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so that readers with varied backgrounds can translate them easily 
in their field, both when designing studies and when analyzing 
data and interpreting them. The visual method of describing linear 
(and nonlinear) causal relationships between true concepts and 
measured variables was invented by Sewall Wright almost a century 
ago [5] and offers more than just a graphical means of translating 
testable equation into visual models, it provides the framework for a 
comprehensive statistical approach that has rather few known limits 
[6]; it is also known as structural equation modeling (SEM) [7,8].

Analyses and their Visual Representations
The GLMM method centers on modeling latent variables, or 

LVs, and connects observed variables and LVs in causal (structural) 
models that promise a stronger causal inference footing compared 
to other statistical approaches [9-11]. GLMM is a parametric case 
of the more general nonparametric graphical causal language [12], 
which has evolved into a full-fledged causal calculus [13], known 
as structural causal modeling (SCM [14]). We restrict our review 
to the parametric structural models with continuous variables for 
simplicity, but we cover categorical LVs in the process; software 
and statistical advances however accommodate easily other types of 
outcomes (e.g. binary and counts [15]).

A latent variable is simpler to conceive of and view than one 
may think: it is just a variable that happened to be unobserved in 
one instance [16]; in this sense it is just a variable that is completely 
missing, whose values are not in the dataset. Figure 1b and Figure 
1c depict the similarity between an observed Y and a latent Y (both 
continuous normally distributed): they are both described by their 
own mean and variance, it just happens that the raw data does 
not have any values for the LV in it. If one wants to ‘see’ such an 
LV, they can do so by simply generating a normally distributed 
score, easily done in Excel for example; by typing something like 
“=NORMINV(RAND(),0,1)”, you just observed a score for one case 
of a latent variable with mean zero and variance one (these values can 
be changed at will); by typing it in say 100 cells in the same column, 

Abstract
We provide a comprehensive review of simple and advanced statistical 
analyses using an intuitive visual approach explicitly modeling Latent 
Variables (LV). This method can better illuminate what is assumed in 
each analytical method and what is actually estimated, by translating 
the causal relationships embedded in the graphical models in equation 
form. We recommend the graphical display rooted in the century old 
path analysis, that details all parameters of each statistical model, 
and suggest labeling that clarifies what is given vs. what is estimated. 
We link in the process classical and modern analyses under the 
encompassing broader umbrella of Generalized Latent Variable 
Modeling, and demonstrate that LVs are omnipresent in all statistical 
approaches, yet until directly ‘seeing’ them in visual graphical displays, 
they are unnecessarily overlooked. The advantages of directly 
modeling LVs are shown with examples of analyses from the Active8 
intervention designed to increase physical activity.

Introduction
Research in a variety of fields including medicine and social 

sciences makes use of statistical tests that have a long tradition 
and have become almost second nature to researchers and 
methodologists. Newer approaches to investigating truly causal 
connections between variables meant to explain and predict the 
causal nature of relationships are still developing however [1], but 
in the past decades one overarching statistical model rooted in 
causal modeling has expanded to include practically any imaginable 
statistical analysis. This approach is called the Generalized Latent 
Variable Model  (GLMM [2-4]) and is a form of linear parametric 
statistical modeling that encompasses most known analyses, but does 
so while making latent variables (LVs) explicit and modeling them 
in the open.

We provide examples of classic and more modern analyses 
customarily used in answering broad research and statistical 
questions, and do so by detailing a visual method of depicting the 
statistical assumptions and expectations behind GLMM models, 
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you have just ‘observed’ 100 cases (a sample), and when pressing 
‘Enter’, all these 100 values are ‘updated”, i.e. a new sample with a new 
set of 100 values is ‘drawn’ for you from a population of infinite size.

The direct analogue of this operation in software like Amos 
5 ([17] or later) for instance  is simply drawing a circle. That’s all! 
Plus, of course, telling the program the same thing, which is that you 
know its mean (zero) and its variance (one), because no program 
could estimate them without any individual case values. Similarly, 
in Mplus for instance, one just writes a one line code like “LV by;”, 
which is a short version of defining a latent variable by its indicators 
(like “LV by X Y Z;”), only in this case there are no such indicators 
of it; same as above, you need to tell the program that you know 
its mean and its variance (LV@1; [LV@0];). This happens to be in 
fact the shortest possible introduction to generating unobserved 
variables, or designing studies using Monte Carlo simulations: one 
creates variables with desired distributions from scratch and then can 

analyze them subsequently [18]; of course when connecting such a 
new LV to other variables (observed or not) one also needs to define 
the scale for all LVs, i.e. the unit of measurement (lbs., or inches, or a 
1-5 disagree-agree scale, etc.). We present next several common and 
modern analyses using the graphical intuitive method that brings LVs 
to light.

