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Role for Endogenous BDNF in Endocannabinoid-Mediated Long-
Term Depression at Neocortical Inhibitory Synapses1,,2,,3

Liangfang Zhao, Mason Li-Wen Yeh, and Eric S. Levine
Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 
06030

Abstract

The endogenous cannabinoid (endocannabinoid) system is an important regulator of synaptic 

function. Endocannabinoids acutely modulate inhibitory and excitatory transmission, and also 

mediate long-term depression at GABAergic and glutamatergic synapses. Typically, 

endocannabinoid synthesis and release is stimulated by depolarization-induced calcium influx 

and/or activation of phospholipase-C (PLC) signaling triggered by mGluR activation. Recently it 

has been shown that brain-derived neurotrophic factor (BDNF) can also induce endocannabinoid 

release. Although there is growing evidence for cross-talk between BDNF and endocannabinoid 

signaling, little is known about the functional relevance of these interactions. In the present 

studies, we examined BDNF – endocannabinoid interactions in regulating activity-dependent 

long-term depression at inhibitory synapses (iLTD). We found that theta burst stimulation (TBS) 

in layer 2/3 of mouse somatosensory cortical slices can induce a form of endocannabinoid-

mediated iLTD that is independent of metabotropic glutamate receptor (mGluR) activation. This 

endocannabinoid-dependent iLTD, however, requires endogenous BDNF-trkB signaling, as it is 

blocked by a trk tyrosine kinase inhibitor and by a trkB receptor antagonist, and also requires 

activation of diacylglycerol lipase (DAG-lipase, DGL). In addition, endocannabinoid-mediated 

iLTD can be induced by combining a subthreshold concentration of exogenous BDNF with weak 

TBS stimulation that by itself is insufficient to induce iLTD. Taken together, our results suggest 

that TBS can induce the release of endogenous BDNF, which triggers DGL-dependent 

endocannabinoid mobilization and cannabinoid receptor-dependent iLTD at layer 2/3 cortical 

synapses.
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Introduction

Endogenous cannabinoids (endocannabinoids, eCBs) are important regulators of synaptic 

function in the nervous system. In particular, endocannabinoids acutely modulate inhibitory 

and excitatory transmission throughout the forebrain, and mediate several forms of short-

term plasticity at GABAergic and glutamatergic synapses, including depolarization-induced 

suppression of inhibition (DSI) and excitation (DSE). During DSI or DSE, 

endocannabinoids are released from postsynaptic sites in response to depolarization-induced 

calcium influx and act retrogradely via presynaptic type-1 cannabinoid receptors (CB1Rs) to 

suppress transmitter release. Endocannabinoids also mediate specific types of long-term 

depression at excitatory and inhibitory synapses (for review, see Chevaleyre et al., 2006; 

Mackie, 2008; Cachope, 2012). These forms of plasticity are dependent on CB1Rs, which 

are highly expressed throughout the forebrain, and are activated by both 

arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG), the two best-

characterized endogenous ligands of CB1R. It has been shown that the on-demand synthesis 

and release of endocannabinoids in the hippocampus, neocortex, cerebellum, and other areas 

can be stimulated by depolarization-induced calcium influx, as well as by activation of 

phospholipase-Cβ (PLCβ) triggered by Gq-protein coupled receptors, particularly 

metabotropic glutamate receptors (mGluRs) (for review, see Hashimotodani et al., 2007; 

Castillo et al., 2012).

Recently it has been shown that brain-derived neurotrophic factor (BDNF) can also induce 

endocannabinoid release, part of a growing body of evidence for interactions between 

endocannabinoid signaling and BDNF. For example, there is evidence of eCB–BDNF 

interactions in visual cortex (Huang et al., 2008), hippocampus (Khaspekov et al., 2004; 

Roloff et al., 2010), and cerebellum (Maison et al., 2009). In support of this, there is strong 

colocalization of trkB receptors and CB1R throughout the forebrain. Within the neocortex, 

trkB is predominantly localized to layers 2/3 and 5 (Cabelli et al., 1996; Fryer et al., 1996; 

Miller and Pitts, 2000), and the highest levels of CB1R in the neocortex are also found in 

layer 2/3 (Matsuda et al., 1993; Tsou et al., 1998; Marsicano and Lutz, 1999; Egertová et al., 

2003). Recent studies in the neocortex have shown that endocannabinoid synthesis and 

release can be rapidly mobilized by BDNF – trkB signaling. In neocortical layer 2/3, acute 

application of BDNF rapidly suppresses GABAergic transmission via release of 

endocannabinoids from the postsynaptic pyramidal cell, which act in a retrograde manner to 

suppress presynaptic transmitter release (Lemtiri-Chlieh and Levine, 2010). This effect of 

BDNF is initiated by postsynaptic trkB signaling, requires downstream PLC signaling, and 

is independent of mGluR activation (Zhao and Levine, 2014).

