesity-associated diseases (83). This 

indicates that obesity alone may not result in metabolic dysfunction, but rather 

contributes to the progression of pathogenesis for secondary diseases.  

Metabolic stress resulting from fat overload, and subsequent recruitment of 

monocytes to adipose tissue is the cause of chronic local inflammation (27). This 

occurs by inducing the production of pro-inflammatory mediators in lipid-laden 

adipose tissue (3). Pharmaceuticals such as non-steroidal anti-inflammatory drugs 

are common treatments for acute and chronic inflammatory conditions, however 

they do come with adverse effects (32). In addition, the physiological characteristics 

of obesity-induced chronic inflammation differ from other inflammatory disorders 

such as arthritis and ulcerative colitis (37, 86). Therefore, identification of food 

components with anti-inflammatory properties and minimal side effects are 

critically needed. This will contribute to creating sufficient dietary strategies to 

prevent obesity-associated metabolic disorders.  

Epidemiological studies have indicated that diets containing high levels of 

fruits and vegetables are inversely associated with the pathogenesis of obesity and 

CVD (81). These beneficial effects are associated with the high polyphenol content of 



fruits and vegetables (56). Of the various polyphenols found in fruits, anthocyanins 

are the most abundant (28) and found in a wide array of berries such as blueberries, 

cranberries, raspberries, blackberries, chokeberries, and acai berries (87). Berries 

are of particular interest due to their purported health benefits, which are largely 

correlated with their high polyphenol content (6, 14, 18, 66, 82, 88). These benefits 

have been attributed to preventing cancer, diabetes, and other inflammatory 

diseases (24, 75, 88). Though blueberry, cranberry, blackberry, and raspberry are 

commonly consumed in the U.S., blackcurrant has recently increased in popularity. 

Blackcurrant is rich in anthocyanins and vitamin C (74), and is known to hold a 

higher antioxidant capacity compared to other commonly consumed berries (46, 51, 

84).  

Studies have demonstrated that blackcurrant exhibits anti-inflammatory, 

antioxidant, and anti-microbial effects, which could provide potential health benefits 

against hypertension, CVD, neurodegenerative disease, ocular diseases, and 

hypercholesterolemia (20, 25, 30, 35, 40, 74, 78, 79). Consumption of blackcurrant 

has also been shown to improve insulin sensitivity and inhibit inflammation (45). 

However, the mechanisms of action for the effects of blackcurrant on obesity-

associated inflammation have never been investigated. The goal of this study was to 

determine the possible roles and mechanisms of polyphenol-rich blackcurrant 

extract (BCE) in preventing obesity-associated metabolic abnormalities in mice fed a 

diet high in fat and cholesterol (4). 

 

 



Materials and Methods  

Animal care and diet 

Male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) at 15 weeks of 

age were randomly assigned into a control or BCE group. The control group of 11 

mice received a modified AIN-93M containing high fat/high cholesterol diet (HF/HC; 

16% fat, 0.25% cholesterol by weight; 55.7%, 125.5%, and 31.8% energy from 

carbohydrate, protein, and fat, respectively; 4529 kcal/g). The BCE group was fed a 

HF/HC diet supplemented with 0.1% of BCE by weight. Artemis International, Inc 

graciously supplied the standardized BCE powder containing 25% anthocyanins and 

40% polyphenols. Based on body surface normalization to a 70 kg individual (62), 

0.1% BCE containing 25% anthocyanins is equivalent to daily consumption of ~540 

mg BCE and 135 mg anthocyanins in humans. As the average daily intake of 

anthocyanins per person has been estimated to be ~200 mg in the U.S. (45), we 

believe the dietary level of berry extracts is attainable in humans (4). While 

developing HF-induced obesity, mice were given BCE to determine its preventative 

effects on obesity and its associated dysfunctions. Housing for mice was maintained 

in a controlled environment with 12h light/dark cycles and ad libitum feeding 

during the course of the study. Weekly body weight and food consumption were 

recorded along with monthly blood draws from the lateral tail vein. Post 12 weeks 

on the experimental diets, mice were fasted for 8 h and anaesthetized by injecting 

ketamine/xylazine (100/10 mpk) (Henry Schein Animal Health, Dublin, OH) (4). 

