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Evolution of splicing regulatory networks in Drosophila
C. Joel McManus,1,2,4 Joseph D. Coolon,3 Jodi Eipper-Mains,1 Patricia J. Wittkopp,3

and Brenton R. Graveley1,4

1Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center,

Farmington, Connecticut 06030, USA; 2Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania

15213, USA; 3Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology,

University of Michigan, Ann Arbor, Michigan 48109, USA

The proteome expanding effects of alternative pre-mRNA splicing have had a profound impact on eukaryotic evolution.
The events that create this diversity can be placed into four major classes: exon skipping, intron retention, alternative
59 splice sites, and alternative 39 splice sites. Although the regulatory mechanisms and evolutionary pressures among
alternative splicing classes clearly differ, how these differences affect the evolution of splicing regulation remains
poorly characterized. We used RNA-seq to investigate splicing differences in D. simulans, D. sechellia, and three strains of
D. melanogaster. Regulation of exon skipping and tandem alternative 39 splice sites (NAGNAGs) were more divergent than
other splicing classes. Splicing regulation was most divergent in frame-preserving events and events in noncoding regions.
We further determined the contributions of cis- and trans-acting changes in splicing regulatory networks by comparing
allele-specific splicing in F1 interspecific hybrids, because differences in allele-specific splicing reflect changes in cis-regu-
latory element activity. We find that species-specific differences in intron retention and alternative splice site usage are
primarily attributable to changes in cis-regulatory elements (median ~80% cis), whereas species-specific exon skipping
differences are driven by both cis- and trans-regulatory divergence (median ~50% cis). These results help define the
mechanisms and constraints that influence splicing regulatory evolution and show that networks regulating the four major
classes of alternative splicing diverge through different genetic mechanisms. We propose a model in which differences in
regulatory network architecture among classes of alternative splicing affect the evolution of splicing regulation.

[Supplemental material is available for this article.]

Alternative pre-mRNA splicing is a central process in eukaryotic

gene expression. The combination of exon sequences from single

genomic loci into multiple isoforms greatly expands the proteome,

magnifying the diversity of functional gene products from a com-

parably smaller number of genes (Nilsen and Graveley 2010).

Alternative splicing is regulated through complex networks com-

prised of cis-regulatory sequence elements and trans-acting factors

(Wang and Burge 2008). Three sequence elements interact directly

with components of the spliceosome and are required for splicing

of each intron: the 59 splice site, the branchpoint, and the 39

splice site. The sequences of these elements can modulate their

‘‘strength’’—the probability that they will be recognized by the

spliceosome. Additional elements in both introns and exons can

act as splicing enhancers or silencers. Two families of trans-acting

regulatory proteins, hnRNP and SR proteins, which generally re-

press and enhance interactions with the core spliceosome, re-

spectively, recognize splicing enhancers and silencers.

Four major classes of alternative splicing events can be broadly

defined: exon skipping (SE), intron retention (RI), alternative

59 splice sites (A5SS), and alternative 39 splice sites (A3SS) (Fig. 1B).

Comparative genomic analyses suggest significant differences in

the regulation and evolution of splicing classes. Compared with

constitutive exons, skipped exons tend to have weaker splice sites

and higher sequence conservation (Clark and Thanaraj 2002;

Koren et al. 2007; Merkin et al. 2012), which may reflect selective

pressure to maintain the binding sites of splicing regulatory pro-

teins. In contrast, intron retention appears to be largely dependent

on intron length and cis-regulatory sequence elements recognized

directly by the spliceosome (Sakabe and de Souza 2007). Alterna-

tive 59 and 39 splice sites appear to originate via mutations in an-

cestral constitutive exons, creating new splice sites that compete

with the original sites (Koren et al. 2007). Perhaps the simplest

examples of this involve tandem alternative 39 sites, a specific

subclass of A3SS events separated by a single NAG (commonly

referred to as ‘‘NAGNAGs’’). Gains and losses of NAGNAG sites

have accelerated protein evolution (Bradley et al. 2012). The rela-

tive strength of alternative 59 and 39 splice sites is correlated with

their usage, however, only when the competing sites are in close

proximity (Chasin 2007). Surprisingly, splicing regulatory sequences

can modulate alternative 59 splice site usage through direct inter-

action with the spliceosome, bypassing the need for trans-acting

protein factors (Yu et al. 2008).

Species-specific differences in exon skipping are common

and imply that splicing regulatory divergence could contribute to

phenotypic variation. Early work revealed that ;7%–10% of exon

skipping events were differentially regulated in human and

chimpanzee liver and brain samples (Calarco et al. 2007; Blekhman

et al. 2010; Lin et al. 2010). More recently, extensive comparisons

in multiple tissues from numerous vertebrate species showed that

exon skipping is diverging more rapidly than transcript abundance
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(Barbosa-Morais et al. 2012; Merkin et al. 2012). Divergent exon

skipping was more frequent in transcripts encoding RNA-binding

proteins (Barbosa-Morais et al. 2012) and in protein domains tar-

geted for phosphorylation (Merkin et al. 2012). Together these

studies demonstrate considerable divergence of exon skipping. In

comparison, the extent of divergence in other alternative splicing

classes remains poorly characterized. The genetic mechanisms of

splicing regulatory evolution are also unclear.

