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Transgenic sickle cell disease mice have high mortality and 
dysregulated immune responses after vaccination

Steven M. Szczepanek1, Eric R. Secor Jr2, Sonali J. Bracken2, Linda Guernsey2, Ektor 
Rafti2, Adam Matson2, Roger S. Thrall2, and Biree Andemariam1

1Adult Sickle Cell Center, Division of Hematology-Oncology, Lea Center for Hematologic 
Disorders, University of Connecticut Health Center, Farmington, CT

2Department of Immunology, University of Connecticut Health Center, Farmington, CT

Abstract

Background—Children with sickle cell disease (SCD) are susceptible to recurrent infections, 

which are often life threatening and necessitate frequent vaccinations. Given the altered baseline 

immunity and proinflammatory state associated with SCD, we sought to determine the relative 

safety and efficacy of vaccination in transgenic SCD mice.

Methods—Eight week-old SCD mice were vaccinated with ovalbumin (OVA) and aluminum 

hydroxide weekly for three weeks by the intraperitoneal (IP) or intramuscular (IM) route. One 

week after the third vaccination, serum cytokines/chemokines, immunoglobulins, and 

bronchoalveolar lavage (BAL) fluid cytokines were measured.

Results—Only SCD mice were prone to mortality associated with vaccination as 40% of the 

animals died after the IP vaccinations and 50% died after the IM vaccinations. Serum IgG2b and 

IgM were significantly lower in SCD than C57Bl/6 mice after vaccination, but OVA-specific IgE 

was significantly higher. Serum interleukin 1 alpha (IL-1α), IL-2, IL-5, macrophage inflammatory 

protein 1 alpha (MIP-1α), and granulocyte macrophage-colony stimulating factor (GM-CSF) were 

significantly lower in SCD mice than C57Bl/6 mice after vaccination, whereas BAL fluid IL-1β 

and IL-6 were elevated.

Conclusions—Mice with SCD appear to have a dysregulated immune response to vaccination. 

Thus, the relative safety and immunogenicity of vaccination should be studied in greater detail in 

the context of SCD.

INTRODUCTION

Children suffering from sickle cell disease (SCD) are prone to frequent and severe infections 

that can lead to premature death if prompt antibiotic treatment is not administered. One of 

the most common infections in children with SCD is caused by Streptococcus pneumoniae, 

which often manifests as pneumonia and can lead to septicemia if the bacterium becomes 

invasive. The incidence of invasive S. pneumoniae infection in individuals with SCD is 

CORRESPONDING AUTHOR: Biree Andemariam, MD, Director, Adult Sickle Cell Center, Lea Center for Hematologic Disorders, 
Division of Hematology-Oncology, Department of Medicine, University of Connecticut Health Center, 263 Farmington Ave., MC 
1628, Farmington, CT 06030, andemariam@uchc.edu, 860-679-7590 (phone); 860-679-4451 (fax). 

HHS Public Access
Author manuscript
Pediatr Res. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
Pediatr Res. 2013 August ; 74(2): 141–147. doi:10.1038/pr.2013.85.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between 30–600 fold higher (depending on age) than what is observed in the general 

population (1). As a consequence, children with SCD typically adhere to strict vaccination 

schedules which often include more frequent booster shots than children without SCD. The 

introduction of pneumococcal vaccines has reduced the incidence of mortality associated 

with S. pneumoniae infection in children with SCD by 80–90% (2, 3); however, infection in 

vaccinees has nevertheless been reported in this population (4). Vaccination against both S. 

pneumoniae and Influenza A virus appear to result in low antigen-specific IgG and IgM 

antibody titers (5, 6), the latter of which is likely a function of a reduced number of IgM 

producing B-cells (7, 8). Furthermore, a recent study has shown an association between 

chronic transfusion of children with SCD and a lack of a protective post-vaccination 

antibody response to influenza A (9). Taken together, these findings bring into question the 

relative immunogenicity of vaccination in children with SCD when compared to control 

subjects and indicate that hypo-responsiveness to vaccine antigens may not be uncommon.

