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Abstract: The discovery of ubiquitin-like small archaeal modifier protein 2 (SAMP2) that forms

covalent polymeric chains in Haloferax volcanii has generated tremendous interest in the function
and regulation of this protein. At present, it remains unclear whether the Hfx. volcanii modifier

protein SAMP1 has such polyubiquitinating-like activity. Although SAMP1 and SAMP2 use the same

conjugation machinery to modify their target proteins, each can impart distinct functional
consequences. To better understand the mechanism of SAMP2 conjugation, we have sought to

characterize the biophysical and structural properties of the protein from Hfx. volcanii. SAMP2 is

only partially structured under mesohalic solution conditions and adopts a well-folded compact
conformation in the presence of 2.5M of NaCl. Its 2.3-Å-resolution crystal structure reveals a

characteristic a/b central core domain and a unique b-hinge motif. This motif anchors an unusual

C-terminal extension comprising the diglycine tail as well as two lysine residues that can
potentially serve to interlink SAMP2 moieties. Mutational alternation of the structural malleability of

this b-hinge motif essentially abolishes the conjugation activity of SAMP2 in vivo. In addition, NMR

structural studies of the putative ubiquitin-like protein HVO_2177 from Hfx. volcanii show that like
SAMP1, HVO_2177 forms a classic b-grasp fold in a salt-independent manner. These results

provide insights into the structure–function relationship of sampylating proteins of fundamental

importance in post-translational protein modification and environmental cues in Archaea.

Keywords: archaea; ubiquitin-like proteins; protein conjugation; sulfur transfer

Introduction
Conjugation of ubiquitin and ubiquitin-like (Ubl)

polypeptide modifiers to various macromolecules is

involved in the regulation of a diverse set of cellular

processes in eukaryotic cells, including DNA repair,

signal transduction, cell division, translation,

autophagy, and proteasome-mediated proteolysis.1–4

Covalent Ubl modifications can alter many functions

of target proteins, including enzyme activity, protein

stability, subcellular localization, and the ability to

interact with other proteins. The dysregulation of

Ubl-substrate modification and mutations in the

Ubl-conjugation pathways have increasingly been

implicated in the etiology and/or progression of a

number of human diseases.5,6 All the structurally

characterized eukaryotic Ubls share the ubiquitin

fold that consists of two conserved features: the so-

Grant sponsor: National Institutes of Health; Grant number: R01
GM099948; Grant sponsor: American Heart Association SDG;
Grant number: 10SDG2640098; Grant sponsor: The U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences under Award Number; Grant number: DE-FG02–
05ER15650.

*Correspondence to: Bing Hao, Department of Molecular,
Microbial and Structural Biology, University of Connecticut
Health Center, Farmington, CT 06030-3305.
E-mail: bhao@uchc.edu

1206 PROTEIN SCIENCE 2013 VOL 22:1206—1217 Published by Wiley-Blackwell. VC 2013 The Protein Society



called b-grasp global core comprising a four- or five-

stranded mixed b-sheet and an a-helix, in addition

to a flexible C-terminal tail terminating with a gly-

cyl–glycine motif.7,8 The b-grasp fold creates a

highly stable cooperative tertiary structure and is

often resistant to environmental perturbation such

as heat.9 Through a C-terminal glycine residue, Ubl

proteins become attached via an isopeptide bond to

the e-amino group of the side chain of lysine resi-

dues in protein targets. This conjugation reaction is

generally catalyzed by a highly regulated three-step

enzymatic cascade involving the sequential actions

of an E1-activating enzyme, an E2-conjugating

enzyme and an E3 protein ligase.1,10

Although the continuing discovery of new Ubl

substrates has greatly expanded the functional

diversity of Ubl pathways in eukaryotic cellular

homeostasis and physiology, the presence of protea-

somes in many prokaryotes11,12 has generated tre-

mendous interest in identifying such Ubl protein

modification systems in archaea and bacteria. Myco-

bacterium tuberculosis Pup is the first known pro-

karyotic small modifier protein that can initiate the

selective turnover of unwanted proteins by a bacte-

rial proteasome in a manner akin to Ub-mediated

proteolysis in eukaryotes.13 However, Pup does not

have a canonical ubiquitin fold and is in fact

intrinsically disordered.14–16 Although Pup has a

glycine–glycine motif penultimate to its C-terminal

residue, pupylation proceeds by different conjugation

chemistry.17–20 The C-terminal residue of Pup is a

glutamine that is first deamidated by the Dop dea-

midase, and the deamidated Pup is then isopeptide-

linked via the resulting glutamic acid g-carboxyl

group to lysine residues of target proteins, a reaction

catalyzed by a glutamine synthetase-like PafA

ligase. On the other hand, comparative genomic and

biochemical studies have identified numerous

b-grasp domain proteins in both bacteria and arch-

aea.21,22 For example, the structurally b-grasp-

related ThiS23 and MoaD24 of Escherichia coli serve

as sulfur carriers in thiamine and molybdopterin

biosynthetic pathways in association with the E1-

related enzymes ThiF and MoaE, respectively.