Comparative studies of C. elegans strains point toward cis-

acting variants as the main contributors to divergent exon skip-

ping. Although both cis- and trans-acting differences can affect

strain-specific exon skipping (Barberan-Soler and Zahler 2008),

77% of strain-specific alternative splicing quantitative trait loci

appear to act locally, which suggests changes in cis-regulatory el-

ements (Li et al. 2010). Similarly, Lin et al. (2010) found that di-

vergent exon skipping events in humans and chimpanzees were

associated with increased sequence divergence, suggesting that

changes in cis-regulatory elements could be responsible for diver-

gent splicing. However, divergent exon skipping in humans and

chimpanzees was not associated with changes in splice site

strength or density of exonic splicing regulatory elements (Irimia

et al. 2009). More recently, the splicing patterns of 13 human

exons were examined in a transgenic mouse, revealing that cis-

regulatory changes contributed significantly to interspecies dif-

ferences in exon skipping (Barbosa-Morais et al. 2012). A similar

survey from Drosophila F1 hybrid head tissue reported 65 genes

showing cis-acting differences in alternative isoform expression

(Graze et al. 2012)

Results from other studies suggest that changes in the activity

or abundance of trans-acting factors may contribute to divergent

splicing. The expression levels of splicing regulatory proteins vary

between species, suggesting trans-acting network changes (Grosso

et al. 2008). In addition, the SR and hnRNP families of splicing

regulatory proteins have evolved through numerous duplica-

tion and divergence events, highlighting the potential for trans-

regulatory changes in splicing regulatory networks (Busch and

Hertel 2011). For example, the testes-specific splicing regulator

LS2 evolved from duplication of the constitutive splicing factor

U2AF50 in Drosophila. The targets of LS2 have diverged substan-

tially from those of U2AF50, leading to its current function as

a splicing repressor (Taliaferro et al. 2011). Thus, changes in trans-

acting factor abundance, activity, or specificity could be an impor-

tant source of splicing regulatory evolution. As a result, the relative

contributions of cis- and trans-regulatory changes toward divergence

of alternative splicing remain uncertain. Furthermore, differences in

the regulatory networks controlling the four classes of alternative

splicing could affect the evolution of splicing regulation.

Here we used RNA-seq to compare alternative splicing in

multiple D. melanogaster strains and one strain each of its closest

phylogenetic relatives, D. sechellia and D. simulans. This choice of

species allows us to sample a divergence time that is intermediate

between that of previous studies investigating strains of C. elegans

(Li et al. 2010) and vertebrate species (Barbosa-Morais et al. 2012;

Merkin et al. 2012). Divergence of alternative splicing increases

over evolutionary time, from ;5% among D. melanogaster strains

to ;10% between species. Regulation of alternative splicing events

in protein-coding regions was roughly half as likely to be divergent

compared with noncoding regions. Of the coding region events

that do exhibit divergent splicing, frame-shifting splicing events

were half as likely to be divergent. Although skipped exons are

known to have highly conserved sequences, we found that they

are the most likely class of events to have interspecific differences

in regulation. Alternative 39 splice sites were also highly divergent,

due mostly to divergence of NAGNAG tandem acceptor sites.

Species-specific differences in splice site strength influenced di-

vergent regulation at A3SS, much more than other classes of al-

ternative splicing.

To estimate the relative effects of cis- and trans-acting regula-

tory changes in alternative splicing, we further compared allele-

specific alternative splicing in hybrids of these species. In F1 hybrids,

pre-mRNA from both parental alleles are subject to the same regu-

latory environments, thus observed differences in allele-specific

splicing reflect cis-regulatory divergence. We used this approach

previously to dissect cis- and trans-regulatory changes in mRNA

abundance (McManus et al. 2010a). By applying this to alternative

splicing, we find that divergent regulation of intron retention and

alternative splice sites has occurred almost exclusively through

changes in cis-acting sequences, while divergence of exon skipping

results from both cis and trans-acting regulatory changes. In-

triguingly, exon skipping is the most dynamic class of alternative

splicing throughout D. melanogaster development, suggesting that

Figure 1. Comparing splicing regulation among Drosophila species.
(A) Comparison of divergence times for strains and species used. (B) The
four major classes of alternative splicing. Constitutive and alternative
exonic regions are depicted in blue and pink, respectively. (C ) Example
of cross-species comparison of intron retention using RNA-seq. (Top) IGV
Genome Browser tracks depict differences in read coverage within the
retained intron in each strain and species. The Fit1 intron is more fre-
quently retained in all strains of D. melanogaster, compared with D.
simulans and D. sechellia. (Bottom) RT-PCR using primers spanning the
retained intron correlates with RNA-seq estimates of divergent splicing.
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this class of alternative splicing may have more trans-regulatory

factors than intron retention and alternative splice sites. Taken to-

gether, our results support a model in which differences in regula-

tory network architecture among alternative splicing classes affect

the evolution of splicing regulation.

Results

Comparing alternative splicing among closely
related Drosophila species

We used paired-end RNA-seq to compare alternative splicing in

2- to 10-d-old adult female flies from three closely related Drosophila

species: D. melanogaster, D. sechellia, and D. simulans. We also mea-

sured alternative splicing in three strains of D. melanogaster—the

original genome project strain (Celniker et al. 2002), the cosmo-

politan strain zhr (Sawamura et al. 1993), and the African-type

strain z30 (Wu 1995)—to compare inter- and intra-specific splicing

divergence (Fig. 1A). The publicly available genome assemblies

of these species are of vastly different quality. The genomes of

D. melanogaster, D. sechellia, and D. simulans were originally sequenced

to ;12-, five-, and threefold coverage, respectively (Drosophila 12

Genomes Consortium 2007). In addition, the strains used in our

study likely differ from the reference genome to various extents.

Differences in genome quality could complicate comparisons of

alternative splicing. To avoid these complications, we resequenced

the genomes of the strains (Coolon et al. 2012) and species used in

this study to an average of 26-fold coverage. This further increased

the size of the D. sechellia and D. simulans assemblies by 1.6 and

12.6 Mbp, respectively, and corrected, on average, 806,805 SNPs

and indels per strain (Supplemental Table S1), improving our

ability to map RNA-seq reads from each sample. Paired-end cDNA

sequencing resulted in an average of 18.9 million read pairs from

each sample, with ;3.2 million reads per sample aligning uniquely

to exon-junction databases (Supplemental Table S2).

We used exon-junction reads to determine splicing differ-

ences for the four major types of alternative splicing: skipped

exons (SE), retained introns (RI), alternative 59 splice sites (A5SS),

and alternative 39 splice sites (A3SS) (Fig. 1B). These events were

extracted from the D. melanogaster transcriptome annotation

generated from the modENCODE developmental time course anal-

ysis (Graveley et al. 2011). A minimum threshold of 20 exon-

junction reads per splicing event in all samples allowed com-

parisons of 193 SE, 772 RI, 71 A5SS, and 559 A3SS events. The

‘‘percent spliced in’’ (PSI) metric was calculated for splicing events

from each sample, and Fisher’s exact tests were used to identify

significant pairwise differences between PSI values (DPSI $ 10%;

FDR # 5%) (Wang et al. 2008). The validity of the RNA-seq splicing

analysis pipeline was confirmed using semiquantitative RT-PCR

(Fig. 1C) for six SE and four RI events. In both cases, the RNA-seq

and RT-PCR PSI values agreed (Supplemental Fig. S1; R2 = 0.84,

N = 50).