The phase one safety evaluations of vaccines are usually tested in the general population but 

are not tested in individuals with uncommon diseases such as SCD. The recently developed 

intranasal influenza vaccine (FluMist, MedImmune, Gaithersburg, MD) is one such example 

and, consequently, administration of this vaccine to SCD patients is not recommended by 

the CDC. Even when a vaccine is routinely administered as part of the standard vaccination 

schedule, such as is the case with the trivalent inactivated influenza (TIV) vaccine, 

controversy may arise pertaining to its safety in people with uncommon diseases. Indeed, 

recent retrospective studies using the vaccine safety datalink project have indicated that the 

TIV vaccine is not associated with hospitalization in children or adults with SCD (10, 11); 

however, a previous report by this group had shown that people with SCD had more 

frequent fever or pain episodes resulting in an inpatient visit within two weeks of influenza 

vaccination than control subjects (12). To our knowledge, no published prospective studies 

have been conducted in humans or mice to definitively determine if vaccination is associated 

with adverse effects in SCD.

Very little work has been conducted in transgenic SCD mice to study the effects of 

experimental treatment on basic outcomes that cannot be tested in humans. One of the few 

papers to do so demonstrated that NKT-cells are an important source of pulmonary 

dysfunction at baseline in NY1DD SCD mice (13). Another report used intraperitoneal (IP) 

injection of lipopolysaccharide (LPS) into the “Berkeley” (Berk) transgenic SCD mouse 

strain to determine the effects of systemic challenge with an inflammatory agent on markers 

of disease (14). Many of these mice died shortly after injection and the survivors exhibited 

negative respiratory outcomes and had increased inflammatory markers. In another study, 

experimental asthma was induced in SCD mice by subcutaneous (SC) implantation of 

ovalbumin (OVA), followed by OVA aerosol challenge (15). Mortality of SCD mice was 

associated with SC implantation of OVA, and marked increases in IgE was observed. A 

follow-up study by the same group also demonstrated increases in bronchoalveolar lavage 

(BAL) cytokines (including IL-1β and IL-6) after the induction of asthma in SCD mice (16). 

Taken together, these findings indicate that SCD results in exaggerated inflammatory 

responses in reaction to antigenic stimuli.
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There appears to be a dichotomy in SCD between hypo-responsiveness to some antigens and 

an overzealous inflammatory response to others. Our original goal was to study asthma in a 

murine model of SCD using our previously published IP OVA/Alum vaccination/

sensitization protocol (17). However, upon experiencing approximately 50% mortality with 

sensitization alone in multiple experiments, we shifted focus to understand how transgenic 

SCD mice respond to vaccination. Herein, we describe changes in systemic and pulmonary 

cytokines, serum antibodies, and antigen-specific IgE responses in SCD mice surviving 

vaccination as compared with wild-type and hemizygous mice. Implications for infection 

and vaccination in children with SCD are discussed.

RESULTS

Vaccination-Induced Mortality

IP vaccination of SCD mice with the protein antigen OVA and adjuvant alum resulted in 

significant mortality (40%) when compared to either C57Bl/6 or hemizygous (no deaths in 

either group; p<0.05; Figure 1). This effect occurred with increasing frequency at each 

additional IP injection. In order to validate that the route of inoculation was not the major 

factor of SCD mouse mortality, additional mice were inoculated with OVA/alum via the IM 

route. Again, only SCD mice died after the injections (50%), which was significantly 

different from C57Bl/6 and hemizygous mice. Interestingly, the kinetics of mortality were 

different between the two routes of inoculation, with IP resulting in the greatest mortality 

after the third vaccination and IM only resulting in mortality after one vaccination.