Increasing evidence suggests that these types of sul-

fur transfer pathways or related enzymes were pre-

cursors of the eukaryotic ubiquitin system. This

notion is supported by the finding that the

ubiquitin-related modifier-1 (Urm1) functions as a

sulfur carrier in thiolation of yeast transfer RNA

and can also be ligated to a substrate protein via an

exposed diglycine sequence protruding from its

b-grasp fold.25–27 Thus, Urm1 likely represents an

evolutionary bridge between the ancient roles of Ubl

proteins in sulfur chemistry and their advanced

roles in protein conjugation.

Sampylation is a newly discovered prokaryotic

protein-tagging system with parallels to the ubiquitin

conjugation system and provides a direct link between

protein modification and sulfur transfer in Archaea

species such as Haloferax volcanii.28,29 The small

archaeal modifer protein 1 (SAMP1) and 2 (SAMP2)

are involved in sulfur transfer during molybdenum

cofactor biosynthesis and tRNA thiolation much like

MoaD and Urm1, respectively.30 Meanwhile, SAMP1

and SAMP2 have been demonstrated to form covalent

conjugates with their substrate proteins through an

isopeptide linkage via their C-terminal diglycine

motif in a streamlined archaeal E1-dependent path-

way.30–32 SAMP2 also forms homo-conjugates through

the intermolecular isopeptide bond between the C-

terminal glycine and the Lys58 side chain, a feature

that likely resembles polyubiquitination. Conjugation

by SAMP1 and SAMP2 is growth condition-specific

and likely occurs in response to environmental cue(s).

Recently, the NMR structure of Methanosarcina aceti-

vorans SAMP133 and the crystal structure of Hfx. vol-

canii SAMP134 have been reported. SAMP1 possesses

a classic b-grasp fold that is similar to that of most Ubl

proteins. To better understand the archaeal sampyla-

tion process and the structural principle underlying

poly-SAMP2 conjugation activity, we have determined

the atomic structures of SAMP2 and the putative Ubl

protein HVO_217731 from Hfx. volcanii. Similar to

SAMP1, HVO_2177 share significant structural simi-

larities to other known Ubl proteins. Interestingly,

SAMP2 forms a b-strand-interchanged dimer in the

crystalline state, whereas the protein is a monomer

in solution. Circular dichroism (CD) measurements

indicate that SAMP2 is partially unfolded at low ionic

strength and undergoes a b-hinge conformational

switch as the ionic strength of a buffer is increased by

adding sodium chloride from 200 mM to 2M. Mutagen-

esis studies suggest that this b-hinge region plays a

crucial role in maintenance of SAMP2 conjugation

activity. These results point to a conformational control

of sampylating activity and suggest a stabilizing

mechanism by which SAMP2 maintains its functional

characteristics under extremely high-salt conditions in

halophilic archaea.

Results

Structure determination of SAMP2

The crystal structure of SAMP2 was determined at

2.3-Å resolution by molecular replacement using a

chemical shift (CS)-based Rosetta generated SAMP2

model. Crystallization trials yielded well-diffracting

crystals of the native SAMP2 protein but not its sele-

nomethionine (SeMet)-substituted variants. We were

not able to identify its structural phases using the

molecular replacement method with known Ubl struc-

tures. We thus sought to construct a high-resolution

NMR-based structural model of SAMP2 to solve the

phase problem. The proton–nitrogen heteronuclear

single-quantum coherence (HSQC) spectrum of

Li et al. PROTEIN SCIENCE VOL 22:1206—1217 1207



SAMP2 is shown in Figure 1(A). Each peak or reso-

nance in this spectrum originates from a covalently

linked proton–nitrogen pair within the protein, either

along the polypeptide backbone or in the side-chain

groups. Complete sequence-specific resonance could

be assigned as indicated in the spectrum, and was

derived from triple resonance NMR data in combina-

tion with backbone amide proton NOESY spectra.

The NMR CS data were then used for CS-Rosetta

structure calculation.35 The CS-Rosetta models con-

verged on a well-defined structure that closely resem-

bles the b-grasp fold with the average Ca root-mean-

square deviation (rmsd) of the 10 lowest-energy struc-

tures around 1.7 Å [Fig. 1(B,C)]. By using those struc-

tures as search models for molecular replacement, the

initial phases were determined for the diffraction

data of SAMP2. The resulting electron density maps

show clear solvent boundaries and side-chain den-

sities. We immediately noticed differences in the posi-

tioning of the C-terminal b-strand (residues, 53–66)

between the CS-Rosetta model and the crystallo-

graphic map. The 14 residues in this b-strand were

therefore removed from the model in subsequent

refinement steps, and the resulting omit maps unam-

biguously confirmed the position of the b-hinge region

in the SAMP2 model [Fig. 2(A)]. Iterative model build-

ing and crystallographic refinement resulted in a

model with an R-factor of 21.5% and a free R-value of

25.4%, with all residues in allowed regions of the

Ramachandran plot (Table I).