Because we generated sequence data from species with mul-

tiple divergence times, our data set allows us to compare changes in

splicing regulation with evolutionary divergence. D. melanogaster

is estimated to have last shared a common ancestor with D. simulans

and D. sechellia ;2.5 million yr ago (Cutter 2008), D. simulans and

D. sechellia are thought to have diverged 0.25 million yr ago

(Garrigan et al. 2012), and the North American and African

D. melanogaster strains we used shared common ancestors ;10,000 yr

ago (David and Capy 1988; Lachaise et al. 1988). Splicing regula-

tory divergence was highly correlated with sequence divergence

(Pearson’s R2 = 0.94; Supplemental Fig. S2). This correlation be-

tween the frequency of splicing divergence and divergence time

was significant over all events (P = 0.029). Separating the splicing

events by type (Supplemental Table S3) indicated that this corre-

lation was strongest for SE (R2 = 0.90; P < 0.05) and A3SS events

(R2 = 0.93, P = 035), was comparatively weaker for RI (R2 = 0.77; P <

0.13), and not significant for A5SS events (R2 = 0.5; P < 0.29). These

data support the conclusion that alternative splicing regulatory

divergence increases with divergence time.

Since many alternative splicing events are tissue specific, in-

terspecies differences in relative tissue abundance could result in

inaccurate inferences of divergent splicing regulation. To inves-

tigate this potential caveat, we looked for enrichment of genes

with tissue-specific functions using gene ontology analysis (GO).

Of the splicing events analyzed, genes exhibiting divergent splic-

ing were not enriched for any GO categories. To further examine

possible links between tissue abundance and splicing divergence,

we asked whether genes with divergent splicing were enriched in

species differences in mRNA abundance, calculated as described

previously (McManus et al. 2010a). In all comparisons, divergently

spliced genes were no more likely to be divergently expressed than

genes with conserved splicing (Supplemental Table S4). Thus, dif-

ferences in tissue-specific expression do not appear to impact our

analyses of alternative splicing divergence.

Differences in splicing regulatory divergence among
classes of alternative splicing

There are several differences in the regulatory divergence of the

four classes of alternative splicing. SE events differed the most both

among and between species, with 5.4% to 12.6% of these events

showing divergent alternative splicing. SE events were 1.8–2.2-fold

more likely to be divergent than other alternative splicing types in

most intra- and interspecific comparisons (FET; P < 0.04) (Fig. 2A).

NAGNAGs were also particularly divergent (Fig. 2B). Up to 23% of

NAGNAG sites had divergent regulation. In fact, NAGNAGs are

two to three times more likely to be divergent than non-NAGNAG

A3SS events (FET; P = 0.021 D. mel vs. D. sec; P = 0.002 D. mel vs.

D. sim). Thus, exon skipping and tandem alternative 39 splice sites

are the most divergent subgroups of alternative splicing.

Alternative splicing can alter mRNA sequence both in pro-

tein-coding and noncoding regions. Consequently, divergent

splicing regulation can affect either the sequence of the resulting

protein or regulatory regions. We compared the relative frequency

of divergent splicing in coding and noncoding regions. Consid-

ering all classes of alternative splicing, events located in noncoding

regions were more likely to be divergent than coding region events

(Table 1). This enrichment of regulatory divergence in noncoding

regions was significant for D. melanogaster/D. sechellia comparisons

(2.05-fold enrichment, FET P < 7.8 3 10�5), but not for other in-

terspecific comparisons. However, increased divergence of events

in noncoding regions may be partially masked by the highly di-

vergent NAGNAGs as ;90% of NAGNAGs are located in coding

regions. After excluding NAGNAG events, enriched divergence

in noncoding regions was even more apparent (1.5- to 2.4-fold)

(Table 1).

In protein-coding regions, alternative splicing can either

maintain the phase of the open reading frame, or more drastically

affect the ORF by shifting the reading frame. Due to their less ex-

treme effects on protein-coding sequences, we reasoned that reg-

ulation of frame-preserving splicing events would be more di-

vergent between species. Indeed, frame-preserving events were

McManus et al.
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roughly twice as likely to be divergent when compared with frame-

shifting events (Table 1) (FET; P < 0.003). This enriched divergence

of frame-preserving events is seen even when NAGNAG events are

excluded (P = 0.023) (Table 1). These results show that regulation of

alternative splicing diverges more rapidly in noncoding regions

than in coding regions and (within coding regions) in frame-

preserving events than in frame-shifting events.

Sequences flanking splice sites play an important role in al-

ternative splicing by affecting splice site strength. For example, the

difference in strength at proximal and distal NAGNAG splice sites

is correlated with their relative usage

(Bradley et al. 2012). Likewise, the com-

bined strengths of the 59 and 39 splice

sites of skipped exons correlates with

their inclusion levels (Baek and Green

2005; Shepard et al. 2011). To investigate

the relationship between splice site

strength and alternative splicing in our

data set, we retrained the MaxEntScan

scoring system (Yeo and Burge 2004) us-

ing D. melanogaster splice site sequences

and calculated maximum entropy scores

for each species and strain. As expected,

we found correlations in splice site

strength and relative usage of alternative

59 and 39 splice sites (R2 = 0.373; R2 =

0.404; P < 10�16). Similarly, the combined

strength of donor and acceptor sites was

correlated with exon skipping and intron

retention (R2 = 0.105; R2 = 0.291; P <

10�16). These results show that splice site

strength is an important determinant of A5SS, A3SS, and RI alter-

native splicing levels in Drosophila, with less influence over SE

events.