Antibody Responses

Concentrations of post-vaccination serum immunoglobulin class and sub-classes were 

measured one week after the third vaccination using a Luminex assay. When compared to 

C57Bl/6 mice, SCD mice exhibited significantly lower serum concentrations of IgG2b 

(Figure 2A). Serum concentrations of IgM were also significantly reduced in SCD mice. No 

differences were observed in any post-vaccination Ig class/sub-class between SCD and 

hemizygous mice. When comparing pre- versus post- vaccination serum antibody levels, 

dramatically higher fold-change increases were observed for IgG2b in C57Bl/6 mice than in 

SCD mice, indicating that the lower level of this Ig sub-class post-vaccination is attributable 

to an inability of SCD mice to produce it in response to vaccination (Figure 2B). No 

difference in the fold-change of IgM concentrations in the pre- versus post-vaccination 

samples was observed among the groups (Figure 2B), which is likely attributed to the 

previously reported reduction of IgM at baseline in SCD mice (8). When compared with 

C57Bl/6 mice, SCD mice exhibited dramatically increased OVA-specific IgE titers after 

vaccination (Figure 2C), indicating that SCD mice may be more prone to allergic 

sensitization than C57Bl/6 mice. No difference was observed in OVA-specific IgE titers 

when SCD and hemizygous mice were compared.

Cytokine/Chemokine Responses

Concentrations of post-vaccination serum cytokines and chemokines were measured one 

week after the third vaccination using a Luminex assay. When compared to C57Bl/6 mice, 

SCD mice had lower serum concentrations of the cytokines IL-1α, IL-2, and IL-5 (Figure 
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3A). Reduced concentrations of serum chemokines MIP-1α and GM-CSF were also found. 

No significant differences in the aforementioned cytokines/chemokines were measured 

between SCD and hemizygous mice. When comparing pre- versus post-vaccination cytokine 

levels, fold-change differences in IL-1α were not noticeably different among the groups 

(Figure 3B), which is likely attributed to the previously reported reduction of this cytokine at 

baseline in SCD mice (8). Dramatically higher pre- versus post-vaccination fold-change 

increases were observed for both IL-2 and GM-CSF in C57Bl/6 mice than SCD mice, 

indicating that the lower levels of these cytokines post-vaccination is attributed to an 

inability of SCD mice to produce them in response to vaccination. Moreover, when pre- 

versus post-vaccination titers were compared, SCD mice exhibited reduced levels of 

MIP-1α. This indicates that SCD has a severely dysregulated MIP-1α response after 

vaccination.

Several serum cytokines were significantly increased in response to vaccination in C57Bl/6 

mice, but not in SCD or hemizygous mice (Figure 3C). These cytokines include IL-1β, IL-7, 

IL-12(p70), and IL-17. These cytokines exhibited more variability within groups, thereby 

contributing to a lack of significance when post-vaccination concentrations were compared. 

However, SCD mice (and hemizygous) appear to have a reduced ability to produce these 

cytokines in response to vaccination. Taken together, SCD mice that survive inoculation 

appear to be hypo-responsive to vaccination, as demonstrated by their lack of cytokine 

production in serum post-vaccination.

In contrast to the hypo-responsiveness exhibited by SCD mice in the production of serum 

cytokines after vaccination, cytokines in BAL fluid appeared to be higher in SCD mice 

(Figure 4). BAL fluid IL-1β was not measurable in C57Bl/6 mice post-vaccination (MDL = 

0.20 pg/ml) and was significantly higher in SCD mice when compared with either 

hemizygous mice or C57Bl/6 mice. Similarly, IL-6 was elevated in the BAL fluid of SCD 

mice when compared with C57Bl/6 mice (not measurable, MDL = 0.28 pg/ml) after 

vaccination. No differences in post-vaccination BAL fluid IL-6 were observed between 

hemizygous mice and SCD mice.