Novel structural fold of SAMP2

The secondary structure of SAMP2 consists of a pair

of antiparallel b-strands, an a-helix, a 310 helix, and

three C-terminal b-strands [Fig. 2(B)]. The arrange-

ment of these secondary structure elements and the

Figure 1. Generation of the 3D models of SAMP2 using CS-Rosetta. (A) 1H, 15N-HSQC spectrum of SAMP2 in Na-K phosphate

buffer at 25�C. (B) Energy of the CS-Rosetta-generated models versus rmsd to the lowest energy structure (red dot). Around

2000 models of SAMP2 were generated of which 10 with the lowest energies were analyzed. (C) Superposition of the top 10

CS-Rosetta models with the lowest energies.
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overall folding topology are similar to those of Ubl

proteins,7,8 SAMP1,33,34 and HVO_2177 (see below).

Each SAMP2 polypeptide is folded into two two-

stranded antiparallel b-sheets (S1/S2 and S3/S4),

abutted at the top by two helices (H1 and H2) to

form a hydrophobic core. The most striking feature

of this monomer fold is the C-terminal extension of

the b-strand S5 and the diglycine motif, separate

from the central core domain [Fig. 2(B)]. The Glu53

residue serves as the pivot point in the extended b-

hinge conformation. Serendipitously, the two SAMP2

molecules associate to form an interlocked dimer

with a crystallographic twofold axis in the crystal-

line state [Fig. 2(C)]. The extended S5 b-strand of

one monomer packs against the S1 and S3 strands

of the neighboring molecule to form an intermolecu-

lar five-stranded b-sheet. So far as we know, this

type of b-strand interchange has not been seen

before in Ubl proteins (see below). Moreover, �3500

Å2 (�31%) of the total solvent-accessible surface in

each monomer is buried in the dimer interface, rais-

ing the possibility that the C-terminal extension

may well affect the structural stability of the uncom-

mon SAMP2 fold.

Salt-induced folding of SAMP2
The b-hinge region is well ordered and has low-

temperature factors in the crystal structure of

SAMP2 [Fig. 2(A)]. The relative orientation of the

C-terminal strand of the protein is imposed almost

entirely through the loop conformation between the

S4 and the S5 strands in the crystalline state. Given

that SAMP2 was crystallized in high-salt conditions,

we were interested in determining the extent to

which ionic strength could influence the folding and

stability of SAMP2 in the solution. On the basis of

CD measurements at 4�C, SAMP2 is partially folded

Figure 2. Overall structure of the Hfx. volcanii SAMP2 protein. (A) A stereo view of the representative Fo–Fc density map show-

ing the region of the S5 strand of SAMP2. The map is contoured at 3.0r. (B) Overall structure of SAMP2. Glu53 is shown as a

stick model. (C) Ribbon diagram of two interlocked SAMP2 molecules created by the crystallographic twofold axis. The two

molecules are colored red and green, respectively.

Table I. X-ray Data Collection and Refinement
Statistics for SAMP2

Data collection
Wavelength (Å) 1.075
Space group I222
Cell dimensions (Å)
a, b, c (Å) 24.6, 64.6, 104.6
a, b, c (�) 90.0, 90.0, 90.0
Resolution (Å) 50.00–2.30 (2.34–2.30)
Rsym (%) 6.2 (15.6)
I/rI) 43.4 (18.4)
Completeness (%) 99.0 (97.2)
Redundancy 12.6 (12.4)
Refinement
Resolution (Å) 50.00–2.30
No. of reflections (|F|>0r) 3771
R-factor/Rfree 21.5/25.4
Total protein atoms 493
Water molecules 34
B-factors (average) (Å2)
Protein 27.4
Water 32.0
rmsds
Bond lengths (Å) 0.010
Bond angles (�) 1.214
Ramachandran (%)
Within-favored 95.5
Within-allowed 100
Outliers 0

The number in parentheses is for the highest resolution
shell.

Li et al. PROTEIN SCIENCE VOL 22:1206—1217 1209



in Tris buffer supplemented with 100 mM of NaCl

[Fig. 3(A)]. CD spectra of SAMP2 in the presence of

increasing concentrations of NaCl show strong nega-

tive bands around 210 and 220 nm [Fig. 3(A)]. This

type of spectrum has been observed in mixed

a/b-proteins and appears to represent the formation

of native secondary structure in SAMP2. An isodi-

chroic point observed in the far-UV CD spectra at

205 nm [Fig. 3(A)] suggests that the folding of

SAMP2 is a simple two-state transition. A maximum

increase in ellipticity and secondary structure con-

tents was observed upon increasing the ionic

strength to 2.5M of NaCl, similar to that used in the

growth medium for halophilic archaea.36 In contrast,

alteration of ionic strength has no effect on the CD

spectra of SAMP1 and HVO_2177 (data not shown).