The correlation between splice site strengths and PSI values

suggests that mutations affecting site strength might contribute to

splicing regulatory evolution. To directly investigate this possibil-

ity, we compared differences in splice site strength with differences

in PSI for D. melanogaster, D. simulans, and D. sechellia. Weak sig-

nificant correlations were seen between species-specific differences

in splice site strength and splicing inclusion for A3SS and RI events,

Figure 2. Rates of splicing regulatory divergence among classes of alternative splicing. The percentage
of all testable splicing events from each comparison is shown. (A) Regulation of skipped exons is diverging
more rapidly than that of other splicing classes, while A3SS also show frequent divergence in the most
distant comparisons. (B) Tandem A3SS (NAGNAG) are extremely divergent, compared to other A3SS.

Table 1. Distribution of divergent splicing events in coding and noncoding regions

Divergence of alternative splicing events in coding and noncoding regions

Divergent events Fraction divergent

Comparison Coding (of 1130) Noncoding (of 465) Percent coding Percent noncoding Ratio (noncoding/coding) P-value
Among D. mel 24 14 2.12 3.01 1.42 0.367
D. sim vs. D. sec 43 28 3.81 6.02 1.58 0.083
D. mel vs. D. sim 75 38 6.64 8.17 1.23 0.337
D. mel vs. D. sec 76 64 6.73 13.76 2.05 7.79 3 10�5

Excluding NAGNAG Coding (of 1021) Noncoding (of 450) Percent coding Percent noncoding Ratio (noncoding/coding) P-value
Among D. mel 21 14 2.06 3.11 1.51 0.266
D. sim vs. D. sec 36 28 3.53 6.22 1.76 0.038
D. mel vs. D. sim 57 37 5.58 8.22 1.47 0.085
D. mel vs. D. sec 59 63 5.78 14.00 2.42 4.28 3 10�6

Divergence of frame-shifting vs frame-neutral events

Divergent events Fraction divergent

Comparison Frame-shifting
(of 371)

Frame-preserving
(of 759)

Percent
frame-shifting

Percent
frame-preserving

Ratio
(preserving/shifting)

P-value

Among D. mel 14 36 3.77 4.74 1.26 0.540
D. sim vs. D. sec 11 32 2.96 4.22 1.42 0.407
D. mel vs. D. sim 26 104 7.01 13.70 1.96 0.003
D. mel vs. D. sec 26 100 7.01 13.18 1.88 0.005

Excluding NAGNAG Frame-shifting
(of 371)

Frame-preserving
(of 650)

Percent
frame-shifting

Percent
frame-preserving

Ratio
(preserving/shifting)

P-value

Among D. mel 14 29 3.77 4.46 1.18 0.746
D. sim vs. D. sec 11 25 2.96 3.85 1.30 0.597
D. mel vs. D. sim 26 95 7.01 14.62 2.09 0.001
D. mel vs. D. sec 26 76 7.01 11.69 1.67 0.030

Drosophi la splicing regulatory network evolution
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but not for SE and A5SS events (Table 2). Compared to other al-

ternative splicing types, NAGNAG events showed the highest

correlation of change in site strength with change in splicing

regulation (R2 = 0.16–0.18; P < 10�4) (Table 2). Thus, mutations

affecting splice site strength contribute to divergent regulation of

tandem 39 splice sites, and have little to no affect on RI, A5SS, and

SE regulation.

Cis- and trans-regulatory differences underlying
divergent alternative splicing

After identifying interspecific differences in alternative splicing,

we next addressed the relative contributions of cis- and trans-acting

differences in splicing regulation using interspecies F1 hybrids. In

F1 hybrid nuclei, pre-mRNAs from both parental alleles are ex-

posed to the same trans-regulatory environment. This normaliza-

tion of trans-acting factors means that allele-specific splicing dif-

ferences in hybrids reflect differences in pre-mRNA cis-regulatory

elements. Trans-acting contributions can then be inferred by com-

parison of interspecific differences with allele-specific differences

in the hybrid (Wittkopp et al. 2004). We compared allele-specific

alternative splicing levels in two F1 hybrids, resulting from crosses

of D. melanogaster with D. sechellia, and D. simulans, respectively, to

determine the contributions of cis- and trans-acting regulatory

differences to divergent alternative splicing. Paired-end sequenc-

ing of RNA isolated from adult females resulted in 49.8 million

read-pairs from the D. simulans 3 D. melanogaster hybrids and 54.1

million read-pairs from the D. sechellia 3 D. melanogaster hybrids.

Similar transcriptome coverage was obtained from mixed-control

cDNA libraries prepared from a mixture of equal concentrations of

total mRNA from each parent (Supplemental Table S2). Sequence

reads were aligned to genomes and splice-junction databases from

each parental species to identify allele-specific reads that mapped

uniquely to a single species without mismatches (McManus et al.

2010a). Paired-end sequencing of D. melanogaster/D. simulans F1

hybrids resulted in an effective read-length of 152 bp, thereby

allowing identification of allele specificity for ;73% of genomic

and 82% of splice-junction reads. Data from D. melanogaster 3

D. sechellia hybrids included published 2 3 37-bp read pairs

(McManus et al. 2010a), resulting in a somewhat lower fraction of

allele-specific read assignments (Supplemental Table S2).

Bioinformatic analyses can introduce errors in assigning reads

to alleles (Degner et al. 2009), largely due to alignment bias in favor

of alleles that more closely match a reference genome. Aligning

reads to allele-specific genomes, as was done for this study, allevi-

ates most of these errors (Stevenson et al. 2013). We used two ap-

proaches to assess the performance of our allele-specific splicing

analysis pipeline. First, we used allele-specific RT-PCR (McManus

et al. 2010b) to measure DPSI values from separate species and F1

hybrids for seven RI and eight SE events. Allele-specific DPSI values

measured via RT-PCR were consistent with RNA-seq measurements

(R2 = 0.70; N = 60; Supplemental Fig. S3). As a second approach to

assess our allele-specific analysis pipeline, we compared PSI esti-

mates from separate species mRNA libraries with allele-specific PSI

values from libraries made by mixing equal amounts of two species

mRNA (‘‘mix-control’’). PSI values from separate species samples

correlate quite well with allele-specific PSIs from the mix-control

libraries (average R2 = 0.94; Supplemental Table S5). However, DPSI

values between species were less well-correlated (average R2 = 0.48;

Supplemental Table S5). To avoid potential errors, we focused

on ‘‘well-behaved’’ splicing events—events for which separate and

allele-specific DPSI values varied by <10%. This subset includes

;70% of the alternative splicing events used in interspecific

comparisons. Together, these results indicate that our bioinfor-

matic analysis of allele-specific alternative splicing performs well.