Cardiac puncture was used to collect ~1mL blood samples into a BD vacutainer 

containing EDTA, and mice were sacrificed by exsanguination followed by cervical 



dislocation. Epididymal and retroperitoneal fat pads were harvested, weighed, and 

snap frozen in liquid nitrogen for later use in gene analysis, or were fixed in 10% 

formalin for histological analysis. Gastrocnemius muscle samples were also 

collected, snap frozen in liquid nitrogen, and stored at -80oC for gene analysis (4). 

Blood was centrifuged at 1,500xg for 10 min at 4oC. Livers were weighed, and 

subsamples were snap frozen in liquid nitrogen and stored at 80oC until use or fixed 

in 10% formalin (4). The Institutional Animal Care and Use Committee of the 

University of Connecticut approved all animal procedures.  

 

Gene expression analysis of liver and muscle by quantitative realtime PCR (qRT-PCR)  

Total RNA extraction was performed on liver samples, epididymal fats, and 

muscle tissue using TRIzol reagent (Invitrogen, Grand Island, NY). The expression of 

genes involved in fat, cholesterol, and glucose metabolism was measured using qRT-

PCR analysis. This was accomplished using the SYBR Green procedure and CFX96 

realtime PCR detection system (BioRad, Hercules, CA) (40, 41, 42, 43, 59, 85, 86). 

Primer sequences were designed according to GenBank database using the Beacon 

Designer software (Premier Biosoft, Palo Alto, CA).  Ribosomal protein large P0 

(RPLP0) and Beta-actin represent the internal controls, and were used in calculating 

2-∆∆Ct. These values were used to ascertain the validity of the chosen internal control 

for the analysis. Using each internal control, the data analyzed demonstrated a 

similar trend of changes in gene expression and the data reported in this study used 

RPLP0 as an internal control.  

 



Western blot analysis 

Western blot analysis was performed with liver lysates (61). Antibodies used 

were: low-density lipoprotein receptor (LDLR; Abcam, Cambridge, MA), HMG-CoA 

reductase (HMGR; Santa Cruz Biotechnology, Dallas, TX), mature sterol-regulatory 

element binding protein 2 (mSREBP-2; Abcam) and beta-actin (Sigma, St. Louis, MO) 

(4). Blots were developed using horseradish peroxidase (Thermo Fisher Scientific, 

Rockford, IL) and densitometry analysis was performed using Chemidoc XRS+ (Bio-

Rad) and Image Lab software (Bio-Rad). Beta-actin was used as a loading control 

(4).  

 

Statistical Analysis 

Student’s conducted t-tests and results were used with the GraphPad Instat 6 

(GraphPad Software, La Jolla, CA) to compare mean differences between groups. All 

data are expressed as means  ± SEM, and an alpha-level of P<0.05 was considered 

statistically significant (4).  

 

Results 

Reduced expression of lipogenic genes in hepatic tissue by BCE supplementation 

Measuring the hepatic expression of LDLR and HMGR, and mSREBP-2, a 

transcriptional regulator of LDLR and HMGR, provided mechanistic insight into the 

total cholesterol-lowering effects of BCE. The abundance of mRNA for LDLR and 

HMGR did not indicate a statistically significant difference between control and BCE 

groups (Figure 1A). However, Western blot analysis did indicate significantly higher 



protein levels of mSREBP-2 and LDLR in mice fed BCE-diets than controls, but 

showed no difference in HMGR protein levels (Figure 1B and C). mRNA expression 

of fatty acid oxidation genes, carnitine palmitoyltransferase  1� (CPT-1�), CPT-1�, 

and acylCoA oxidase 1 (ACOX-1), were not significantly altered by supplementation 

with BCE (Figure 2). Hepatic expression of gluconeogenic genes, as in 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6P), 

showed no significant difference for both groups.  

 

Alterations in the expression of metabolic genes in the muscle by BCE supplementation 

Although the percentage of epididymal fat weight was significantly reduced 

in the BCE-fed mice, there were no significant differences in the expression of genes 

involved in lipid synthesis and fatty acid oxidation, such as SREBP-1c, PPARγ, fatty 

acid synthase (FAS), stearoyl CoA desaturase 1 (SCD-1), CPT-1α and 1β, in the 

epididymal fat (data not shown).  