On rules to translate structural models
First, we note that we visually specify in this paper the models 

with enough detail to stand on their own, with no equation necessary: 
equations can be fully derived from the visual models by following 
simple intuitive rules; we derived them for readers to ease the process. 
The models represent variables as network vertices (dots, or boxes) 
and the coefficients linking variables as lines with arrowheads, a 
method almost a century old [5,19]; we note that the arrows do more 
than just point, they convey ‘causal directionality’ [14]. Single headed 
arrows indicate a causal effect, while double headed arrows between 
variables stand for some common cause, omitted in the current 
model.

Because a normally distributed random variable (the focus of this 
review of methods) is fully described by its mean and variance, we 
represent variances as double headed arrows with arrows pointing to 
themselves, and the mean (or when the variable is caused by others, 
the intercept) by a small hexagon attached to the variable (see Figure 
1b); while this may appear to complicate the display, compared to 
other current options (like Figure 1d, common in J. J. McArdle’s 
research e.g. [20]) it will prove to really simplify things when models 
increase in complexity.  Instead of the triangle of 1’s, we choose to 
add a hexagon to each variable, for its mean (or intercept); εY stands 
for more than just error, it is commonly called a disturbance, and it 
encodes in fact all other factors affecting Y, not shown in this model. 
In fact, the double headed arrow pointing to the same exogenous 
(primary predictor) variable carries the same meaning of variability 
(or co-variability with itself) unexplained by the model, left to be 
explained possibly by larger causal models.

We distinguish between estimated and fixed model parameters, 
so that only one such visual depiction would be needed to represent 
both the input and the output (estimates) of a statistical model. When 
a residual error is specified for instance, like in Figure 1a, which 
translates visually a simple regression of Y on X, its loading is set to 
1, labeled ‘@1’ (to define its scale identical to its observed ‘anchor’ Y), 
and its mean is set to zero (because it cannot be identified otherwise); 
the direct equation translation of a structural model is then obtained 
by simply selecting an effect (Y) and adding up its causes (predictors), 
multiplied by their respective path/causal coefficients, e.g. for Figure 
1a Y= αY + β∙X + 1∙εY. Note that the equation form has less information 
than the visual model, because one has to also acknowledge in 
equation form the assumptions 0Yε =  and ρXεY = 0. We remind the 
reader that in a regression the variance of the predicted variable is 
not a model parameter, instead the variance of its residual error is 
estimated; similarly its actual mean is not estimated, but its intercept 
is, i.e. its mean if/when the predictors become zero.

Simple Variability Depictions
Continuous normally distributed variables can be directly 

represented as in Figure 1b or  Figure 1c, described by two parameters: 
mean and variance; while these can be estimated from their sample 
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σ2
X 

σ2
εY 

Y = αY + β·X + 1· εY  eq. (1a) 

Figure 1a: Simple regression as a structural model 

Notes: Five parameters are estimated: αY (Y intercept): and  (X mean), σ2
εY 

and σ2
X , and of course the focal β, from five ‘input’ data points: the means 

and variances of X and Y, and their covariance; hence df = 0 for this model 
(i.e. it is saturated).

Y 
σ2

Y 
 

Figure 1b: An observed normal variable

Note: The mean  is attached to the Y variable rectangle in a hexagon.

NIσ2
LVY 

LVY 

 

Figure 1c: A latent normal variable 

Note: The mean  and variance σ2 are not identified from this model, i.e. need 
to be specified/set, or the model needs to be expanded to estimate them, like 
in Figure 2b or Figure 6b.

Y 1  

Y = ·1 + εY   eq. (1d)  

εY @1 
@0 

σ2
εY 

Figure 1d: An observed normal variable ‘regressed’ on a constant of 1’s 

Note: The triangle is a ‘variable’ made up of 1’s (a constant technically).

Y εY @1 

NIσ2
εY σ2

Y 
 @0 

Y = + 1· εY    eq. (1e) 
Figure 1e: An observed normal variable with error only as ‘predictor’

Note: Variability in Y around its mean  is due solely to random error εY; 
NI indicates this parameter is non-identified, i.e. cannot be estimated in this 
setup.

Y LY 

@0 αY σY 
@1 

Y = σY ·LY    eq. (1f) 
Figure 1f: Variable Y model estimating its standard deviation (SD) 

Note: Two parameters are estimated here: αY and σY (instead of the regular 
variance σ2

Y).
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counterparts for the observed Y, they cannot be derived for the latent 
LVY, i.e. they are not identified. So for LVs they will need to be either 
set to specific values, or will need some anchors to be derived from 
them, like using one or more indicators.

The Figure 1a regression model can be better grasped by stepping 
back and looking at even simpler models, like a single variable one. 
Figure 1b and Figure 1c display an observed Y and a LV latent 
counterpart, while Figure 1d depicts an alternative one variable model 
with the variable Y mean shown as a coefficient of the regression of 
Y on an (imaginary) constant variable with 1’s for every case, hence 
formally: 1 1 .YY Y ε= ⋅ + ⋅  The direct equation translation of Figure 
1e is also simply 1 ,YY Y ε= + ⋅  with the corollaries E(Y) = E(εY), and  
σ2

Y= σ2
ε. Some common SEM software (like Mplus [15]) point out in 

their output which parameters were not estimated because were fixed 
to a certain value, by the user or by default: they have a standard error 
of zero, and hence a p value of practically one.