Endogenous BDNF has been shown to play a critical role in LTP at excitatory synapses, but 

its role at inhibitory synapses and its potential role in endocannabinoid-mediated synaptic 

plasticity are less clear. Because exogenous BDNF can trigger endocannabinoid 

mobilization that suppresses GABA release at cortical synapses, we explored whether 

endogenous BDNF plays a role in long-term depression at cortical inhibitory synapses. In 

particular, we hypothesized that stimulation-induced release of BDNF, acting through trkB 

and downstream diacylglycerol lipase (DGL) signaling, can trigger endocannabinoid release 

to cause long-term depression at cortical inhibitory synapses.
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Materials and Methods

Animal handling and slice preparation

All animal procedures are performed according to the regulation of Authors University’s 

Institutional Animal Care and Use Committee. Postnatal day 15–27 Swiss CD-1 mice of 

either sex (Charles River) were anesthetized by 3.5% isoflurane inhalation, followed by 

decapitation. Whole brains were removed and immersed in ice-cold slicing solution 

containing (in mM): 110 choline chloride, 2.5 KCl, 1.25 NaH2PO4·H2O, 25 NaHCO3, 0.5 

CaCl2, 7 MgCl2·6H2O, 25 dextrose, 11.6 sodium ascorbate, 3.1 sodium pyruvate, 

equilibrated with 95% O2-5% CO2 (pH 7.3, 310 ± 5 mOsm/kg). Transverse slices (350 µm) 

containing somatosensory cortex were cut with a Dosaka EM DTK-1000 vibratome and 

transferred to an incubating chamber. Slices were then incubated for 15 min at 33–35 °C in 

carboxygenated incubating solution containing (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 

25 NaHCO3, 0.5 CaCl2, 3.5 MgCl2·6H2O, 4 sodium lactate, 2 sodium pyruvate, 25 dextrose, 

and 0.4 ascorbic acid (pH 7.3, 310 ± 5 mOsm/kg) before being transferred to room 

temperature. Slices were then individually transferred to a recording chamber (at room 

temperature) and fixed to the stage of an Olympus BX51WI upright microscope fitted with a 

40× water-immersion objective lens (0.8 NA). The recording chamber was continuously 

perfused at 1–1.5 ml/min with carboxygenated artificial CSF (aCSF) consisting of (in mM): 

125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 2 CaCl2, 2 MgCl2·6H2O, 25 dextrose (pH 

7.3, 305 ± 5 mOsm/kg).

Electrophysiology

Whole-cell recordings were obtained from layer 2/3 or layer 5 somatosensory cortex 

pyramidal neurons. Pyramidal neurons were identified by their morphology under infrared 

differential interference contrast video microscopy. Patch electrodes (2–3 MΩ) were pulled 

from borosilicate glass capillaries using a Flaming/Brown P-97 micropipette puller (Sutter 

Instrument). Pipette internal solution for recording IPSCs contained (in mM): 130 CsCl, 10 

HEPES, 1 EGTA, 0.1 CaCl2, 1.5 MgCl2, 4 Na2-ATP, 0.3 Na-GTP, 10 di-tris-

phosphocreatine and 5 QX-314 (pH 7.3, 290 ± 5 mOsm/kg). The chloride equilibrium 

potential (ECl) using this internal solution was close to 0 mV; thus, IPSCs were recorded as 

inward currents. Ionotropic glutamate receptor antagonists 6, 7-dinitroquinoxaline-2, 3-

dione (DNQX; 10 µM) and 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid 

(CPP; 3 µM) were used to isolate inhibitory activity. A bipolar tungsten electrode (1 MΩ; 

WPI) was positioned 70–150 µm lateral to the patched pyramidal neuron to elicit 

electrically-evoked IPSCs (eIPSCs). Extracellular stimuli consisted of individual square-

wave current pulses (170 µs; 4–30 µA) and were delivered every 20 seconds through a 

stimulus isolator (ISO-Flex; A.M.P.I). Every third stimulation was delivered using a paired-

pulse protocol (75 ms interpulse interval). Stimulation strength was set to a level that evoked 

30–70% of maximal response for each individual cell. For the pipette internal solution for 

recording EPSCs, 130 CsCl was replaced with 118.7 CH3O3SCs and 6.3 CsCl, thus the ECl 

using this internal solution was close to −70 mV.