DISCUSSION

Relative safety and immunogenicity are important features to consider when administering 

vaccines, yet these two basic parameters are not well-understood in children with 

uncommon diseases such as SCD. Death of SCD mice after injection of inflammatory agents 

is a phenomenon that has been known for some time and is presumably associated with 

heightened baseline inflammation. A previous study showed that IP inoculation with the 

proinflammatory molecule LPS resulted in approximately 60% mortality of SCD mice, 

whereas sham inoculation with saline had no effect (14). Protein antigens may also produce 

mortality in SCD mice, as has been shown by SC implantation of OVA (15). Our findings of 

approximately 40% mortality in SCD mice after IP OVA/alum injection and 50% mortality 

after IM OVA/alum injection correlate with these previous reports. Thus, our model of 

vaccination has clinical implications pertaining to possible adverse events associated with 

vaccination of children with SCD.
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The gold standard of immunogenicity for most vaccines is elicitation of the production of 

antigen-specific serum antibodies. As previously mentioned, SCD mice that survived 

vaccination had significantly higher OVA-specific IgE antibody serum concentrations than 

C57Bl/6 mice, indicating that these animals may be especially prone to allergic 

sensitization. Conversely, these same mice were hypo-responsive in terms of IgG2b and 

IgM production after vaccination. All groups of mice increased their IgM titers 4-fold in 

response to vaccination, which indicates that differences in post-vaccination IgM 

concentrations are due to low baseline production of this immunoglobulin. However, SCD 

mice only induced a 4-fold increase in IgG2b after vaccination, whereas C57Bl/6 mice 

increased serum concentrations more than 10-fold. The inability of SCD mice to induce 

wild-type levels of IgG2b antibodies has potential clinical implications as murine IgG2b is 

similar to human IgG3 (and to some degree IgG1) (18), with the ability to fix complement 

and bind to protein antigens. It is crucially important for vaccines to induce these functions 

for maximum efficacy. These findingsare also in line with the observation that children 

living with SCD have diminished antibody responses to the hepatitis B vaccine (19). Taken 

together, these findings have translational implications that should be investigated further in 

children living with SCD.

The ability of lymphocytes to become activated and proliferate in response to stimuli is 

essential for vaccine immunogenicity. Cytokines such as IL-2, IL-7, and IL-12 are 

responsible for allowing lymphocytes to mature/differentiate, proliferate, and generate 

immunological memory. The reduced post-vaccination serum concentrations and apparent 

inability of these cytokines to be sufficiently stimulated after vaccination indicate that 

lymphocytes in SCD mice surviving vaccination may have sub-par effector and memory 

functions. Furthermore, chemokines MIP-1α and GM-CSF, which are important for 

stimulating (20) and mobilizing (21) antigen presenting cells (APCs) in response to antigen, 

are not produced at wildtype levels by SCD mice following vaccination. In fact, MIP-1α 

appears to be down-regulated in response to vaccination in SCD mice. This has serious 

implications as MIP-1α is important for mobilization of DC precursors into the blood (22). 

MIP-1α is also a ligand for CCR5, which has been shown to be important for protection 

from pathogens such as influenza (23). Furthermore, it has been reported that there is a 

higher proportion of SCD patients in Brazil that also have the CCR5D32 mutant allele when 

compared to controls (24). Extrapolation of our results from the mouse model then indicates 

that these individuals may mount suboptimal immune responses to vaccination which may 

then leave them more susceptible to infection. SCD mice are also hypo-responsive to IL-17 

production post-vaccination and this cytokine is important for clearance of mucosal bacterial 

pathogens. Indeed, protection of mice from S. pneumoniae colonization appears to be IL-17-

dependent (25), which suggests that lack of IL-17 production in SCD mice may contribute to 

their increased susceptibility to pneumococcal infection (26).