There is also a way to directly estimate in an  LV model the standard 
deviation of a variable, like Figure 1f (as suggested in [21] or [22].

Measurement Error
Estimating causal relationships between observed variables 

instead of using the true (latent) ones biases the true relationships, 
e.g. a 20% measurement error in a predictor variable X reduces by 
that much the estimate of the impact of X on an outcome Y [23]. A 
classic ‘model’ (not testable in the SEM sense) of the true scores is 
Kelley’s equation, represented in Figure 2a [24] (cited in [25]), but 
a more direct testable model is in Figure 2b, which implies that 
the observed variable has a measurement error variance part σ2

εmY 
(noise) that makes it not fully reliable (reliability is always ρ < 1). The 
equation in Figure 2b resembles a ‘mini factor analysis’ with only one 
indicator Y of the latent factor LY. Note that if the true LY is categorical 
(like ill vs. not ill), and Y is also categorical, the measurement error 
takes the form of a misclassification ([4]; such a model is presented 
later in Figure 9a).

The reader can notice that the one-variable (no measurement 
error) model in Figure 1b can be derived from the Figure 2b model 
by simply ‘erasing’ its measurement error variance, by setting the 
variance of σ2

εmY to zero (its mean is assumed zero by default, because 
it cannot be identified). More generally in fact, it has been noted that 
LV models can be viewed as a sensitivity analysis of their simpler 
observed variable-only counterparts ([4]).

Now that we can see how models can be translated into equations 
and statistical tests, we can pursue the example of specific statistical 
analyses. We will briefly describe each, and depict their visual 
display, but we mention first briefly the study that provided data for 
these illustration. Active8 was a randomized controlled trial (RCT) 
with two intervention groups in which identical physical activity-
promoting messages were delivered using either email or SMS; more 
details are in [26]. In these analytic examples we used two variables 
measured at baseline and after 12 weeks, moderate physical activity 
(PA), in days per week, and attitudes towards PA. All our analyses 
with output details and a fully deidentified extract of the data used in 
these examples are posted as online appendix at http://trippcenter.
uchc.edu/modeling and http://bit.ly/1DKSmB1

t-test and Anova
Comparisons between means of a continuous outcome can be 

achieved with a direct test of significance of the difference between 
means, as with the t-test, or by comparing the between-group to the 
within-group variability, as in Anova. The two analyses will yield 
identical results in terms of significance of the difference in means for 

Y  @ρ 

 

@(1-ρ) 

 = ρ·Y + (1-ρ)·     eq. (2a) 
Figure 2a: Kelley true score ‘model’

Note: This setup is not a testable model, it depicts the contribution of the 
mean (as a constant, i.e. same values, in a triangle) and observed score into 
the true Y score, knowing the variable’s reliability ρ.

Y 

εmY 

LY 

@1 

@1 
  

@0 
σ2
εmY 

NIσ2
LY 

Y = 1·LY + 1·εmY  eq. (2b) 
Figure 2b: Variable Y with measurement error 

Note: The residual error εmY is measurement error; one of course cannot 
identify from just two sample estimates (σ2

Y and Y ) both: 1. σ2
εmY and σ2

LY; 
and 2.  and Y . One of each needs to be fixed; commonly Y intercept is 
made 0; NI indicates this parameter is non-identified, i.e. cannot be estimated 
in this setup; the unreliability σ2

εmY can be set to a reasonable share of the 
sample variance σ2

Y, like 10-20% of it.

Y 1 Y 2 

σ2
Y2 σ2

Y1 

Y1    eq. (3a.1)  
Y2    eq. (3a.2) 

Figure 3a: The t-test model 

Note: The independent samples t-test is testing the hypothesis: 1 2Y Y= ; this two-
group setup allows for inclusion of group specific covariates; the two equations 
are simply one variable for each group, but across-group constraints are possible, 
like σ2

Y1 = σ2
Y2.

Y 1 Y 2 Y 3 

σ2
Y2 σ2

Y2 σ2
Y1 

Y1    eq. (3b.1)  
Y2    eq. (3b.2) 
Y3    eq. (3b.3) 

Figure 3b: Anova depiction as multiple-group model

Note: Anova results are identical to testing in a multiple-group model and 
1 2 3 ... .Y Y Y etc= = = ; the multiple-group setup allows for inclusion of group 

specific covariates; there is only one Y variable, with 3 means and variances.