Cells were voltage clamped at −70 mV during recording. All electrical events were filtered 

at 2.9 kHz and digitized at >6 kHz using a HEKA EPC9 amplifier and ITC-16 digitizer 
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(HEKA Elektronik). Series resistance (Rs) was compensated up to 40% at 100 µs lag. Input 

resistance (Ri) was monitored with 10 mV (50 ms) hyperpolarizing voltage steps at the end 

of each sweep. Cells were rejected from analysis if Ri fell below 50 MΩ or the holding 

current dropped by 150 pA during the course of an experiment.

Chemicals

Unless otherwise stated, all drugs were from Tocris Biosciences and were delivered by bath 

perfusion. Drugs were first prepared as concentrated stock solution in solvents and stored at 

−20 °C. The stock solutions of DNQX, AM251, ANA-12, K252a, SR 141716A, and 

tetrahydrolipstatin (THL) were dissolved in 100% dimethyl sulfoxide (DMSO). The final 

concentration of DMSO did not exceed 0.1%, which by itself had no effect on evoked 

inhibitory synaptic currents (Zhao and Levine, 2014) and had no effect on evoked excitatory 

currents (102.5 ± 0.3% of baseline, n = 3). CPP, E4CPG, and BDNF (PeproTech) were 

dissolved in 18 MΩ water. Drug stock solutions were diluted into aCSF on the day of 

recording to the final concentrations. Bovine serum albumin (BSA; Sigma-Aldrich) was 

added to the BDNF solution at a concentration of 0.1 g/l to reduce nonspecific binding. BSA 

by itself had no effect on evoked IPSC amplitude (112.7 ± 13.2% of baseline, n = 3). 

Preincubation time for all drugs was 15–30 min prior to experiment.

Data analysis

Off-line analysis was carried out using Clampfit 10 (Molecular Devices) and Prism 6 

(GraphPad Software). Statistical comparisons were made between average amplitudes of 

baseline responses and 27–35 min postinduction using two-tailed Student’s paired t test 

unless otherwise stated. p < 0.05 was taken as a statistically significant effect. In individual 

examples, sweeps of evoked responses were averaged traces of four consecutive evoked 

IPSCs around corresponding time windows. Group data are reported as mean ± SEM.

Results

Strong theta frequency burst stimulation induces eCB-dependent iLTD

Evoked IPSCs were recorded from layer 2/3 pyramidal neurons in response to intralaminar 

stimulation (0.05 Hz). In the absence of high frequency repetitive stimulation, these 

responses were stable over time (101.7 ± 2.6% of baseline, n = 4, after 40 min of 

stimulation). Using thetafrequency burst stimulation (TBS), we examined longterm 

depression at inhibitory synapses (iLTD) at inhibitory synapses onto layer 2/3 cortical 

pyramidal neurons. Stimulation consisted of seven trains of TBS (7× TBS) delivered with a 

5 s intertrain interval. Each TBS train contained 10 bursts (200 ms interburst interval), each 

burst consisted of five stimuli at 100 Hz. This protocol induced a stable long-lasting 

suppression of inhibitory transmission (Fig. 1A). As shown in Figure 1B, eIPSC amplitude 

was reduced in all seven cells tested at 35 min post-TBS (68.32 ± 4.2% of baseline, p = 

0.0005, n = 7; see also Fig. 2C). In two cells that lasted 60 min post-TBS, eIPSC amplitude 

was 65.11 ± 1.4% of baseline, suggesting that suppression reached a stable plateau by 35 

min postinduction.
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This TBS-induced iLTD was independent of ionotropic glutamate receptor signaling 

because it was evoked in the presence of NMDA and non-NMDA receptor antagonists (see 

Materials and Methods, above). To confirm that these receptors were effectively blocked 

during the repetitive stimulation used to induce iLTD, we recorded evoked EPSCs in layer 5 

pyramidal neurons. Intralaminar stimulation evoked a dual component EPSC that was 

almost completely abolished in the presence of CPP and DNQX (12.6 ± 1.6% of predrug 

baseline, n = 4). Following 7× TBS stimulation, there was no change in the amplitude of the 

residual evoked response (1 min post-TBS; 94.5 ± 4.7% of pre-TBS baseline, n = 4), 

indicating effective antagonism of these receptors during repetitive stimulation.