We compared D. melanogaster to D. simulans and D. sechellia to

determine the number of alternative splicing events with cis- and

trans-regulatory differences. Example cis- and trans-acting dif-

ferences in alternative splicing are shown in Figure 3. Of the 983

well-behaved splicing events in the D. melanogaster/D. simulans

comparison, 64 had divergent regulation, 36 exhibited cis-, and 10

had trans-regulatory divergence (FDR = 0.05). The higher fre-

quency of cis-regulatory (compared to trans-regulatory) differences

was also seen in the D. melanogaster/D. sechellia comparison. Of

681 well-behaved splicing events, 32 were divergently regulated,

and 19 and three events exhibited cis- and trans-regulatory di-

vergence, respectively (FDR = 0.05). Thus, more alternative splicing

events are affected by divergence in cis-regulatory elements than in

trans-acting factors.

Differences in regulatory network structure among the four

major types of alternative splicing could impact the evolution of

splicing regulation. To examine this, we determined the relative

frequency of cis- and trans-acting regulatory changes in each

splicing class. While cis-regulatory changes were most prevalent

among RI, A5SS, and A3SS events, many SE events exhibited trans-

regulatory changes (Fig. 4A; Table 3). However, the existence of

trans-regulatory differences does not, in and of itself, reflect the

relative contribution of trans-regulatory divergence. To more di-

rectly evaluate the contributions of cis- and trans-regulatory

changes on divergent splicing, we compared the fraction of di-

vergent splicing attributable to cis-regulatory differences (% cis)

(Wittkopp et al. 2008) among splicing classes. As shown in Figure

4B, SE events had significantly lower % cis than other splicing

classes, indicating that cis-regulatory changes contribute less to

exon skipping divergence than to other classes of alternative

splicing.

The importance of splice site strength for A3SS NAGNAG

events could make them more susceptible to cis-regulatory di-

vergence. We found that NAGNAG events were 3.7-fold and

7.4-fold more likely to diverge through cis-regulatory changes

than non-NAGNAG events when com-

paring splicing in D. melanogaster with

D. simulans and D. sechellia, respectively

(P < 0.026, FET). For the eight cis-divergent

NAGNAG events, five have mutations in

the NAGNAG site that alter one of the

two AGs in one or more species. Another

site has a CAGCAG to AAGCAG muta-

tion. CAG is a better match to 39 end con-

sensus sequences than AAG (Mount et al.

1992), suggesting that this mutation shifts

the balance in splice site strength. The

Table 2. Comparison of species-specific splice site scores and PSI values

D. melanogaster vs. D. simulans D. melanogaster vs. D. sechellia

Type R-squared P-value R-squared P-value

ES 0.001 0.706 0.001 0.678
IR 0.011 0.006 0.010 0.011
AD 0.011 0.392 0.000 0.871
AA 0.059 2.1 3 10�8 0.047 6.1 3 10�7

NAGNAG 0.178 4.6 3 10�6 0.158 1.7 3 10�5

AA (other) 0.030 4.9 3 10�4 0.020 0.004
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remaining two NAGNAG events with cis-regulatory divergence

preserve the NAGNAG sequence, but have multiple mutations

in the upstream intron sequence. Thus, NAGNAG sites are indeed

hotspots for cis-regulatory changes, and most of the mutations

responsible alter the NAGNAG sequence itself.

Discussion
Here we used RNA-seq to analyze the rate

and mechanisms of alternative splicing

regulatory evolution in Drosophila. While

prior studies used this approach to ex-

amine the evolution of exon skipping

(Barbosa-Morais et al. 2012; Merkin et al.

2012), the evolution of other types of al-

ternative splicing remains largely un-

explored. The four major classes of al-

ternative splicing are regulated through

different molecular mechanisms. Our

results provide a unique comparison of

regulatory divergence among splicing

classes and suggest that differences in

their underlying mechanisms of regu-

lation strongly impact the course of their

evolution.

We compared the regulation of SE,

RI, A5SS, and A3SS among strains of

D. melanogaster and its sister species

D. simulans and D. sechellia. Our analysis

shows that regulation of SE and NAGNAG

events has diverged roughly twice as rapidly as other classes of al-

ternative splicing. One interpretation of this result is that SE and

NAGNAG regulatory networks are more pliable than other classes

of alternative splicing. Increased pliability could reflect reduced

selective pressure to maintain inclusion levels and/or increased

Figure 3. Cis- and trans-acting differences in alternative splicing. IGV Genome Browser images show RNA-seq read coverage, depicted in a bar graph
(above). Arcs depict splice-junction read coverage (per million mapped junction reads). The width of each arc represents the relative number of junction
reads. For exon skipping, exclusion junctions are shown in blue and inclusion junctions are shown in red. The percent spliced in (PSI) for each sample is
shown above the alternative event. Gel images show the results of RT-PCR experiments using species-specific primers. (A) An intron in CG12006 is retained
much more frequently in D. melanogaster than in D. sechellia. In F1 hybrids, allele-specific splicing differences show that the divergence is predominantly
cis-acting. (B) An exon in nuf is skipped more frequently in D. melanogaster than in D. simulans. Allele-specific RNA-seq from F1 hybrids shows equal
inclusion levels, suggesting that divergence in nuf splicing is predominantly trans-acting.

Figure 4. Exon skipping divergence is influenced more by differences in trans-acting factors than
other classes of alternative splicing. (A) Percentage of alternative splicing events affected by cis- and
trans-acting regulatory divergence for two F1 hybrid crosses. Skipped exons (SE) have many more
events affected by trans-regulatory divergence. (B) Relative contribution of cis-regulatory divergence in
divergent alternative splicing. The fraction of species-specific splicing differences attributable to cis-
acting changes (% cis) is plotted for four classes of alternative splicing. Exon skipping has a much lower
contribution from cis-acting changes, reflecting a higher contribution of trans-regulatory divergence.
P-values indicate the results of Wilcoxon rank sum tests comparing the mean % cis of different alternative
splicing types.
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complexity of their regulatory networks. In the case of NAGNAGs,

the former explanation seems most reasonable, as their usage alters

only a single amino acid. Indeed, a recent study found that single

codon insertions and deletions were greatly enriched at the 59 ends

of exons, consistent with frequent mutational gain and loss of

NAGNAG sites (Bradley et al. 2012).