Between group g 

Within group g 

ri
 

Yig eig
 

ug
 

Y =  + eig =  + (ug + ri)  eq. (3c)  

 

Figure 3c: The Anova error decomposition 

Note: Variable Y varies across both groups (indexed by g) and individuals 
(indexed by i); one case’s score then deviates from its own group mean, such 
deviations contributing to the variance of ri, and group means differ from the 
grand (overall) mean, which is captured by the variance of ug.

http://trippcenter.uchc.edu/modeling
http://trippcenter.uchc.edu/modeling
http://bit.ly/1DKSmB
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two-group comparisons. We tested the difference in means of the last 
wave outcome measure, moderate physical activity (PA) at work, in 
the entire sample (both conditions), with a t-test and an F test (Anova), 
which are related of course like t2 = F, and should coincide in terms 
of significance; they did in fact: p = .547, with t(80) = - 0.605 and 
F(1,80) = 0.37. A more direct view of these tests is shown in Figure 3a 
and Figure 3b; these are in fact easily testable models in software like 
AMOS or Mplus: they are 1-variable two (or more) group models, 
and hence with as many parameters as groups to be compared, and 
they can test equalities of parameter hypotheses by imposing equality 
constraints and testing whether the model drops in fit dramatically 
(case in which we reject the equality just imposed). Note that since 
there are variances estimated in each group, and the ‘baseline’ model, 
against which we test the equality of means hypothesis, needs to be a 
well-fitting model, one may have to allow at times the group variances 
to be equal, or not [27].

We detail in the online appendix the AMOS t-test equivalent as a 
2-group one variable model, which clearly demonstrates the flexibility 
of this approach, by testing the ‘equality of means’ hypothesis 
against different baseline models: assuming variances to be equal, 
or different; the results are replicated in the sub-sample with valid 
Y values. Another level of flexibility involves combining the Figure 

2b and Figure 3a models; this means that one can test for equality of 
means in a two-group AMOS model by relying on the true variances 
(and hence standard deviations), because true variances are only a 
part (albeit the largest) of an observed variable’s variance, with the 
rest being noise, or measurement error [28]. Such a test allows one 
to assess the sensitivity of the t-test to a range of plausible reliability 
values in each group; assuming a small unreliability of 10% in both 
groups e.g. did not alter the p value in our case.

Another way to intuitively grasp the logic of Anova is to depict 
the decomposition of the error of a variable into its between-
group and within-group components, as in Figure 3c. In fact this 
decomposition is the basis of two-(and multiple) level models, which 
in Mplus for example are run with no other model specification 
than ‘Analysis: Type=basic twolevel;’.  Anova can of course be tested 
using a regression setup [29], using binary predictors to contrast the 
groups that are the focus of comparison (see Figure 3d); this setup 
confesses openly the causal assumptions behind the analysis, i.e. that 
the grouping variable is the source (cause) of the  differences in means 
of the ‘dependent variable‘, as it is specifically labeled in software like 
SPSS [30].

The Paired t-test and Repeated Measures Anova 
(RAnova)

Testing whether a significant change occurred is often done with a 
paired t-test, which has been shown however to be fully replicated (as 
a particular case) by an LV model that has the change between time 
points directly specified as LV in the model [31] (we detail it below 
in Figure 5a). A paired t-test for the baseline-> 12 weeks moderate 
PA changes for example indicated a significant increase overall in the 
whole sample (N = 49, for valid pairs of observations baseline and 
follow-up), t(48) =  -2.252, p = .029, for an average increase of .469, 
from a 2.673 average to a 3.143 average of days of moderate PA at 
work. A RAnova test of the same changes yielded a F(1,48) = 5.07, 
with the same p value of course.

Latent Growth Models
It has been shown before that models of change are overlapping, 

and that growth models with specific constraints replicate both the 
paired t-test and repeated measures Anova (RAnova) models [32]. 
A LGM replication of a RAnova test has been detailed by Duncan 
[33] and Voelkle [32], and it involves fixing the loadings linking the 
slope factor, i.e. the individual score capturing the average change 
for each individual in the sample, to the observed scores, to values 
representing the polynomial coefficients used in RAnova. We show 
them for 3 waves of data in Figure 4a, an illustration of a LGM with 
both linear and quadratic growth (latent) factors.

LGMs can have more flexibility than RAnova, by allowing for 
instance free-shape trajectories of change, like Figure 4b, by freeing 
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ΔL21 αΔL21 

 

@0 
@0 

Y1 
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εΔL21 

@0 

σ2
εΔL21 

@1 

@1 

@1 

@1 
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Y 

     Y2 = 0 + 1· ΔL21 + 1·Y1      eq. (5a.1) 
 ΔL21 = αΔL21 + β·Y1  + 1·εΔL2 eq. (5a.1) 

Figure 5a: Latent Change Score model (replicating paired t-test and 2-wave 
Ranova)

Note: Many parameters are fixed here (see @ signs), leaving to be estimated 
only the intercept and residual variance of the LCS score ΔL21, the mean and 
variance of the baseline Y, and the proportional growth parameter β.