In addition, gel filtration chromatography of SAMP2

revealed a significantly longer retention time in the

high-salt buffer [Fig. 3(B)], in keeping with salt-

induced hydrophobic compaction and secondary

structure formation. Nevertheless, SAMP2 is mono-

meric even at high ion strength buffer (up to 2.5M

of NaCl) and high protein concentration (up to 800

mM) as determined by sedimentation equilibrium

experiments [Fig. 3(C)]. It is possible that SAMP2

undergoes a global conformational change induced

by high ionic strength at its native conditions.

Functional role of the b-hinge region

As described above, SAMP2 contains the unique

b-hinge motif that is important to properly orient

the C-terminal extension of �14 residues beyond the

hydrophobic core of the protein. We hypothesized

that the b-hinge flexibility may be an important

determinant of the SAMP2 conformation that favors

both substrate protein interactions and poly-

sampylation. To directly test this hypothesis, we

replaced Glu53, located at the pivot point of the S4–

S5 loop in the protein, with alanine and glycine,

respectively, to create the E53A and E53G mutants.

Alanine was selected because of the small size of its

methyl side chain that allows certain degree of con-

formational flexibility, whereas glycine was chosen

because it lacks a side chain and thus would accom-

modate rotation of the C-terminal strand of the pro-

tein into a range of conformations.37,38 Plasmids

encoding Flag-tagged SAMP2 E53A and E53G were

transformed into Hfx. volcanii. The two variant pro-

teins were examined for their ability to be expressed

and form protein conjugates as detected by immuno-

blotting using an a-Flag-specific antibody;31 the pol-

yvinylidene difluoride (PVDF) membranes were also

stained with Ponceau S to ensure equal protein load-

ing and transfer (data not shown). Both E53A and

E53G were expressed at similar levels to the wild-

type protein in the Hfx. volcanii strain grown on a

complete medium containing 2.14M of NaCl (Fig. 4).

Although the E53A substitution resulted in a modest

reduction (�3-fold) relative to the wild type, the

E53G mutation essentially abolished the sampyla-

tion reaction. We believe that the loss of SAMP2

conjugation activity originates from the effect of the

Glu53-to-Gly substitution on the b-hinge conforma-

tion of the protein and support the notion that rela-

tive orientation of the C-terminal strand that

Figure 3. Effect of ionic strength on the folding and confor-

mation of SAMP2. (A) CD spectra of SAMP2 at 4�C in 10 mM

of Tris-HCl (pH 8.0) supplemented with 100 mM (blue), 500

mM (red), 1M (green), and 2.5M (black) NaCl. (B) Overlay of

gel-filtration chromatography profiles of SAMP2 incubated in

20 mM of Tris-HCl (pH 8.0) supplemented with 200 mM

(blue) and 2.5M (black) NaCl. (C) Representative sedimenta-

tion equilibrium data (34,000 rpm) for SAMP2 (250 mM) at 4�C

in a buffer containing 20 mM of Tris-HCl (pH 8.0) and 2.5M of

NaCl. The data fit closely to a monomer (Upper). The devia-

tion in the data from the linear fit for a monomeric model is

plotted.
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bearing two lysine residues to the core is critical for

SAMP2 conjugation activity. Nevertheless, the

Glu53-to-Gly mutation can also induce global protein

unfolding and/or impact a SAMP2–substrate interac-

tion interface directly. Further study is required to

clarify how altering the b-hinge conformation might

lead to this phenotype.

Structure of Hfx. volcanii HVO_2177

We determined the structure of the putative Ubl

protein HVO_2177 in Hfx. volcanii by NMR spec-

troscopy; the HVO_2177 protein expressed in this

study represents residues 22–113 of the polypeptide

deduced from DNA sequence spanning 2049666–

2050007 of the Hfx. volcanii DS2 genome (GI:

292654178).39 The HVO_2177 protein has a

C-terminal diglycine motif and is predicted to pos-

sess a b-grasp fold similar to SAMP1 and SAMP2.31

The 1H-15N HSQC spectra of HVO_2177 are shown

in Figure 5(A). The CSs are well dispersed in both

the 1H and the 15N dimensions and allow for almost

complete sequence-specific backbone assignments of

the protein using a standard set of triple-resonance

NMR experiments. Secondary structure prediction

based on the backbone 1H, 15N, and 13C CSs using

TALOS140 confirmed that the protein consists of

five b-strands and two a-helices. Nuclear Over-

hauser effect (NOE) crosspeaks from the 3D NOESY

spectra were used to generate 3421 distance

restraints through automated assignment methods.