Mouse models of acute lung injury are associated with increased levels of TNF-α, IL-1β, 

and IL-6 in BAL fluid. This milieu has been shown to increase the production of secretory 

IgA in the lungs to help protect from infection when the natural barrier defenses are 

weakened (27). SCD mice that survived vaccination had significantly elevated IL-1β and 

IL-6 in their BAL fluid one week after the third vaccination when compared with C57Bl/6 
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mice, indicating that lung injury associated with vaccination had occurred. Given the long-

elapsed time between inoculation and measurement of these cytokines, it would not be 

surprising if they were in fact higher in concentration in the lung airways at earlier time 

points. It would also not be surprising if TNF-α is elevated early on as well. A study of 

acute lung injury in SCD mice also showed increased IL-6 in BAL fluid within hours of LPS 

injection (14), which corroborates our findings. The finding of increased IL-1β in BAL fluid 

of SCD mice that survived vaccination also has clinical implications, as this cytokine has 

been associated with ischemic reperfusion injury in human SCD (28), which is also 

associated with acute chest syndrome. Thus, therapeutics targeting IL-6 and IL-1β may help 

to reduce pulmonary-related morbidity and mortality in people living with SCD.

Vaccination-related death of SCD mice raises the question by what mechanism these 

animals are dying. This study does not directly address this question, as all outcomes were 

measured one week after the third vaccination only in animals that tolerated the OVA/alum 

inoculation. However, we were able to determine that the SCD mice that tolerated IP 

vaccination had similarly high levels of antigen-specific serum IgE as the hemizygous 

controls, which were much higher than those found in C57Bl/6 mice. This raises the 

possibility that the sensitive SCD mice may have had even higher IgE levels and died of 

shock from a type I hypersensitivity reaction. Anecdotal support of this hypothesis comes 

from the observation that all SCD mice that died after vaccination were found dead within 

hours of OVA/alum injection. Furthermore, all but one SCD mouse died after the second or 

third IP injection, indicating that the mice had to be first sensitized to OVA/alum before they 

became susceptible to death from vaccination. Interestingly, susceptible SCD mice that were 

inoculated by the IM route all died after the first vaccination, indicating that these mice did 

not have to be sensitized to antigen to be susceptible to death associated with this route of 

vaccination. It therefore seems likely that these animals died from an exaggerated 

inflammatory response, possibly driven by the presence of the adjuvant alum. While we do 

not know the cause of vaccination-related death of SCD mice, it is likely a combination of 

multiple etiologies which may include both hypersensitivity reactions and exaggerated 

inflammatory responses. Further work is needed in order to more definitively answer this 

question.

Many studies have shown that both humans and mice with SCD live in an immunologically 

altered state. The study presented herein demonstrates that SCD mice are prone to death 

associated with vaccination, which is likely linked to the altered baseline immunity observed 

in these animals. Consequently, animals that survive inoculation appear to have dysregulated 

systemic immune responses to vaccination. Enhanced pulmonary production of IL-1β and 

IL-6 suggests acute lung injury may develop as a consequence of antigenic challenge. Our 

data suggest that the relative safety and immunogenicity of vaccination should be studied in 

greater detail in the context of SCD. Although it is clear that humans with SCD do not suffer 

mortality as a consequence of vaccination, there may be subclinical deleterious 

consequences that warrant further investigation.
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MATERIALS AND METHODS

Mice

Animals used in this study have been previously described (8). Briefly, female mice, 

approximately 8 weeks old, weighing 15–25 g each, were purchased from the Jackson 

Laboratory (Bar Harbor, ME). Berkeley sickle cell transgenic mice (Tg(Hu-

miniLCRα1GγAγδβS) Hba−/− Hbb−/−) expressing human HBA and HBBS and no longer 

expressing mouse Hba and Hbb were used as a murine model of SCD. The stock 

background of this strain is a mixture of FVB/N, 129, DBA/2, Black Swiss and >50% 

C57Bl/6 genomes. It was backcrossed to C57Bl/6 one generation after importation to The 

Jackson Laboratory. Hemizygous controls of the Berkeley transgenic SCD mouse (generated 

on the same mixed background of strains) that express no mouse Hba, but do express one 

copy of mouse Hbb, human HBA and HBBS giving rise to a hemizygous genotype were used 

as a second control arm. All mice were conventionally housed in plastic cages with corncob 

bedding. The housing facility was maintained at 22–24°C with a 12 hr light/dark cycle. 