X(2 vs. 1) Y 
αY β 

Y = αY + β·X + 1· εY  eq. (3d)  

εY 
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εY @1 

Figure 3d: The Anova model as regression

Note: Being in group 2 (vs. 1) leads to having different Y outcome means; 
β reflects the difference in Y means; the bar in the X rectangle indicates a 
categorical variable; with more than 2 groups, several contrast dummy coded 
groupings can predict Y.
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X1 = αX1 + .577·ηI - .707·ηL + .408·ηQ + 1· εX1     eq. (4a.1)  
X2 = αX2 + .577·ηI                  - .816·ηQ + 1· εX2     eq. (4a.2) 
X3 = αX3 + .577·ηI + .707·ηL + .408·ηQ + 1· εX3     eq. (4a.3) 

Figure 4a: Repeated ANOVA as latent growth model 

Note: All three coefficients from the intercept factor η are set to .577.
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X1 = αX1 + 1·ηI          + 1· εX1      eq. (4b.1)  
X2 = αX2 + 1·ηI  + λX2·ηS  + 1· εX2      eq. (4b.2)  
X3 = αX3 + 1·ηI  + 1·ηS     + 1· εX3      eq. (4b.3)  

αX1  αX2  αX3  

Figure 4b: Latent growth model with linear and quadratic trends 

Note: The three coefficients from intercept factor η are set to 1; the middle 
loading is estimated, instead of fixed, to model curvilinear trajectories of any 
shape; the linear slope is centered on time 2.
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the middle loadings λ. For the moderate 3 wave physical activity (PA), 
the model indicated a significant average increase (slope) of .603 
days/week (SE = .227), p = .008. The estimated middle loading turned 
out to be .806 (.350), p = .021, which for our equal time interval means 
that by 6 weeks (the middle time point) 81% of the final change was 
already achieved. Note that although the model does not make this 
explicit, LGM is in fact a 2-level (hierarchical) model, with level 1 
measures and relations (X1-X3 and their regressions on ηINT and ηLIN 
and ηQUAD), while the regressions of η‘s on their own predictors (if any 
are specified) are technically level-2 relations [34].

The visual SEM models make clear what assumptions are relied 
upon in analyses like RAnova. They especially clarify the expectations 
about the relationships between residual errors made e.g. in mixed 
linear models (examples from Stata and SPSS are in the online 
appendix). These assumptions may range from an unstructured 
pattern (error variances and covariances between them all free) to 
compound symmetry (variances equal, and covariances between 
any pair of errors equal), to autoregressive patterns (variances equal, 
covariances decreasing for further away pairs); such constraints are 
handled easily in SEM software.

LGM in its structural form makes these ‘input’ settings more 
visible, besides it can also formally test such assumptions, and adds 
the possibility of adjusting the model based on how much the model 
specifications depart from data (beyond checking the model fit); for 
example often LGM will lead to negative variances of some observed 
repeated measures residuals, which can be by-passed by setting those 
variances to zero (and then accepting a non-positive definite matrix’ 
warning, i.e. covariances between the offending error and other 
variables cannot be defined). 

Latent Change Score models
We have shown before that the latent change score (LCS) can fully 

replicate the paired t-test [31], and since latent growth models (LGM) 
are a particular case of LCS ones [35], LCS can handle LGMs and 
then can even expand them with additional features (like dynamic 
relations). While the LCS setup in Figure 5a may appear complex, 
the model is rather intuitive: a change score (as an LV however, not 
a mere calculated difference score) is created by tricking the software 
into literally doing the desired subtraction ΔL21 = Y2 - Y1, but by 
adding up two causes of the later variable Y2: the prior values Y1 and 
the ‘change mechanism’ ΔL21: Y2 = ΔL21 + Y1. 

Many parameters are set to 0 or 1 to setup this subtraction, 
but LCS models have a host of advantages, among them modeling 
complex trajectories of changes and accounting for how changes 
depend on their prior values, as well as on other variables’ prior values 
and even on prior changes [36,37]. LCS models can also uncover 
complex dynamic processes induced by interventions or treatments 
[38]. The LCS model run in Mplus replicated the paired t-test and 
Ranova results, when the LCS model was restricted to a subsample of 
cases with values valid for both waves however; the intercept of ΔL21 
(i.e. the average change at zero predictor values, which of course was 
centered) was .470 (SE = .189), p = .013.

When the entire sample was analyzed however, the operant 
sample size for the baseline->12weeks LCS model of change increased 
(to N = 194), because software like AMOS and Mplus use what is 
known as Full Information Maximum Likelihood (FIML), which in 
essence uses information even from cases with only baseline or only 
follow-up valid values in estimating the model parameters, which 
is a proven advantage of FIML estimation [39]. FIML yielded the 
ΔL21 intercept as αΔL21 = .414 (SE = .160), p = .009; we confirm the 
conclusion that this outcome increased significantly.

Before moving into presenting several more complex statistical 
models, we briefly mention another way of seeing an underlying 
(unobserved) variable that is referred to in regression analyses, which 
is the key element in all models we showcase; it was suggested by 
Graham [40]. He presented the model that we adapted in Figure 5b, 

which illustrates the distinction between the actual observed Y and the 
predicted Y

∧
 outcome; this model is not identified (not all parameters 

can be estimated without additional constraints imposed). We note 
again that visual LV models can better clarify the inner workings of 
such statistical analyses.