CS data were used with TALOS1 to generate 164

dihedral angle restraints. CYANA41 was used to gen-

erate 200 conformers of which the 20 with the low-

est target function were refined in explicit solvent in

CNS42 to generate a well-defined ensemble with a

backbone rmsd of 0.28 Å from the mean [Table II;

Fig. 5(B,C)]. Sedimentation equilibrium experiments

show that both HVO_2177 and SAMP1 sediment as

discrete monomers (data not shown).

As expected, HVO_2177 adopts a global b-grasp

fold [Fig. 5(C)]. HVO_2177 consists of a five-

stranded-mixed b-sheet with the b2"b1#b5#b3"b4#
topology that is same as SAMP1, as well as two a-

helices and one 310 helix flanking on the side of the

b-sheet. Furthermore, HVO_2177 appears structur-

ally more closely related to SAMP134 than SAMP2

[Fig. 6(A,B)]. SAMP1 shares 48% amino acid

sequence identity with HVO_2177. In addition,

SAMP134 and HVO_2177 share a similar tertiary

structure with a Ca rmsd of 2.0 Å, indicating that

the overall canonical b-grasp fold is preserved

among Ubl proteins in halophilic archaea [Fig. 6(B)].

The only major structural difference lies in the

region between the H3 helix and the S3 strand, with

the well-defined H3 helix in SAMP1, whereas there

is a crossover loop and a 310 helix in this region of

HVO_2177. Importantly, Lys4 is the only lysine resi-

due of SAMP1 that could potentially form polymeric

Figure 4. Effects of Glu53 mutation on levels of SAMP2-

conjugates in Hfx. volcanii cells. SAMP2 and SAMP2 conju-

gates in wild-type and Glu53 mutant cells grown on complex

medium were detected by immunoblotting with an anti-Flag

antibody. The PVDF membranes were also stained with Pon-

ceau S to confirm equal protein loading and transfer.

Figure 5. Overall structure of the Hfx. volcanii HVO_2177

protein. (A) 1H, 15N-HSQC spectrum of HVO_2177 showing

selected assignments. (B) Stereo representation of a super-

position of the backbone of the 20 lowest energy refined

structures of HVO_2177. (C) Ribbon diagram of the lowest

energy HVO_2177 structure.
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chains and this lysine aligns structurally with

HVO_2177 Arg6. This could explain the observation

that HVO_2177 lacks sampylating activity.31

Structural comparisons among Ubl proteins

In spite of only 22% sequence identity shared

between SAMP1 and SAMP2 [Fig. 6(A)], these two

proteins can be superposed with an rmsd of 1.5 Å

for 49 out of 69 a-carbon atoms and with better

superposition of the center core domain [Fig. 6(C)].

Apparently, SAMP2 replaces the H1 and H3 a-

helices in SAMP1 with a 310 helix to form a more

compact core domain with the extended C-terminal

b-stand and tail [Fig. 6(C)]. The presence of two

lysine residues (Lys58 and Lys64) in this extension

suggests that they are likely more accessible for

modification than the only lysine residue Lys4 in

SAMP1. It is also possible that the poly-SAMP2

chain displays significant structural differences from

classic polyubiquitin chains linked by Lys48 or

Lys63 of ubiquitin. Importantly, all three Ubl pro-

teins, SAMP1, SAMP2, and HVO_2177, contain a

conserved hydrophobic pocket that is responsible for

ubiquitin recognition by other proteins [Fig. (6C,E)].

This hydrophobic patch is centered at Ile44 of ubiq-

uitin, and the structurally equivalent residues in

SAMP1 (Leu60), SAMP2 (Leu40), and HVO_2177

(Leu61) are positioned in a similar orientation as

Ile44. This observation suggests that the conserved

Table II. NMR Structural Statistics for the 20 Lowest
Energy Structures of HVO_2177

NMR restraints
Total distance restraints 3421
Intraresidues 549
Sequential (|i 2 j| 5 1) 808
Short range (|i 2 j|�1) 1357
Medium range (1<|i 2 j|<5) 640
Long range (|i 2 j|�5) 1424
Dihedral angles restraints (u and w) 164
Residual NOE violations
Mean number>0.3 Å 3.5 6 1.6
Mean number>0.5 Å 0
Average deviation from idealized geometry
Bond lengths (Å) 0.0140 6 0.0001
Bond angles (�) 1.02 6 0.02
rmsds from mean
Backbone atoms 0.28 6 0.05
All heavy atoms 0.66 6 0.06
Ramachandran (%)
Within-favored 87.5
Within-allowed 95.2
Outliers 4.8

Figure 6. Sequence conservation and structure similarity among SAMP proteins and their homologues. (A) Sequence conserva-

tion and secondary-structure elements for SAMP1, SAMP2, and HVO_2177. Sequence conservation is shown as a bar graph,

with red bars indicating identity among all three proteins. Secondary-structure assignments from the crystal (SAMP134 and

SAMP2) and NMR (HVO_2177) structures are shown as cylinders (a-helices) and arrows (b-strands) colored in blue for SAMP1,

red for SAMP2, and orange for HVO_2177. (B) Superposition of SAMP1 (blue; PDB ID: 3PO0) and HVO_2177 (orange). (C)

Superposition of SAMP1 (blue), SAMP2 (red), and HVO_2177 (orange). (D) Superposition of HVO_2177 (orange) and Pyrococcus

furiosus MoaD (green; PDB ID: 1VJK). (E) Superposition of SAMP2 (red) and Homo sapiens ubiquitin (green; PDB ID: 1UBQ).
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hydrophobic pocket also plays a role in regulation of

protein–protein interactions by the sampylation or

other pathways.