We next examined whether this iLTD requires CB1R signaling. Because CB1Rs are 

predominantly expressed on presynaptic terminals, we hypothesized that there would be a 

change in the paired-pulse ratio before and after iLTD induction. We found that the paired-

pulse ratio was significantly increased after iLTD induction (137.3 ± 13.3% of baseline, p = 

0.025, n = 7; Fig. 1C). We then examined the effect of 7× TBS during bath application of 

the selective CB1R antagonist AM251 (5 µM) or SR141716A (5 µM). Identical results were 

obtained using these structurally similar drugs, so the results were combined. As shown in 

the group data in Figures 1D and 2C, 7× TBS in the presence of either AM251 or 

SR141716A failed to induce iLTD at these synapses (94.1 ± 5.4% of baseline, p = 0.3201, n 

= 9; baseline, 1.17 ± 0.1 nA; 35 min-post, 1.10 ± 0.1 nA). Application of CB1R antagonists 

had no effect on basal eIPSC amplitude of layer 2/3 pyramidal neurons under similar 

conditions (Trettel and Levine, 2002). These results suggest that TBS induces eCB-

dependent iLTD at inhibitory synapses onto layer 2/3 pyramidal neurons.

iLTD in layer 2/3 of somatosensory cortex is independent of mGluR signaling

Because many forms of eCB-mediated LTD require mGluR signaling (for review, see 

Chevaleyre et al., 2006; Kano et al., 2009), we examined the effects of 7× TBS during bath 

application of the group I/group II mGluR antagonist E4CPG (500 µM). Interestingly, 

blocking mGluR signaling did not prevent 7× TBS from inducing iLTD at layer 2/3 

inhibitory synapses (Fig. 2A). At 35 min postinduction, eIPSC amplitude was significantly 

reduced compared to baseline (Fig. 2B,C, 53.88 ± 8.7% of baseline, p = 0.0001, n = 6). The 

amount of suppression was comparable to that caused by 7× TBS alone (Fig. 2C, p = 

0.1447, unpaired t test). Previously it has been shown that this concentration of E4CPG is 

sufficient to block the effect of an mGluR agonist on synaptic transmission in layer 2/3 

(Zhao and Levine, 2014). As an additional control to confirm the efficacy of E4CPG during 

repetitive stimulation, we examined its effects on LTD at layer 5 excitatory synapses. The 

same stimulation protocol (7× TBS) induced significant LTD at these synapses (60.1 ± 4.5% 

of baseline, p = 0.0003, n = 7), and this suppression was blocked by E4CPG (n = 6, unpaired 

t test, p = 0.0312).

iLTD in layer 2/3 of somatosensory cortex requires endogenous BDNF and DGL signaling

In addition to the mGluR/PLCβ signaling pathway that is known to induce eCB mobilization 

and release, recent studies have found that BDNF/trkB signaling, via downstream PLCγ 

activation, can induce eCB release at inhibitory synapses in layer 2/3 (Lemtiri-Chlieh and 

Levine, 2010; Zhao and Levine, 2014). Furthermore, TBS can induce release of endogenous 
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BDNF (Li et al., 2010; for review, see Panja and Bramham, 2014). We therefore examined 

whether endogenous BDNF plays a role in eCB-mediated iLTD in layer 2/3. The first set of 

experiments used K252a (200 nM), a relatively specific inhibitor of autophosphorylation of 

trk tyrosine kinase receptors at this concentration (Hashimoto, 1988; Berg et al., 1992; 

Knüsel and Hefti, 1992; Nye et al., 1992). As shown in Figure 3, A and D, iLTD produced 

by 7× TBS was prevented by bath application of K252a (92.17 ± 11.8% of baseline, p = 

0.6175, n = 6; baseline, 0.73 ± 10.1 nA; 35 min-post, 0.68 ± 0.1 nA). K252a alone does not 

have any significant effect on eIPSC amplitude in layer 2/3 slices (Lemtiri-Chlieh and 

Levine, 2010). A role for BDNF-trkB signaling was confirmed with the selective trkB 

receptor antagonist, ANA-12 (10 µM) (Cazorla et al., 2011; Alder et al., 2013; Santafé et al., 

2014). As shown in Figure 3, B and D, bath application of ANA-12 completely blocked 

iLTD (102.2 ± 6.2% of baseline, p = 0.5711, n = 6; baseline, 1.18 ± 0.2 nA; 35 min-post, 

1.24 ± 0.3 nA). ANA12 alone did not have any effect on inhibitory synaptic transmission 

(95.3 ± 2.5% of baseline after 10 min application, n = 2).