The Factor Model
A commonly used statistical analysis directly makes reference to 

LVs and specifies them. Factor analysis investigates in its exploratory 
and confirmatory modes latent structures of the observed variables, 
by uncovering unobserved variables or LVs, called common factors. 
The LV factors account for the common variability (covariances) 
between observed variables [7]. The EFA and CFA models are 
illustrated in Figure 6a and Figure 6b. An EFA of the 6 ‘attitude about 
physical activity’ (PA) items (same three items, three from baseline 
and three from follow-up) successfully separated out the two sets by 
time, i.e. the two factors extracted were mapped unto their respective 
waves (see online appendix for details). A CFA of the three baseline 
attitude towards PA items yielded standardized loadings of .74, .80, 

X Y  s 
NIR 

εY 

@0 

@1 @0 
σ2

ε 

 Y = αY + R·  + 1·εY  eq. (5b.1) 
  = 0 +  s·X    eq. (5b.2) 

αY 

Figure 5b: Regression with the predicted outcome Y
∧

 in the model 

Note: s is a structural coefficient; the β regression coefficient for the Y on X 
regression is β = s∙R; one cannot estimate both R and σ2

ε, but they are related 
because R2 is the explained Y variance (when R is standardized) and σ2

ε is 
the unexplained Y variance, so they sum up to 1.
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W = αW + λ1W·η1 + λ2W·η2 + 1· εmW      eq. (6a)  
Figure 6a: Exploratory Factor Model (2 factors shown)

Notes: Indicators are uncorrelated, given (conditional on) their common predictors 
η1 and η2. In EFA the number of factors is not known a priori; η1 and η2 can be 
correlated or not; only the equation for the last indicator is shown ; ε ellipses are 
replaced by residual variances σ2.
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Figure 6b: Confirmatory Factor Model (scale)

Note: Indicators are uncorrelated, given (conditional on) their common 
predictor η; only the equation for the last indicator is shown.
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and .69; note that the first loading in Figure 6b is set equal to one, in 
its unstandardized form.

We remind readers that there exist also formative measures, i.e. 
causal indicator measures, shown in Figure 6c, for concepts like SES, 
who are literally composed of their ingredients, rather than looming 
behind them as their underlying cause [41]. Also, it is possible to 
test the reliability of computed composite scores (like weighted or 
unit weight total scores) by directly linking the two variables, the LV 
factor score and the composite that now is (partially) observed, like 
in Figure 6d; this was suggested by [42], but see [43] for an example.

LCA Latent Class Analysis
Latent Class Analyses attempt to explain the observed covariances 

between variables through the existence of distinct classes of cases 
(participants) within which such covariances disappear. A 2-class 
LCA analysis for example of the three baseline attitude items extracted 
classes of 84 and 205 cases, differing in terms of all three of their item 
averages of course, which were all lower in the first class and higher 
in the second, respectively. Expectations about the equality (or not) 
of variances of each indicator variable (X, Y, and Z) can be specified; 
note that the Figure 7a model differs from the Anova Figure 3b model 
only by the LCA model having more than one ‘dependent’ variable 
(latent class indicators), and not having the grouping variable known 
beforehand, i.e. the class categorical variable it is an LV in LCA.

Latent Class Combinations of Models
The following analyses make use of the Finite Mixture (FM) 

modeling perspective of extracting latent classes of cases based on 
expectations about differences and similarities between individual 
cases, within classes and between classes [44]; LCA is for example a 
simple FM model.  The FM models combine the latent class feature 
with causal models, and yield/uncover classes with expected/
hypothesized differences. The graphical models contrast two variants 
of depicting both the class differences and the causal model used in 
class extraction, see Figure 7a vs. Figure 7b, and Figure 7c vs. Figure 

7d. We show these visually and briefly introduce them, but refer the 
reader to the online appendix for actual analyses outputs.

Factor Mixture Causal Models
The Factor Mixture Model (FMM) combines factor analysis with 

LCA, or continuous LVs and categorical LVs, and can ‘fall back’ on 
either a factor analysis or a latent class analysis as particular cases, 
when additional restrictions are imposed [45,46]. The model in Figure 
7c simply assumes a latent factor operating behind the indicators X, 
Y, and Z, while at the same time extracting k classes that may differ 
in the measurement structure itself, in terms of the factor means, 
loadings, intercepts, and measurement error variances. In other 
words FMM extracts classes for which the means of the LV factor 
(and other model parameters) are expected to differ.