Divergent exon skipping is likely to have more significant ef-

fects on protein-coding sequences. As such, the rapid divergence of

SE requires another explanation. Landry and colleagues have shown

that mutational variance, or probability that a mutation affects the

expression of a gene, is correlated with the number of cis- and trans-

regulatory components that control a gene’s expression (Landry

et al. 2007). Genes with more complex regulatory networks are more

susceptible to changes in their regulation. One possibility is that SE

regulatory networks are more complex than those that control other

types of alternative splicing. If this is true, we would expect SE to be

more dynamically regulated than other splicing classes. To in-

vestigate this, we calculated the switch scores (Maximum PSI–

Minimum PSI) of alternative splicing events across the lifecycle

of D. melanogaster (Graveley et al. 2011) and compared switch scores

between splicing classes (Fig. 5A). SE are the most developmentally

dynamic of all splicing events, lending credence to the complexity

model. Similarly, exon skipping events are more sensitive to RNAi-

mediated knockdown of splicing factors in S2 cells (A Brooks, M Duff,

G May, L Yang, J Landolin, K Wan, J Sandler, S Celniker, B Graveley,

S Brenner, in prep.), suggesting that their trans-mutational target size

is larger than that of other splicing classes. Thus the comparatively

rapid divergence of exon skipping may

reflect a higher complexity of SE regu-

latory networks.

The relative contributions of cis-

and trans-regulatory differences to splic-

ing divergence are still debated. While

large-scale studies have reported different

conclusions regarding the role of cis-reg-

ulatory changes in SE regulation (Irimia

et al. 2009; Li et al. 2010; Lin et al. 2010),

divergent skipping of 13 mouse and hu-

man exons was recently attributed mostly

to cis-regulatory differences (Barbosa-

Morais et al. 2012). Unlike the human

and mouse comparison, we found that

trans-regulatory divergence has contrib-

uted substantially to differences in exon

skipping among Drosophila. Several studies have shown that cis-

regulatory differences in mRNA abundance preferentially accu-

mulate over evolutionary time (Wittkopp et al. 2008; Emerson

et al. 2010; Coolon et al. 2014). Thus, one explanation for the

larger importance of cis-regulatory divergence observed by Bar-

bosa-Morais and colleagues could be that their study used a much

more divergent set of species (mouse and human).

Prior to this study, comparatively little was known regarding

regulatory evolution of other types of splicing events. We de-

termined the contributions of cis- and trans-regulatory changes in

all major classes of alternative splicing events by analyzing allele-

specific splicing patterns in F1 hybrids. Surprisingly, we found that

the genetic mechanisms responsible for splicing evolution varied

between classes. Although species differences in RI, A3SS, and A5SS

can be attributed almost entirely to cis-regulatory sequence dif-

ferences, cis- and trans-regulatory changes have contributed more

equally to divergent SE.

The regulatory evolution of mRNA abundance and alternative

splicing appear to be on different trajectories, in both the rate and

path of their divergence. Species differences in mRNA abundance

are much more common than divergent splicing regulation, with

at least a third of the transcriptome showing significant differences

in gene expression (Rifkin et al. 2003; Ranz et al. 2004; McManus

et al. 2010a; Coolon et al. 2014). In contrast, we observed that

roughly one-tenth of the transcriptome exhibits divergent splicing

regulation. Multiple studies have shown that trans-regulatory

changes contribute greatly to differences in mRNA abundance,

Table 3. Relative contributions of cis- and trans-regulatory changes to divergent alternative splicing

D. melanogaster/D. simulans comparison

Alternative splicing class Divergent Percent divergent Cis-acting Percent cis-acting Trans-acting Percent trans-acting

RI 24 4.92 16 3.28 5 1.02
SE 10 8.70 7 6.09 4 3.48
A5SS 0 0.00 0 0.00 0 0.00
A3SS 30 9.04 13 3.92 1 0.30

D. melanogaster/D. sechellia comparison

Alternative splicing class Divergent Percent divergent Cis-acting Percent cis-acting Trans-acting Percent trans-acting

RI 17 4.72 9 2.50 0 0.00
SE 3 3.85 2 2.56 3 3.85
A5SS 3 6.82 2 4.55 0 0.00
A3SS 9 4.52 6 3.02 0 0.00

Figure 5. Differences in regulatory network architecture among classes of alternative splicing impact
their regulatory divergence. (A) Skipped exons are more dynamically regulated throughout de-
velopment. Violin plots show the distribution of switch scores (maximum percent inclusion minus
minimum percent inclusion) for splicing events from each class of alternative splicing throughout de-
velopment in D. melanogaster (Graveley et al. 2011). The median switch score (white dots) is highest for
SE events. (B) Model of regulatory network differences among splicing classes. Skipped exons have
a larger trans-mutational target size compared to other splicing classes and SE regulation diverges more
rapidly through changes in trans-acting factors.
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both within and between closely related species (Emerson et al.

2010; McManus et al. 2010a; Coolon et al. 2014). In contrast,

changes in cis-regulatory sequences play a more prominent role

in splicing regulatory evolution, and only SE events exhibited

substantial trans-regulatory divergence. Intriguingly, higher com-

plexity of SE regulatory networks would also be expected to in-

crease their susceptibility to trans-regulatory divergence.

We propose a model in which the networks that regulate SE

are more complex than those of other splicing classes. This in-

creased complexity leads to more rapid divergence of SE and in-

creased trans-regulatory changes by providing a larger mutational

target area (Fig. 5B). Consistent with this model, we found that

regulation of SE diverges more rapidly and is more influenced by

trans-regulatory divergence than that of other splicing classes.