The structure homology searches of the Protein

Data Bank using the Dali server43 revealed unequiv-

ocal structural resemblance of HVO_2177 with more

than 800 Ubl proteins, including Urm1, ubiquitin,

and the bacterial sulfur carrier proteins MoaD,

ThiS, and CysO [Table III; Fig. 6(D)]. The finding

that HVO_2177 shows high structural similarity

with sulfur transfer proteins is consistent with the

predictions of HVO_2177 function based on compar-

ative genomic and sequence analysis of all archaeal

Ubl proteins.29 In contrast, a similar homology

search revealed that SAMP2 shares low structural

similarity to a number of Ubls, likely owing to its

peculiar b-hinge-containing topology [Table III; Fig.

6(E)]. Taken together, we conclude that SAMP2 rep-

resents a previously uncharacterized type of the Ubl

fold.

Discussion
Sampylation by SAMP2 may target proteins for

proteasome-mediated degradation in Hfx. volcanii

through self-modification to form poly-SAMP chains

much like eukaryotic ubiquitin and SUMO.31 The

structural and biochemical studies presented here

will contribute to our current understanding of the

regulatory and structural variations of Ubl proteins

in halophilic archaea. We find that SAMP2 adopts

an unusual configuration in which the C-terminal

strand forms an open b-hinge motif, whereas

SAMP1 and HVO_2177 retain the hallmark b-grasp

fold. Considering that Pup is an intrinsically disor-

dered protein bearing little sequence or structural

resemblance to ubiquitin, it appears that prokaryotic

polypeptide modifiers can adopt diverse conforma-

tions to exert phenotypic effects on a plethora of tar-

gets. The unique extended b-hinge conformation of

SAMP2 leads us to posit that the two lysine sites in

this region may play an important role in determin-

ing the substrate specificity of sampylation. We

should emphasize that although SAMP2 forms a sta-

ble b-interchanged dimer in the crystalline state,

sedimentation equilibrium experiments revealed a

monomeric SAMP2 in solution regardless of ionic

strength. In addition to crystal packing, the high

protein concentration (80 mg mL21) used for crystal-

lization could well contribute to dimer formation,

given that the highest protein concentration used in

sedimentation experiments was 5.8 mg mL21. It is

thus possible that the b-hinge motif in SAMP2 is

flexible and this flexibility allows the protein to

have a more globular and compact fold in solution

than in crystals. In fact, the interconversions

between open and closed conformations could pro-

vide a structural basis for altering SAMP2 func-

tional interactions with its target proteins. This

notion is supported by site-directed mutagenesis

studies, showing that the relative orientation and a

certain degree of flexibility of the terminal strand

are critical for SAMP2 conjugation activity.

We also find that SAMP2 is partially folded

under normal conditions but forms a well-folded

structural domain in the presence of 2.5M of NaCl,

the natural growth environment of halophilic arch-

aea. This finding suggests a possible mechanism for

coordinated folding and structural rearrangements

of SAMP2 in relation to environmental cues or inter-

actions with substrate/partner proteins, consistent

with the observations that the level of sampylation

is closely regulated by growth condition.31 In fact,

Table III. Structural Homologs of SAMP2 and HVO_2177

PDB id Z-score rmsd (Å) Protein

SAMP2
1YIW 6.4 1.6 Chemically synthesized H. sapiens ubiquitin
1R4M 6.2 1.7 H. sapiens NEDD8
1UBQ 5.6 1.9 H. sapiens ubiquitin
3PO0 4.3 2.0 Hfx. volcanii SAMP1
1ZUD 3.1 2.3 E. coli ThiS
1V8C 3.0 7.4 Thermus thermophilus MoaD
3DWG 2.6 2.4 M. tuberculosis CysO
2L52 2.5 2.2 Methanosarcina acetivorans SAMP1 homolog

HVO_2177
1V8C 12.5 1.6 T. thermophilus MoaD
2L52 12.1 2.0 M. acetivorans SAMP1 homolog
3PO0 11.3 2.2 Hfx. volcanii SAMP1
1VJK 10.8 2.0 P. furiosus MoaD
3DWG 10.7 2.8 M. tuberculosis CysO
2QJL 9.8 2.3 Saccharomyces cerevisiae Urm1
1UBQ 5.9 2.7 H. sapiens ubiquitin
1ZUD 5.6 2.1 E. coli ThiS
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conformational variation is emerging as a wide-

spread theme in eukaryotic Ubl conjugation cas-

cades. For example, eukaryotic E1s and some E3s

undergo domain rotations that are critical for their

catalytic activities.44,45 To our knowledge, we show

for the first time that the polypeptide modifier itself

undergoes conformation changes that could act to

regulate its conjugation function and/or specificity.