It has been previously shown that BDNF induces eCB mobilization via DGL signaling 

(Lemtiri-Chlieh and Levine, 2010). We thus examined whether DGL plays a role in iLTD in 

layer 2/3. As seen in Figure 3, C and D, in the presence of the DGL inhibitor THL (5 µM), 

iLTD was completely abolished (115.6 ± 18.4% of baseline, p = 0.5057, n = 6; baseline, 

1.13 ± 0.2 nA; 35 min-post, 1.24 ± 0.2 nA). Taken together, these findings suggest that 

endogenous BDNF–trkB signaling and downstream activation of DGL, but not mGluR 

activation, is necessary for eCB-mediated iLTD at inhibitory synapses in layer 2/3 

pyramidal neurons.

Exogenous BDNF facilitates iLTD induction

We next examined whether exogenous BDNF could facilitate iLTD induction by a 

subthreshold stimulus train. In contrast to the stable suppression caused by 7× TBS, three 

trains of TBS (3× TBS) did not induce significant iLTD, as shown in the group data in 

Figures 4, A and B, and 5B (102.6 ± 10.9% of baseline, p = 0.8943, n = 7; baseline, 0.79 ± 

0.2 nA, 35 min-post, 0.78 ± 0.2 nA). In fact, only one of seven cells showed suppression 

with 3× TBS (Fig. 4B). We then examined the effects of BDNF alone on inhibitory synaptic 

transmission. It has previously been shown that BDNF at a concentration of 20 ng/ml (0.8 

nM) significantly reduces inhibitory synaptic transmission (Lemtiri-Chlieh and Levine, 

2010; Zhao and Levine, 2014). To determine a concentration of BDNF that does not by 

itself influence synaptic transmission, we examined the effect of 5 min bath-applied BDNF 

on eIPSC amplitude. Bath application of 0.2 nM (5 ng/ml) BDNF for 5 min caused a 

suppression of eIPSC amplitude in four of five cells, although this did not reach statistical 

significance (83.24 ± 10.5% of baseline, p = 0.2644, n = 5). At a concentration of 0.1 nM 

(2.5 ng/ml), BDNF did not cause suppression (104.4 ± 12.5% of baseline, n = 5), nor did 

BDNF at 0.05 nM (104.5 ± 8.8% of baseline; p = 0.7086, n = 6), as shown in Figure 4C. In 

addition, 0.05 nM BDNF for 5 min had no effect on eIPSC amplitude measured 35 min 

post-BDNF application (97.92 ± 5.8% of baseline, p = 0.8288, n = 6), indicating that brief 

application of 0.05 nM BDNF does not induce iLTD. Interestingly, however, the 

combination of 3× TBS with 0.05 nM BDNF (applied for 5 min around the time of TBS) 

produced significant iLTD (Figs. 4D,E, 5B, 70.95 ± 9.1% of baseline, p = 0.0305, n = 7), 
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with six of seven cells showing suppression. The average amount of suppression produced 

by BDNF + 3× TBS was not significantly different than that produced by 7× TBS alone 

(Fig. 5B, p = 0.7978, unpaired t test). These data suggest that a subthreshold concentration 

of BDNF can synergize with weak TBS stimulation to induce iLTD at layer 2/3 inhibitory 

synapses.

Finally, we examined the downstream mechanisms underlying BDNF + 3× TBS-induced 

iLTD. The suppression induced by BDNF + 3× TBS was completely abolished in the 

presence of the CB1R antagonist SR 141716A (10 µM), as shown in Figure 5 (113.9 ± 

13.4% of baseline, p = 0.3894, n = 6; baseline, 1.14 ± 0.2 nA; 35 min-post, 1.35 ± 0.4 nA). 

These results indicate that iLTD induced by 3× TBS + BDNF required CB1R activation, 

similar to 7× TBS-induced iLTD.

Discussion

In the present study, we investigated the interaction between BDNF and eCB signaling in 

iLTD. We found that seven trains of TBS induce stable eCB-mediated iLTD at cortical layer 

2/3 pyramidal neurons, as inhibiting CB1R activation diminished this suppression. 

Surprisingly, this form of iLTD is independent of mGluR activation, in contrast to the most 

prevalent forms of eCB-mediated LTD (Maejima et al., 2001; Chevaleyre and Castillo, 

2003; Bender et al., 2006; Lafourcade et al., 2007; Chiu et al., 2010; Jiang et al., 2010). In 

contrast, BDNF, which has also been shown to mobilize eCBs (Lemtiri-Chlieh and Levine, 

2010; Zhao and Levine, 2014) is required for this iLTD, as inhibiting trkB tyrosine kinase 

activity or blocking trkB receptor activation prevented TBS-induced iLTD. Consistent with 

previous findings that DGL is required for BDNF-induced eCB mobilization (Lemtiri-

Chlieh and Levine, 2010), the present results indicate that endogenous BDNF regulates 

eCB-mediated iLTD via DGL, as the DGL inhibitor THL diminished iLTD. Furthermore, 

we also found that a low concentration of exogenous BDNF, which has no effect on its own, 

synergizes with three trains of TBS to induce CB1R-dependent iLTD.