In addition, exon skipping is much less sensitive to splice site

strength, and changes in site strength contribute little to divergent

splicing regulation. In summary, RI, A5SS, and A3SS are diverging

almost entirely through cis-regulatory changes, while trans-regulatory

divergence has a greater impact on SE. The differences in regula-

tory network architecture among classes of alternative splicing

affect the evolution of splicing regulation. Because deep coverage is

necessary for accurate splicing analysis, our results represent the

evolutionary trajectory of events found on genes highly expressed

in many tissue types. Future work utilizing richer sequence depth

from specific tissues will be necessary to determine the extent to

which our results are also applicable to tissue-specific alternative

splicing.

Methods

Flies and crosses
Much of the data used in this study was previously reported. All
data used in this study were obtained from adult female flies 2- to
10-d post eclosion grown on standard Drosophila media. Specific
conditions for the D. melanogaster strain zhr carrying the hybrid
rescuing Zhr1 chromosome [full genotype, XYS.YL.Df(1)Zhr];
(Sawamura et al. 1993; Ferree and Barbash 2009) and the
Zimbabwean strain z30 (Begun and Aquadro 1993; Wu et al. 1995)
were previously reported (Coolon et al. 2012). Conditions for
the D. melanogaster genome reference strain 14021-0231.36 were
also previously reported (Graveley et al. 2011). Conditions for
D. melanogaster 14021-0231.36 3 D. sechellia (14021-0428.25)
hybrids were previously described (McManus et al. 2010a).
The D. simulans tsimbazaza strain (Hollocher et al. 2000) and
D. melanogaster zhr 3 D. simulans tsimbazaza hybrids were grown
as described by Coolon and colleagues (Coolon et al. 2012,
2014).

Library preparation and sequencing

Total RNA from each species was prepared by grinding 20 adult
female flies in TRIzol (Invitrogen) and treated with DNase I
(Ambion DNA-free) to remove DNA contaminants. RNA-seq li-
braries were prepared as previously described (McManus et al.
2010a). Ten micrograms of total RNA was used to prepare libraries
for each pure species and hybrid sample, while 5 mg of each species
RNA was mixed together for mixed samples. Poly(A)+ RNA was
purified by two incubations with oligo-dT magnetic beads (In-
vitrogen Dynal), and fragmented using an RNA fragmentation
reagent (Ambion). Reverse transcription was performed using
random primers and SuperScript II (Invitrogen). Approximately
350 bp fragments of cDNA were purified by electrophoresis on
a 2% agarose gel and extracted. Size-selected cDNA fragments were

used as input material for library preparation using the Paired-end
Genomic DNA library kit (Illumina). Genomic DNA was prepared
using the DNeasy Blood and Tissue kit (Qiagen). A total of 10 mg of
DNA was used as input material for the Paired-end Genomic DNA
library kit (Illumina). Genomic DNA was fragmented using Illu-
mina supplied nebulizers and size-selected as described above. Li-
braries were subjected to 76 cycles of paired end sequencing on
an Illumina GA IIx. Basecalling was performed using Illumina
CASSAVA. For total readcounts and depth of coverage, see Sup-
plemental Material. Additional data from prior work was also in-
cluded in this study and is available under SRA accession numbers
SRA052065 (D. melanogaster zhr and z30 gDNA), SRA009364
(D. melanogaster reference strain 5-d adult female; modENCODE),
and GEO accession number GSE20421 (D. sechellia, and hybrid
mRNA).

Genome resequencing and assembly

Genomic sequence reads from D. sechellia, D. simulans, and D.
melanogaster were aligned to the droSec1, droSim1, and dm3 as-
sembly releases, respectively, using BWA (version 0.5.6) (Li and
Durbin 2010). Reads were aligned separately using default parame-
ters and merged using the BWA sampe command. The resulting
SAM format files were converted to BAM format and SNPs and
indels were called using SAMtools (version 0.1.7a; commands view,
sort, and pileup) (Li et al. 2009). SNPs and indels were filtered using
the SAMtools package command ‘‘samtools.pl varFilter’’ to retain
variants with phred quality scores greater than 20 (estimated 1%
error). A custom Perl script, snp_adder.pl (Supplemental Material),
was used to produce strain-specific genomes. This script modifies
reference genome sequences to incorporate the filtered variants.
Insertion/deletion positions were recorded and used to produce
custom chain files to use with the UCSC liftOver script.

For D. sechellia and D. simulans, gDNA sequence reads were
remapped to the strain-specific genomes. Nonmappable read-pairs
were assembled into contigs using Velvet (version 1.0.15; param-
eters: velveth k=35; velvetg –exp_cov auto, -min_contig_lgth 300)
(Zerbino and Birney 2008). These contigs were aligned to the
strain-specific genomes using BLAT. Contigs whose 59 and 39 ends
both align to the strain-specific genome were retained and ex-
tended 100 bp in each direction. These ‘‘extended’’ contigs span
gaps in each organism’s genomic sequence. Extended contigs were
combined with the strain-specific genomes to create an in-
termediate target sequence for gDNA read alignment. Genomic
DNA was remapped to this intermediate target genome, and
nonmappable read-pairs were assembled into contigs as above. The
resulting contigs were combined with extended contigs and
aligned to the dm3 reference genome using LASTZ (Harris 2007).
Contigs that aligned uniquely to the D. melanogaster reference
genome (dm3) were kept as the ‘‘extra-genome.’’ LiftOver chain
files were produced from the LASTZ alignment output using the
axtChain, chainNet, and netChainSubset utilities from the UCSC
Genome Browser (Kent et al. 2003).

Custom Perl scripts were used to create exon junction data-
bases for allele-specific alignment, using gene annotations gener-
ated by the modENCODE Consortium (Graveley et al. 2011).
Junction windows were chosen to require that each exon is cov-
ered by at least 6 nt of a junction read. ‘‘Exact’’ junctions were
created to allow alignment to exons shorter than the read length
(76 nt). In this case, a junction window would contain a sequence
from more than two exons, x1- x2 (short) – x3, while maintaining
the length of the junction window. Junction window genome
coordinates from D. melanogaster were translated to each of the
resequenced genomes using the UCSC liftOver tool. A sequence for
each junction window was extracted and joined into ‘‘exact’’
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junction databases. Junction databases were filtered to remove
junctions lacking defined coordinates in one or more species or
strains. In order to identify RNA-seq reads relevant to intron re-
tention, genomic coordinates overlapping the splice site by at least
6 nt were identified. Reads aligning to these regions were taken as
evidence of intron retention.