As a single member of the E1 family has been iden-

tified in Hfx. volcanii, and E2- and E3-like proteins

are not predicted in the majority of archaeal

genomes, the environment-sensitive folding of

SAMP2 can provide an alternative means to regu-

late the structure, activity, interactions, location,

and/or half-life of haloarchaeal proteins.

Materials and Methods

Cloning, expression, and protein purification
The samp1 (HVO_2619), samp2 (HVO_0202), and

HVO_2177 genes were generated by PCR using

genomic DNA isolated from Hfx. volcanii DS2 as

template and cloned into a modified pET15b vector

(EMD Millipore, Billerica, MA). The SAMP1 (resi-

dues, 1–87), SAMP2 (2–66), and HVO_2177 (24–113)

proteins were expressed in E. coli and purified by

Ni21-NTA affinity chromatography followed by TEV

protease cleavage of the His6 tag. These proteins

were purified to homogeneity by sequential anion-

exchange and gel filtration (SD75; GE Healthcare,

Piscataway, NJ) chromatography. For crystallization,

SAMP2 was concentrated to 80 mg mL21 by ultrafil-

tration in 20 mM of HEPES (pH 7.4), 200 mM of

NaCl. For NMR experiments, SAMP2 and

HVO_2177 were expressed in M9 minimal media

supplemented with 15NH4Cl and 13C-glucose as the

sole nitrogen and carbon sources, respectively. The
13C, 15N-labeled SAMP2, and HVO_2177 were puri-

fied as described above and concentrated to 1 mM in

25 mM of Na-K phosphate (pH 6.2 for SAMP2 and

pH 7.2 for HVO_2177), 500 mM of NaCl, 0.2 mM of

EDTA, 10% D2O, and 0.02% NaN3.

Crystallization and structure determination

Crystals were grown by the hanging-drop vapor dif-

fusion method at 4�C. SAMP2 was crystallized from

100 mM bis-tris-propane-HCl (pH 6.8), 25–30% w/v

PEG 400, 0.2M of MgCl2, 0.1M of KCl. The crystals

were flash-frozen in crystallization solution directly.

Diffraction data were collected on the X29A beam-

line at the National Synchrotron Light Source (Broo-

khaven, NY), and reflection intensities were

integrated and scaled using the HKL2000 suite.46

Initial phases for SAMP2 were obtained with molec-

ular replacement using the top 10 lowest-energy CS-

Rosetta models (see below) as the search models

with Phaser.47 Iterative cycles of refinement in

REFMAC with TLS48 followed by manual rebuilding

in Coot were carried out until no further improve-

ment of the Rfree factor was observed. X-ray data col-

lections, phasing, and refinement statistics are

summarized in Table I. Ramachandran statistics

were calculated using Molprobity.49 Molecular

graphics were rendered using PyMOL (Delano Sci-

entific LLC).

NMR measurements and structure calculations

NMR experiments were performed at 25�C on 600

and 800 MHz spectrometers (Agilent VNMRS) using

the uniformly 13C,15N-labeled SAMP2, and

HVO_2177 samples prepared as described above.

The HVO_2177 sample was exchanged into D2O by

repeating cycles of concentrating and diluting in

buffer made in D2O; spectra collected in 100% D2O

are noted. 2D 15N-1H-HSQC, 2D HNCACO, 3D

HNCACB, and 3D HNCO spectra were used for 1H,
15N, 13Ca, 13Cb, and 13C backbone resonance assign-

ments. Side-chain Ha- and Hb-assignments were

obtained using a 3D HBHA(CO)NH spectra. Side-

chain 1H and 13C resonance assignments were

obtained using 3D H(CCCO)NH-TOCSY,

(H)CC(CO)NH-TOCSY, and HCCH-TOCSY (D2O)

spectra. Side-chain 1H and 13C resonance assign-

ments for the aromatic rings of Trp, Tyr, Phe, and

His were obtained using 2D (HB)CB(CGCD)HD, 2D

aromatic 13C-1H-HSQC (D2O), and 3D aromatic

HCCH-TOCSY (D2O) spectra. Distance restraints

were obtained using 3D 13C-edited NOESY-HSQC

(D2O), 15N-edited NOESY-HSQC, and aromatic 13C-

edited NOESY-HSQC (D2O) spectra with mixing

times of 150 ms. All spectra were processed with the

Rowland NMR Toolkit50 and analyzed with the pro-

gram XEASY.51 For HVO_2177 structure calcula-

tion, NOE spectra were manually peak-picked and

integrated in XEASY. The restraints for the back-

bone dihedral Phi and Psi angles were derived from

the backbone resonance assignments using the

TALOS1 program.40 The NOE crosspeaks were

assigned with automatic NOESY assignments using

CYANA.41 NOE assignments were manually verified

and 200 preliminary structures determined with

CYANA. The 20 structures with the lowest target

function were further refined by short constrained

molecular dynamic simulations in explicit solvent

using CNS.42 NMR-based restraints used for struc-

ture determination along with the structure refine-

ment statistics are summarized in Table II.