To investigate the potential effect of BCE supplementation on energy 

metabolism in muscle, which would contribute to potential alterations in total body 

weight, we measured expression of genes involved in fatty acid beta oxidation and 

mitochondrial uncoupling/biogenesis. PPAR�, PPAR�, UCP-2, UCP-3, and TFAM 

expression demonstrated significant increases in the muscle of BCE-fed mice 

compared to the control group (Figure 3, 4, and 5). In addition, BCE 

supplementation showed a trend toward increased in expression of ACOX-1 and 

peroxisome proliferator-activated receptor � coactivator 1� (PGC-1�).  

 



Discussion 

Obesity significantly increases the risk of CVD, NAFLD, diabetes mellitus, 

hypertension, arthritis, asthma, and cancer, which remain major health problems in 

the U.S. (71). Chronic, low-grade inflammation is a common factor associated with 

the pathogenesis of obesity-related metabolic diseases (71). Identifying dietary 

products that lower blood lipids and glucose would contribute to lowering the 

disease risk. Many natural food products having anti-inflammatory properties have 

been identified, though novel discoveries would contribute to the list of potentially 

therapeutic dietary components (3). Blackcurrant cultivation doesn’t have a 

substantial history in the U.S., however its potential health benefits have granted it a 

significant amount of attention. Blackcurrant has been demonstrated to have a 

myriad of therapeutic properties, acting as an antioxidant, anti-inflammatory, and 

anti-microbial agent [25]. However, the role of blackcurrant in modulating obesity-

induced inflammatory conditions has yet to be investigated (3). This study shows 

that BCE supplementation lowered plasma TC and decreased fat accumulation in the 

liver and plasma glucose, without altering the expression of genes involved in 

lipogenesis, fatty acid oxidation, or gluconeogenesis. We presume that the 

prevention of hepatic steatosis and hyperglycemia by BCE supplementation is 

secondary to its effects on extra-hepatic tissues, such as skeletal muscle.  

Skeletal muscle is a metabolically active tissue that contributes largely to 

energy expenditure in the body. Due to the absence of change in regard to lipogenic 

and fatty acid oxidative gene expression in adipose tissue by BCE supplementation, 

despite less macrophage infiltration, we investigated the effect of BCE on lipid 



metabolism and mitochondrial biogenesis in skeletal muscle. In mice fed a BCE-diet 

compared to controls, fatty acid beta-oxidation genes, i.e. CPT-1�, CPT-1�, and 

ACOX-1, showed no significant difference coupled with an increasing trend for 

ACOX-1 (P = 0.08). Although, an observed significant induction of PPAR� and PPAR� 

by BCE supplementation in muscle with an associated increase in UCP-2 and UCP-3 

expression was noted. The PPAR genes have been demonstrated to act as 

transcriptional regulators for UCP-2 and UCP-3 expression in skeletal muscle tissue 

[80]. UCP1 functions mainly in brown adipose tissue, while UCP2 and UCP3 are 

expressed in other tissues including skeletal muscle [57]. UCP-2 and UCP-3 act by 

uncoupling respiration from ATP synthesis in the mitochondria, which facilitates the 

dissipation of energy as heat [34] and prevents buildup of reactive oxygen species 

[44, 55]. UCP-2 and UCP-3 have also been shown to play important roles in glucose 

and lipid metabolism [15, 33]. As an example, UCP-3 overexpression in skeletal 

muscle of mice was shown to protect against obesity by lowering fasting plasma 

glucose and insulin [10]. Concurrent with this observation, we also saw a ~35% 

reduction in fasting plasma glucose for the BCE group (data not shown). In addition, 

we also saw a significant increase in TFAM expression coupled with an increasing 

trend in PGC-1�, a large component in mitochondrial biogenesis and uncoupling 

[17], in the skeletal muscle of BCE mice. Further investigation is necessary to 

address if BCE enhances mitochondria biogenesis and energy expenditure in 

skeletal muscle; however, our observations strongly suggest that BCE may exercise 

its anti-inflammatory properties in adipose tissue by modulating energy metabolism 

in skeletal muscle (3).  