The Mixture Mediation Model (MMM or M3)
This particular analysis which combines mediation and FM has not 

been reported, to our knowledge, except in [47]. Such a model, shown in 
Figure 8a, can separate classes differing in any (or all) of the parameters 

Z Y X 

η 
λY λZ @1 αη 

εΔL21 

@0 @0 

η = αη + 1·X + λY·Y + λZ·Z   eq. (6C)  

αX  αZ 

Figure 6c: Causal indicators model (index)

Note: The residual error variance of the formative factor is commonly set to 
zero.
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Figure 6d: Factor model with composite (computed, i.e. observed) score

Notes: Errors and intercepts are omitted for clarity; C is neither a full square 
nor an oval, as it’s a score computed from observed indicators; (σηC)2 is the 
reliability of C, i.e. proportion variance of C explained by η.  

Z Y X 
   

Zk    eq. (7a.k)  
Figure 7a: Latent Class Analysis (variant 1)

Notes: Within each of the k classes the indicators are uncorrelated; the 
means and variances of X,Y, and Z can differ between classes, and k 
equations are behind the model, but only a generic one for Z is shown; this 
model only differs from the Anova Figure 3c by having two more variables 
here (Y and Z), and in the grouping variable, which here is unknown.
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Zk    eq. (7b.k)  
Figure 7b: Latent Class Analysis (variant 2)

Notes: The 1-group model has indicators ‘regressed’ on a latent C, with 
dashed arrows between them (inside bar means C is categorical); only the 
Z equation is shown. See Linda Muthen's replies here (http://www.statmodel.
com/discussion/messages/13/568.html?1283443201) for context.
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Figure 7c: Factor Mixture Model = Latent Class Analysis + Factor 
Analysis (variant 1)

Notes: Within each of the k classes the indicators are correlated due to 
their common factor η; only a generic one for Z is shown; the means of the 
η, the loadings and residual error variances can differ between classes 
(follow the k index).
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estimated for a mediation (indirect effects) model: the direct, indirect, 
and total effects [48], as well as in the intercepts of the mediator and 
outcome, and possibly also in the primary cause->mediator (a) and the 
mediator-> outcome (b) coefficients, as shown in Figure 8a.

Latent Change Mixture (LCM)
Another combination of continuous and categorical LVs is the LCS 

with unobserved classes [49], or what we call Latent Change Mixture 
(LCM) models (see Figure 8b). A better known (simpler) variant of 
the LCM is the Growth Mixture Model (GMM) [50], which assumes 
however only one global slope, and ignores subsequent pairwise changes. 
LCS with latent classes however can allow for differences between 
(unobserved) classes in any pairwise changes, as well as in proportional 
growth coefficients, and even in changes-to-changes coefficients.

Other Less Obvious Latent Variables
Some recent advances in statistical modeling brought to the 

forefront evidence for the latent (unknown, unobserved) nature of 
other statistical concepts. We briefly mention three of them here 
and provide visual depictions, but refer the readers to more detailed 
writings.

Latent class categorical LV with measurement error

Models containing both Latent Class and latent regression 
analyses, in the family of Finite Mixture models (FM), like Growth 
Mixture Models (GMM) of distinct types of trajectories by latent 
classes of cases (people, patients, etc.), have pointed to the ‘doubly 
latent’ nature of the classification categorical latent variable C that 
represents the classes (class 1, 2, etc.). For example, in GMM models, 
the ‘measurement model’ component is meant to extract/uncover 
the classes using some indicators of the class latent variable (similar 
to indicators of a common factor in factor analysis [51]), while 
the ‘predicting the class’ part of the model allows for regressing 
this categorical C classification unto chosen predictors of class 
membership, yet a multi-class part of the model allows for ‘effects’ of 
the class variable unto distal outcomes [52]. Class variables however 
are estimated imperfectly, i.e. with measurement error, because each 
case gets estimated probabilities to belong to all classes, which are not 
clean-cut values like a 1.0 and the rest zeros, i.e. there is some mis-
classification inherent in deciding that a case belongs to a single class 
(like error in classifying a person in terms of race/ethnicity). So there 
is measurement error contained in the C variable derived in statistical 
outputs, and hence the impact of it on a distal outcome is biased by 
this unreliability [23]; new methods have been developed recently to 
correct for such measurement error (e.g. the 3-step method [53]). 
Such a class latent variable then deserves two circles around it (see 
Figure 9a) in our opinion, one due to the inherent unknown nature of 
the latent class, the other from the measurement error it carries over 
once cases are assigned to classes [53].

Potential outcomes (PO)

In causal inference literature it is well known that estimating 
true causal effects, particularly the direct and indirect causal effects, 
requires reliance on variable values which have not been observed, 
called potential outcomes (PO), some of which can never be observed 
by design, called contrary to fact (CF), or counterfactuals [54]. These 
can be seen as a form of LVs in fact, with half or all of their values not 
observed.