Chow and water were given ad libitum. The Animal Care Committee at the University of 

Connecticut Health Center approved all mouse experiments.

Vaccinations

Mice were vaccinated by either the intraperitoneal (IP) or intramuscular (IM) route once per 

week for three weeks. A suspension of 25 μg of OVA (grade V, Sigma Chemical, St. Louis, 

MO) with 2 mg of aluminum hydroxide (alum) in 500 μl of saline was used for IP 

inoculations, while a final volume of 50 μl was used for IM inoculations (one ½ dose 

injection into each hindlimb).

Collection of Serum and BAL fluid

One week after the third injection, mice were humanely euthanized with an overdose of 

ketamine/xylazine and whole blood was immediately collected via cardiac puncture and 

placed into non-heparinized tubes for serum purification. Blood was allowed to clot at room 

temperature for approximately 30–60 min and then spun for 10 min at 4000 RPM in an 

Eppendorf 5415 C centrifuge. Serum was then aliquoted and stored at −80°C until used. 

After sacrifice, a bronchoalveolar lavage (BAL) was performed on mouse lungs with five 1-

ml aliquots of physiologic saline. The BAL was then centrifuged at 1700 × g using a 

Thermo Scientific Sorvall ST 40R centrifuge with a swinging bucket rotor and the 

supernatant (BAL fluid) was removed and concentrated 10x using Amicon Centriplus 

YM-10 filtration devices (Millipore, Bedford, MA), per the manufacturer’s instructions. 

BAL fluid samples were stored at −80°C until used.

Analysis of Cytokines and Antibodies using Luminex Assays

Analysis of serum chemokines/cytokines and antibody class/sub-class were conducted using 

Milliplex kits (Millipore), as previously described (8). Cytokines were analyzed using a 1:2 

dilution while immunoglobulins were analyzed at a 1:25,000 dilution (concentrations were 

adjusted to account for dilution). Serum IgA fell below the detection limit at this dilution for 

all animals and was not considered for analysis. BAL fluid cytokines were processed and 
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analyzed using the same technique as serum, but sterile PBS was used as a diluent for the 

standard curve. For samples in which an analyte could not be detected above the minimum 

detection limit (MDL) surrogate values of 0.1 or 1 less than the MDL (depending on the 

number of significant figures used) were used. For BAL fluid samples, post-assay sample 

concentration and limits of detection were reported taking into consideration the 10X sample 

concentration prior to analysis. Fold-change values were calculated using data from naïve 

animals published in a previous report (8). Calculations are based on groups of 11 C57Bl/6 

mice, 11 hemizygous mice, and 9 SCD mice.

OVA-specific Serum IgE Levels

An OVA-specific sandwich ELISA was used to measure serum levels of IgE, as has been 

previously described (29). Results were interpolated from a standard curve. Calculations are 

based on groups of 8 C57Bl/6 mice, 9 hemizygous mice, and 8 SCD mice.

Statistics

Statistical comparisons between groups were made with one-way analysis of variance and 

pairwise comparisons were conducted utilizing the Dunnett’s post-hoc test with SCD 

serving as the control group. Analyses were conducted using GraphPad Prism version 5 

software (GraphPad software, San Diego, CA) unless no variance was recorded within a 

group, then JMP statistical software version 5.1 (SAS Institute, Cary, NC) was used. All 

data were expressed as means +/− standard error of the mean. Differences were considered 

significant if p ≤ 0.05.
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Figure 1. 
Post-vaccination Kaplan-Meier survival curves. (A) Percent survival of C57Bl/6 (n=11), 

hemizygous (n=11), or SCD mice (n=15) after each IP vaccination. (B) Percent survival of 

C57Bl/6 (n=6), hemizygous (n=7), or SCD mice (n=6) after each IM vaccination. Curves for 