Achieving the preventative and therapeutic goal to lower circulating 

cholesterol is accomplished by the induction of LDLR expression and activity in the 

liver. Prescribed cholesterol-lowering drugs, such as statins, inhibit HMGR activity 

which in turn increases LDLR expression [26]. Inducing LDLR expression mainly 

depends on SREBP-2, a widely recognized transcriptional regulator of LDLR, which 

also acts by upregulating HMGR expression [69]. High levels of cholesterol in the cell 

cause insulin-induced genes (INSIG) to bind to SREBP-2 in complex with SREBP 

cleavage-activating protein (SCAP) in the endoplasmic reticulum. This prevents the 

translocation of the SREBP-2/SCAP complex to the Golgi [31]. Lowered levels of 

cellular cholesterol cause the SREBP-2/SCAP complex to be released from INSIG and 

transported to the Golgi, where it undergoes two step proteolytic cleavage, releasing 

the N-terminal transcriptional activation domain, mSREBP-2, which in turn induces 

LDLR and HMGR transcription. This study demonstrates that despite a substantial 

increase in mSREBP-2 protein levels in the livers of BCE-fed mice, LDLR and HMGR 

mRNA levels were not significantly altered. LDLR protein levels in the liver, 

however, did increase by ~80% for the BCE group compared to the control group. 

The result indicates that an increase LDLR protein is likely due to effects of BCE at a 

post-transcriptional level.         

Mice fed BCE, when compared to controls, showed attenuated liver steatosis 

by histological analysis. We measured the expression of genes involved in 

lipogenesis and fatty acid oxidation to investigate the mechanisms of action. BCE 

supplementation was shown to significantly lower FAS mRNA in the liver, however 

its protein levels revealed no difference between groups (data not shown). In 



addition, a trend toward a decrease rather than increase for expression of genes 

related to mitochondrial fatty acid oxidation, as in CPT-1α and 1β, was 

demonstrated in the livers of BCE-fed mice. BCE supplementation did not alter 

mRNA expression of ACOX-1, which is an important enzyme for peroxisomal fatty 

acid oxidation. This indicates that the mechanism of action for BCE in inhibiting the 

development of liver steatosis is not likely attributed to lipogenesis or fatty acid 

oxidation (3). We are interested in the findings of our recent report indicating that 

genes related to energy expenditure and mitochondrial biogenesis in the skeletal 

muscle of BCE fed mice were significantly increased, including PPARα, PPARδ, UCP-

2, UCP-3, and TFAM [3]. No significant changes were detected in expression of genes 

for lipid metabolism in the adipose tissue. These findings support the notion a 

decrease in liver steatosis may prove secondary to the effects of BCE on energy 

metabolism in the skeletal muscle. BCE supplementation also significantly 

decreased plasma fasting glucose levels by ~35%, but did not significantly alter 

hepatic expression of gluconeogenic genes, i.e., in G6P and PEPCK. UCP-2 and UCP-3 

are known to play crucial roles in glucose and lipid metabolism [15, 33], and 

overexpression of UCP-3 in skeletal muscle shows lowered fasting plasma glucose 

and insulin [10]. Therefore, we propose the beneficial effects of BCE 

supplementation in preventing liver steatosis and hyperglycemia are likely due to 

enhanced energy utilization in the skeletal muscle. Further investigation should be 

warranted to test this possibility. 

 

 



Conclusion 

This study is among the first to investigate the potential health benefits of 

BCE in preventing obesity-induced inflammation and hyperglycemia. Although 

further investigation is needed for understanding the exact mechanisms of action 

for the beneficial effects of BCE, our study strongly suggests that BCE consumption 

may prevent an array of metabolic dysfunctions related to high fat and high 

cholesterol diet.  
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Figure Legend 

 

Figure 1. Expression of mRNA and protein levels of lipogenic genes in the livers of 

male C57BL/6J mice fed a HF/HC control or 0.1% (w/w) BCE supplemented diet for 

12 weeks. A. mRNA expression. B. Western blot image. C. Protein levels 

(quantification). Values are means + SEM; n= 11 for control and 13 for BCE 

 

Figure 2. Expression levels for genes involved in fatty acid beta-oxidation between 

control and BCE mice; taken from skeletal muscle tissue.  

 

Figure 3. Gene expression changes in lipid metabolism between control and BCE 

groups.  

 

Figure 4. Mitochondrial biogenesis gene expression trends in skeletal muscle.  

 

Figure 5. Changes in expression of genes involved in mitochondrial uncoupling for 

control and BCE groups.   

 

Figure 2-5. Metabolic gene expression in skeletal muscle tissue taken from the 

gastrocnemius of male C57BL/6J mice fed a HF/HC control or 0.1% (wt/wt) BCE 

supplemented diet for 12 weeks. Data are expressed as relative expression to 

control. Values are means + SEM; *, P<0.05; n= 11 for control and 13 for BCE 
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