The seven-train TBS protocol induced a form of iLTD that requires BDNF/trkB signaling. 

The source of endogenous BDNF in this form of iLTD is not clear, but potential sources 

would include release from presynaptic terminals or dendritic release from neighboring 

neurons. Previous studies have identified BDNF-containing vesicles in presynaptic 

glutamatergic terminals (Hartmann et al., 2001; Brigadski et al., 2005; Dean et al., 2012; 

Dieni et al., 2012) and stimulation has been shown to induce the release of endogenous 

BDNF from glutamatergic terminals (Aloyz et al., 1999; Hartmann et al., 2001; Kohara et 

al., 2001; Dean et al., 2012). BDNF release from inhibitory terminals is not likely as BDNF 

mRNA is not expressed in interneurons (Ernfors et al., 1990; Gorba and Wahle, 1999).

BDNF has also been localized to vesicles in postsynaptic dendrites (Aoki et al., 2000; 

Avwenagha et al., 2006) and has been shown to be released from dendrites (Hartmann et al., 

2001; Kuczewski et al., 2008; Matsuda et al., 2009; Dean et al., 2012). Dendritic release of 

BDNF can be triggered by the following: (1) Ca2+ influx through ionotropic glutamate 

receptors or voltage-gated channels (Hartmann et al., 2001); (2) activation of Group I 

mGluR receptors, which subsequently triggers IP3-mediated Ca2+ release from intracellular 
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calcium store (Canossa et al., 2001); and (3) Ca2+-dependent Ca2+ release from intracellular 

stores by ryanodine receptors (Balkowiec and Katz, 2002). However, in the present studies, 

iLTD was induced in the presence of both ionotropic and metabotropic glutamate receptor 

antagonists, and postsynaptic cells were voltage-clamped at a hyperpolarized membrane 

potential, arguing against postsynaptic release via these pathways. Astrocytes can also 

release BDNF, however this also requires mGluR signaling (Jean et al., 2008). Thus 

presynaptic release is the most likely source of the endogenous BDNF mediating the 

observed iLTD.

The location of the trkB receptors that are activated by endogenously-released BDNF in the 

present study is most likely on dendrites of postsynaptic pyramidal neurons in layer 2/3. 

There are high levels of trkB expression in postsynaptic dendrites in hippocampus and in 

cortex, particularly in layer 2/3 (Drake et al., 1999; Aoki et al., 2000), although there is also 

evidence for trkB expression at presynaptic sites (Xu et al., 2000; Kohara et al., 2001; 

Inagaki et al., 2008). Importantly, however, postsynaptic trkB receptor activation has been 

shown to be specifically required for exogenous BDNF-induced eCB release (Lemtiri-

Chlieh and Levine, 2010). Postsynaptic calcium has also been shown to be required for 

BDNF-induced eCB release (Lemtiri-Chlieh and Levine, 2010); thus, release of calcium 

from intracellular stores may also be involved in the eCB-mediated LTD reported in the 

present studies.

Activation of postsynaptic trkB receptors induces the synthesis and release of eCBs that act 

retrogradely on presynaptic CB1Rs to trigger iLTD. The endogenous CB1R ligand that 

mediates iLTD in the present study is not completely clear, but is likely to be 2-AG. 

Activation of PLCγ and PLCβ, downstream effectors of BDNF/trkB and mGluR, 

respectively, leads to cleavage of phosphatidylinositol 4,5-bisphosphate into the second 

messengers inositoltrisphosphate and DAG (Hashimotodani et al., 2007; Minichiello, 2009), 

and DAG is converted to the endogenous cannabinoid 2-AG by the enzyme DGL. In the 

present study, we found that inhibiting DGL blocked eCB-mediated iLTD, and exogenous 

BDNF-induced eCB release is also blocked by inhibiting DGL (Lemtiri-Chlieh and Levine, 

2010). In addition, 2-AG has been shown to be the downstream effector of mGluR-

dependent eCB release in many studies (for review, see Mackie, 2008; Katona and Freund, 

2012; Ohno-Shosaku and Kano, 2014). However, a contributing role for anandamide cannot 

be ruled out, as several studies have shown a link between mGluR signaling and anandamide 

generation (Azad et al., 2004; Puente et al., 2011; Edwards et al., 2012; Huang and Woolley, 

2012), presumably through PLC signaling (Liu et al., 2008).