SCD mice for both routes of inoculation were significantly different from C57Bl/6 and 

hemizyous mice (p<0.05). Squares = C57Bl6 and hemizygous mice; triangle = SCD.
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Figure 2. 
Serum antibody responses to vaccination. (A) Significantly different serum immunoglobulin 

concentrations post-vaccination as measured by Luminex assay (IgG2b: C57Bl/6 = 

3.88×106 ng/ml (SEM, 2,072,000), hemizygous = 350,000 ng/ml (SEM, 92,000), SCD = 

635,000 ng/ml (SEM, 162,000); p<0.01) (IgM: C57Bl/6 = 1.44×106 ng/ml (SEM, 244,000), 

hemizygous = 497,000 ng/ml (SEM, 59,000), SCD = 570,000 ng/ml (SEM, 75,000); 

p<0.001). (B) Pre- versus postvaccination fold-change in significantly different serum 

immunoglobulins postvaccination. (C) Serum concentrations of OVA-specific IgE 

antibodies as measured by ELISA (C57Bl/6 = 242 ng/ml (SEM, 48), hemizygous = 1854 

ng/ml (SEM, 758), SCD = 2452 ng/ml (SEM, 754); p<0.05). Bars represent mean levels +/− 

standard error of the mean. Significant differences were determined by one-way analysis of 

variance and pairwise comparisons were conducted using the Dunnett’s post-hoc test with 

SCD serving as the control group. Black bars = C57Bl/6; grey bars = hemizygous; white 

bars = SCD. *p<0.05, **p<0.01.
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Figure 3. 
Serum cytokine and chemokine responses to vaccination. (A) Significantly different 

postvaccination cytokine/chemokine serum concentrations as measured by Luminex assay 

(IL-1α: C57Bl/6 = 2692 pg/ml (SEM, 659), hemizygous = 1224 pg/ml (SEM, 236), SCD = 

195 pg/ml (SEM, 64); p<0.001) (IL-2: C57Bl/6 = 55 pg/ml (SEM, 28), hemizygous = 4.2 

pg/ml (SEM, 1.4), SCD = 5.8 pg/ml (SEM, 3.2); p<0.05) (IL-5: C57Bl/6 = 54 (SEM, 8.7), 

hemizygous = 31 pg/ml (SEM, 5.8), SCD = 27 pg/ml (SEM, 5.2); p<0.05) (MIP-1α: 

C57Bl/6 = 53 pg/ml (SEM, 16), hemizygous = 15 pg/ml (SEM, 4.9), SCD = 19 pg/ml (SEM, 

8.8); p<0.05) (GM-CSF: C57Bl/6 = 89 pg/ml (SEM, 31), hemizygous = 5.5 pg/ml (SEM, 

NA), SCD = 10 pg/ml (SEM, 4.7); p<0.01). (B) Pre- versus post-vaccination fold-change in 

significantly different post-vaccination serum cytokines/chemokines. (C) Fold-change in 

serum cytokines that were only significantly different pre- versus post-vaccination in 

C57Bl/6 mice. Bars represent mean levels +/− standard error of the mean. Significant 

differences were determined by one-way analysis of variance and pairwise comparisons 

were conducted using the Dunnett’s post-hoc test with SCD serving as the control group. 

Black bars = C57Bl/6; grey bars = hemizygous; white bars = SCD. *p<0.05, **p<0.01.
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Figure 4. 
BAL fluid cytokines measured in response to vaccination. No cytokines were detected above 

the MDL before vaccination (IL-1β: C57Bl/6 < 0.20 pg/ml, hemizygous = 1.8 pg/ml (SEM, 

1.1), SCD = 11 pg/ml (SEM, 4.9); p<0.05) (IL-6: C57Bl/6 < 0.28 pg/ml, hemizygous = 6.5 

pg/ml (SEM, 3.5), SCD = 17 pg/l (SEM, 5.9); p<0.05). Bars represent mean levels +/− 

standard error of the mean. Significant differences were determined by one-way analysis of 

variance and pairwise comparisons were conducted utilizing the Dunnett’s post-hoc test with 

SCD serving as the control group. Black bars = C57Bl/6; grey bars = hemizygous; white 

bars = SCD. *p<0.05
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