For example, when an intervention tries to reduce weight 
(outcome Y) by improving food habits (mediator M), the definition 
and estimation of causal indirect effects requires besides analyzing 
the observed M and Y variables their POs M0 and M1, or the mediator 
if all cases were not treated, or all were treated, respectively, and 
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residual error variances of the three indicators; residual variances σ2 shown 
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Figure 8a: The Mixture Mediation Model (MMM); the a,b,c notation
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be easily shown in the model, the total effect (τ or TE) and the indirect effect 
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Y2 

εmY 

ΔL21 

@0 
@0 

Y1 
1k 

βk 

εΔL21 

@0 σ2
εk 

@1 

@1 

@1 

@1 

αY2k 

αΔL21k 

      Y2k = 0 + 1· ΔL21 + 1·Y1k   eq. (8b.k1) 
 ΔL21k = αΔL21k + βk·Y1k  + 1·εΔL2k eq. (8b.k2) 
Figure 8b: The Latent Change Mixture (LCM) model

Notes: A variant could be drawn like in Figure 7d; our notation makes evident 
what parameters can differ across classes k.

Z Y X 
   

σ2
mXk σ2

mYk σ2
mZk 

C 
DOk 

σ2
C Measurement Error 

 Zk =  + εk    eq. (9a.1) 
 DOk     eq. (9a.2) 
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then also Y0
M0, Y1

M1 or: Y if all were not treated, but their mediator 
had values still under the not treated (control) condition (which 
we cannot observe for the treated cases of course), and Y if all were 
treated and their mediator was also that under treatment (unobserved 
for the control cases). The POs Y0

M1 and Y1
M0 are fully contrary-to-

fact (CF), or inaccessible by researchers, and represent: Y if all were 
not treated but their mediator attained its values had all cases been 
treated, and finally Y if all were treated but their mediator reached 
values had they been in the control condition. While relationships 
between these 6 PO variables operating behind the 2 observed ones 
are not directly testable in linear causal models, assumptions behind 
the definition and estimation of causal indirect and direct effects refer 
to these POs rather than their observed counterparts [55]. Figure 9b is 
hence slightly misleading in fact, because once one estimates POs for 
the Y outcome e.g., total (and causal direct and indirect) effects can 
be directly computed for individual cases by mere subtraction [56], 
and for the entire sample by mere averaging: for example TEi = Y1

M1
i 

– Y0
M0

i, the pure direct effect dPi = Y1
M0

i – Y0
M0

i, and the total indirect 
effect iTi = Y1

M1
i – Y1

M0
i.

Dyadic LVs

When a measure is captured from the members of a dyad like 
spouses, or patient and provider, such a concept needs to be modeled 
like a LV with indicators from each side of the dyad. Such a measure, 
like Patient Centeredness (PC [57]), needs to be linked to other 
predictors and outcomes from its LV form, rather than from the two 
separate (patient and doctor) observed PC components [58]. Such a 
dyadic model [21], like the one in Figure 10a, can yield a different 
effect on patients’ health outcomes than a model with causal links 
from either the patients’ or the doctors’ component [59]. Other 
combinations of such paired (matched) variables are possible, 
like inserting LVs for the average or differences between the two 
components, much like a latent change score LCS model (shown 
earlier in Figure 5a), or a variety of actor-partner interdependence 
models (APIM [60]). The model in Figure 10b for instance would test 
whether larger discrepancies between patients and doctors’ views of 
PC will affect patients’ health outcomes.

Conclusion
The mission of statistics is to provide causal explanations that 

can be used to ultimately improve lives. The key ingredient in this 
endeavor is variability, since if we all were exactly the same there 
wouldn’t be much to explain. The SEM-related visual statistical 
method we reviewed here approaches this task openly by referring 
to unexplained (co-)variability using double headed arrows, both for 
the variance of an exogenous variable (both arrows pointing towards 
that variable) and for the covariance between two variables: these 
quantities are not explained by the model, not yet at least. One goal 
of GLMM (and SEM) which has a clear visual analogue is to turn 
double headed arrows into single headed ones (or no link at all), 
and reduce unexplained variance, or to find causal explanations for 
observed variability and co-variability. Our visual graphical approach 
makes evident what is the target of the explanatory efforts and how 
one proposes the causal explanations, but also what assumptions 
are made in the process. We have shown in ten sets of displays that 
graphical causal models directly depicting latent variables (LVs) 
are common in most statistical analyses, and are valuable in better 
specifying model expectations and in separating out what is assumed 
(or known, therefore expected to be confirmed, i.e. the confirmatory 
part) from what needs to be estimated, or obtained, using data and 
the model assumptions (the exploratory part of the model). Such 
models can be used to completely describe statistical models in 
equation form, because they encode causal relationships that are 
directly translatable in regression form and even in matrix algebra 
[35]; they have an inherent obvious pedagogical value too. We chose 
for simplicity to focus on this translation and avoid complex GLMM 
(and SEM) details like estimation and fit.

We hope that by showing the link between visual graphs and 
testable statistical equations, and the ease of implementing such 
analyses based on explicitly modeling latent variables (LVs), these 
causal models will become more widespread in statistics practice, 
teaching and training.

Supplementary File Link
http://clinmedjournals.org/articles/ijcbb/ijcbb-1-003-supple-

mentary-file.docx
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