Statistical table

Data structure Type of test Power

153 Normal distribution Paired t test 0.97

169 Normal distribution Paired t test 0.70

184 Normal distribution Paired t test 1

190 Normal distribution Paired t test 0.99

191 Normal distribution Paired t test 0.99
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Data structure Type of test Power

236 Normal distribution Paired t test 0.65

In the current study, eCB-mediated iLTD was induced using TBS protocols that are similar 

to protocols that induce LTP at excitatory synapses, in which endogenous BDNF also plays 

a critical role (Aicardi et al., 2004; Abidin et al., 2006; Lu et al., 2010). For example, Lu and 

colleagues (2010) have shown that BDNF facilitates LTP by suppressing GABAergic 

inhibition and enhancing pyramidal neuron excitability. Thus, endogenous BDNF may 

enhance LTP and/or postsynaptic excitability at least in part by triggering eCB release which 

then induces long-term depression of inhibitory synapses, in addition to the direct effects of 

BDNF, as well as eCBs, at excitatory synapses. Interestingly, endogenous BDNF has also 

been shown to play a role in the induction of GABAergic LTP in the developing rat 

hippocampus (Gubellini et al., 2005). In order to fully understand the net effect of a given 

stimulation protocol on cortical circuits, it will be important to consider simultaneous 

changes at both excitatory and inhibitory synapses.

The present study focused on the role of BDNF in long-term eCB-mediated plasticity at 

inhibitory synapses. BDNF-induced endocannabinoid release may also play a role in eCB-

dependent short-term synaptic plasticity at inhibitory synapses (DSI) or excitatory synapses 

(DSE). In fact, exogenous BDNF has been shown to enhance DSE via activation of the 

immediate-early gene homer1a (Roloff et al., 2010). It will therefore be interesting to 

explore whether endogenous BDNF contributes to eCB mobilization during DSI and DSE 

and whether it has synergistic effects with depolarization-induced eCB release.

There is increasing evidence for multiple types of interactions between BDNF and the eCB 

system. BDNF, for example, regulates CB1R expression as well as its sensitivity to 

endogenous agonists in cultured cerebellar granule neurons (CGNs) (Maison et al., 2009). 

De Chiara and colleagues (2010, 2013) found that in striatum, BDNF selectively 

antagonizes CB1R receptor function at inhibitory synapses in a cholesterol metabolism-

mediated mechanism It has also been found that the neuroprotective effects of eCBs, 

particularly in depression and epileptic seizures, are mediated by changes in BDNF 

expression (Marsicano et al., 2003; Khaspekov et al., 2004; Aguado et al., 2007; Aso et al., 

2008; Vinod et al., 2012). During interneuron differentiation, eCBs have additive effects 

with BDNF in regulating interneuron migration (Berghuis et al., 2005). A full understanding 

of the physiological roles of each of these systems will require a greater mechanistic 

understanding of their synaptic interactions. The current study, describing a novel form of 

eCB-mediated LTD at inhibitory synapses that requires endogenous BDNF/trk signaling, 

may contribute to this understanding.
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Significance Statement

Endocannabinoids and neurotrophins, particularly brain-derived neurotrophic factor 

(BDNF), are potent neuromodulators that play critical roles in many behavioral and 

physiological processes. Disruption of either BDNF or endocannabinoid signaling is 

associated with an overlapping set of neurologic and psychiatric diseases, and both 

systems are currently major targets for the development of novel therapeutics, 

particularly in relation to depression, anxiety, autism, and schizophrenia. Little is known, 

however, about the interactions between these systems. In the present studies, we find 

that endogenous BDNF is released in an activity-dependent manner to trigger 

endocannabinoid-mediated depression of inhibitory synapses. A mechanistic 

understanding of BDNF-endocannabinoid interactions regulating synaptic plasticity may 

provide clues to underlying pathologies of neurologic and psychiatric disorders and 

suggest novel strategies for therapeutic intervention.
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Figure 1. 
TBS in layer 2/3 induces CB1R-dependent iLTD. A, Group time course of the effect of 

seven trains of TBS (7× TBS) on normalized peak eIPSC amplitudes (n = 7). Arrow 

indicates TBS stimulation (this and all following figures). Inset, Averaged sample sweeps 

during baseline (1) and 35 min after TBS (2) from a representative experiment. B, Data from 

individual experiments showing eIPSC amplitude during baseline (black circles, BL) and 35 

min after TBS (blue squares). *p < 0.05 compared to baseline. C, Paired-pulse ratio data 

from the same cells as in B during baseline (black circles, BL) and 35 min after TBS (blue 

squares). *p < 0.05 compared to baseline. D, Group time course showing lack of effect of 7× 