SAMP2 tertiary structure prediction

The 3D models of SAMP2 were generated and

rescored with CS-Rosetta35 using the backbone

(13Ca, 13C, 15N, 1Ha, and 1HN) and 13Cb NMR CS

data as input. The structural calculations were run

locally and generated 2168 candidate structures.

The 1000 lowest energy structural models were
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extracted to assess convergence. Of these, the top 10

lowest energy models all differ by <1.7 Å Ca RMSD

from the model with lowest (rescored) energy.

Analytical ultracentrifugation
Sedimentation equilibrium measurements were car-

ried out on a Beckman XL-A analytical ultracentri-

fuge (Beckman Coulter, Brea, CA) using an An-60 Ti

rotor (Beckman Coulter, Brea, CA). Protein samples

were dialyzed overnight against 20 mM of Tris-HCl

(pH 8.0), 200 mM or 2.5M of NaCl, loaded at three

initial concentrations for each sample (60–600 mM

for SAMP1, 80–800 mM for SAMP2, and 70–700 mM

for HVO_2177) and analyzed at rotor speeds of

30,000 and 34,000 rpm at 4�C. Data were acquired

at two wavelengths per rotor speed setting and proc-

essed globally for the best fit to a single-species

model of absorbance versus radial distance by using

Origin provided by the manufacturer. Solvent den-

sity and protein partial specific volume were calcu-

lated according to the solvent and protein

composition, respectively.52 Apparent molecular

masses were within 10% of those calculated for an

ideal monomer, with no systematic deviation of the

residuals.

CD spectroscopy

CD measurements were carried out on an Aviv 410

CD spectrophotometer in 10 mM of Tris-HCl (pH

8.0) and varying concentrations of NaCl. Spectra

were recorded as the average of five scans using a 5-

s integration time at 1.0-nm wavelength increments.

Spectra were baseline-corrected against the cuvette

with buffer alone. A [u]222 value of 233,000� cm2

dmol21 was taken to correspond to 100% helix.53

Mutagenesis and detection of enriched SAMP2

conjugates
Plasmids pJAM117 and pJAM118 encoding Flag-

tagged SAMP2 E53A and E53G variants were pre-

pared using QuikChange Lightning site-directed

mutagenesis kit (Stratagene, La Jolla, CA) with

plasmid pJAM94931 as template and primers 1

(For_SAMP2 E53A, 50-GAAGACCAGTCCGTCGCA

GTCGACCGCGTGAAG-30; Rev_SAMP2 E53A, 50-C

TTCACGCGGTCGACTGCGACGGACTGGTCTTC-30)

and primers 2 (For_SAMP2 E53G, 50-GAAGACCAG

TCCGTCGGAGTCGACCGCGTGAAG-30; Rev_SAM

P2 E53G, 50-CTTCACGCGGTCGACTCCGACGGAC

TGGTCTTC-30), respectively. Mutation sites were

verified by Sanger DNA sequencing (Eton Bio-

science, San Diego, CA). Plasmids were isolated

from E. coli GM2163 and transformed into Hfx. vol-

canii HM1041 (Dsamp1) cells as described previ-

ously.36 Hfx. volcanii HM1041-pJAM949 (samp2)

was used as a positive control and HM1–41-

pJAM202c (empty vector) was used as a negative

control. Cells were grown to stationary phase in

ATCC 974 complete medium and harvested by cen-

trifugation as described previously.31 Cell pellets

(corresponding to 0.065 OD600 units of cells per lane)

were boiled in SDS-Laemmli buffer and separated

by SDS-PAGE. The Flag-tagged proteins were

detected by immunoblotting using alkaline

phosphatase-linked anti-Flag M2 monoclonal anti-

body (Sigma, St. Louis, MO). The PVDF membranes

were also stained with Ponceau S to confirm equal

protein loading and transfer. Alkaline phosphatase

activity was detected colorimetrically using nitroblue

tetrazolium chloride and 5-bromo-4- and 5-bromo-4-

chloro-3-indolyl phosphate and by chemilumines-

cence using CDP-Star (Life Technologies, Guilford,

CT) with X-ray film (GE Healthcare).

Accession numbers
Coordinates and structure factors have been depos-

ited in the Research Collaboratory for Structural

Bioinformatics Protein Data Bank with accession

numbers 4HRS (SAMP2) and 2M19 (HVO_2177).

The resonance assignments of HVO_2177 have been

deposited at the BioMagResBankII with entry code

18850.
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