TBS on peak eIPSC amplitude in the presence of the CB1R antagonists AM251 (5 µM) or 

SR 141716A (10 µM, n = 9 in total). Inset, Averaged sample sweeps during baseline (1) and 

35 min after TBS (2) from a representative experiment.
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Figure 2. 
iLTD at layer 2/3 inhibitory synapses is independent of mGluR signaling. A, Group time 

course of the effect of 7× TBS on peak eIPSC amplitude in the presence of the group I/II 

mGluR antagonist E4CPG (500 µM; n = 6). Inset, Averaged sample sweeps during baseline 

(1) and 35 min after TBS (2) from a representative experiment. B, Data from individual 

experiments showing eIPSC amplitude baseline (black circles, BL) and 35 min after TBS in 

the presence of E4CPG (orange squares). *p < 0.05 compared to baseline. C, Compiled 

group data for normalized eIPSC amplitude 35 min after 7× TBS in vehicle (blue bar), 

Zhao et al. Page 16

Eneuro. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E4CPG (orange bar), or CB1R antagonists (CB1R antag., green bar). Numbers on bars 

indicate number of cells in each group (this and all following figures).
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Figure 3. 
eCB-mediated iLTD requires endogenous BDNF signaling as well as DGL. A, Group time 

course showing the lack of effect of seven trains of TBS (7× TBS) on peak eIPSC amplitude 

in the presence of the tyrosine kinase inhibitor K252a (200 nM, n = 6). B, Group time course 

showing the lack of iLTD in response to 7× TBS in the presence of the trkB receptor 

antagonist ANA12 (10 µM, n = 6). Inset, Averaged sample sweeps during baseline (1) and 

35 min after TBS (2) from a representative experiment. C, Group time course showing the 

lack of iLTD in response to 7× TBS in the presence of DGL inhibitor THL (5 µM, n =6). D, 

Compiled group data for normalized eIPSC amplitude at 35 min postinduction in the 

presence of K252a (light pink bar), ANA-12 (light purple bar), or THL (coral bar). The 

effect of 7× TBS in vehicle (blue bar) was taken from Figure 2C for comparison. *p < 0.05 

compared to baseline.
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Figure 4. 
Low concentration of BDNF synergizes with subthreshold TBS to induce iLTD. A, Group 

time course of the effect of three trains of TBS (3× TBS) on normalized peak eIPSC 

amplitude. Inset, Averaged sample sweeps during baseline (1) and 35 min after TBS (2) 

from a representative experiment (n = 7). B, Data from individual experiments showing 

eIPSC amplitude baseline (black circles, BL) and 35 min after 3× TBS (light blue squares). 

C, Dose response of the acute effect of BDNF (5 min) on eIPSC amplitude. Left bar, 5 

ng/ml (0.2 nM) BDNF; middle bar, 2.5 ng/ml (0.1 nM) BDNF; right bar, 1.25 ng/ml (0.05 

nM) BDNF. D, Group time course of peak eIPSC amplitude under the combination of 3× 

TBS and 5 min-0.05 nM BDNF. Horizontal bar above trace indicates BDNF application. E, 

Data from individual experiments showing eIPSC amplitude during baseline (black circles, 

BL) and 35 min after 3× TBS and 5 min-0.05 nM BDNF (purple squares). Time window is 

relative to TBS (for this and Fig. 5). *p < 0.05 compared to baseline.
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Figure 5. 
Synergized iLTD requires CB1R signaling. A, Group time course illustrating the lack of 

effect of 3× TBS-5 min BDNF combination on eIPSC amplitude in the presence of CB1R 

antagonist SR 141716A (SR, 10 µM, n = 6.) Inset, Averaged sample sweeps during baseline 

(1) and 35 min after TBS (2) from a representative experiment. B, Compiled group data for 

normalized eIPSC amplitude at 35 min post various induction conditions. Hatched light blue 

bar, 3× TBS. Hatched pink bar, 0.05 nM BDNF for 5 min. Purple bar, Combination of 5 

min-0.05 nM BDNF and 3× TBS. Green bar, Combination of 5 min-0.05 nM BDNF and 3× 

TBS, in the presence of SR. Blue bar, 7tr-TBS (taken from Fig. 2C for comparison).

Zhao et al. Page 20

Eneuro. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	University of Connecticut
	OpenCommons@UConn
	2-28-2015

	Role for Endogenous BDNF in Endocannabinoid-Mediated Long-Term Depression at Neocortical Inhibitory Synapses
	Eric S. Levine
	Liangfang Zhao
	Mason Li-Wen Yeh
	Recommended Citation


	tmp.1430754438.pdf.IwDNE