Allele-specific alignment

At some genomic coordinates, gDNA resequencing identified het-
erozygous sites. If ignored, these sites could introduce error in allele-
specific alignment steps. Thus, target genomes for allele-specific
alignment were produced by adding heterozygous sites to each
strain’s genome using snp_adder.pl (Supplemental Material).
IUPAC nucleotide codes were used to represent heterozygous sites
(e.g., ‘‘R’’ for A/G heterozygote). RNA-seq reads were aligned to ge-
nomic and junction coordinates using MOSAIK (version 1.0.1388;
parameters: -hs 13 –mm 0 –j –mhp 100 –act 20) (Busby et al. 2011).

For single-species RNA-seq samples, reads were aligned to the
corresponding genome and junction sequences. For mixed (e.g., D.
melanogaster RNA + D. simulans RNA) and F1 hybrid samples, reads
were aligned sequentially to each genome in order to identify al-
lele-specific alignments. The alignment procedure was essentially
performed as previously reported (McManus et al. 2010a). Reads
were first aligned to genome sequences. Reads that failed to align to
genomic loci were then aligned to exon junction sequences.
Remaining RNA-seq reads were trimmed 13 nt and realigned for
four total cycles (76, 63, 50, and 37 nt). Alignment coordinates
were converted to bed format using MOSAIK, with a correction
step to convert MOSAIK BED files (1-based) to proper BED format
(0-based). Genomic alignment coordinates for each species and
strain were then converted to the corresponding locations in the
D. melanogaster reference genome using the UCSC liftOver tool and
custom chain files. RNA-seq reads mapping to unique genomic
coordinates (without mismatches) in a single species were con-
sidered allele specific and used in further analyses.

Splicing analysis

Gene annotations were sorted into four alternative splicing event
categories (exon skipping, alternative 59 splice sites, alternative
39 splice sites, and intron retention). The intersectBed program
(Quinlan and Hall 2010) was used to identify genomic reads that
crossed splice sites from annotated intron retention events. Cus-
tom Perl scripts parsed the junction database alignments to count
the RNA-seq reads corresponding to each event. These scripts
create tables of junction and genomic hits for each splice event
(Supplemental Tables S6–S9). Splicing analysis was performed for
all events with a minimum of 20 total RNA-seq reads (junctions for
exon skipping and alternative splice sites, junction and genomic
reads for intron retention). The 20-read threshold was chosen
based on prior work (Pan et al. 2008; Wang et al. 2008). However,
the results of our analysis are essentially the same using a lower 10-
read threshold (Supplemental Fig. S4). Percent Spliced In (PSI)
values were calculated using the following formulas.

Exon skipping

PSI ¼
+IJ

2

+IJ
2 þ+EJ

� �
0
BB@

1
CCA 3 100:

Two common exons, ‘‘C1’’ and ‘‘C2,’’ flank an alternative
exon, ‘‘A.’’ When ‘‘A’’ is longer than the read length (76), two
junctions support exon inclusion, C1–A and A–C2. When A is

shorter than the read length, the C1–A–C2 junction can also be
identified in RNA-seq data. Together, the C1–A, A–C2, and C1–A–
C2 junctions are defined as inclusion junctions (IJ), while C1–C2
are exclusion junctions (EJ).

Alternative splice sites

PSI ¼ + DA1

+ DA2

� �
3 100 PSI ¼ + D1A

+ D2A

� �
3 100:

Alternative splice sites are defined as sites with either one
59 donor site and two alternative 39 acceptor sites (alternative 39ss),
or two alternative 59 donor sites and one 39 acceptor site (alterna-
tive 59ss). In both situations, two alternative splice junctions are
possible. Alternative 39ss allow DA1 (donor-acceptor1) and DA2
(donor-acceptor 2), while alternative 59ss allow D1A and D2A
junctions.

Intron retention

PRI ¼

+ DI þ+ IA

2

� �

+ DAþ + DI þ+ DA

2

� �
0
BBB@

1
CCCA 3 100:

A total of 776 retained introns annotated in the modENCODE
survey of developmental gene expression (Graveley et al. 2011)
were analyzed for regulatory divergence. Intron retention analysis
was restricted to introns with single donor and acceptor splice sites.
Junction sequences joining the donor and acceptor (DA) sup-
ported intron splicing, while sequence reads that aligned across the
donor or acceptor sites into the intron (DI and IA) by at least 6 nt
suggested intron retention. Percent retained intron (PRI) was cal-
culated. While all of these events had retention frequencies >5% in
at least one developmental time point from the modENCODE
study, 46 (6%) did not appear to be retained in any of the adult
females we surveyed.

Tests of statistical significance were performed using R. Fisher’s
exact test was used to compare PSI values for each pairwise
comparison of strains and species. Q-values were calculated using
the qvalue module in R (Storey and Tibshirani 2003). Q-value
cutoffs corresponding to an FDR of 0.05 were applied. In addi-
tion, only splicing events for which both samples had $20 in-
formative junction reads and PSI differences (DPSI) >10% were
considered further. Comparisons of allele-specific PSI values
from F1 hybrid samples were also performed using Fisher’s exact
test to identify cis-acting differences in splicing. The ratio of
PSI values between parent alleles (e.g., D. melPSI/D. simPSI) were
compared to allele-specific PSI ratios from hybrids using the
method of Altman and Bland (2003). The standard error of the
difference in parental and allele-specific PSI ratios was calculated
and used to calculate Z-scores and P-values. Q-values were fur-
ther calculated and an FDR cutoff of 0.05 was applied to tests of
cis- and trans-acting splicing divergence. Less stringent FDR
thresholds of 0.1 and 0.2 were tested and gave highly similar
results. Interspecies differences in mRNA abundance were
compared as described (McManus et al. 2010a), and divergent
expression and splicing were cross-compared using Fisher’s ex-
act test in R.

Validation

Species-specific RT-PCR (McManus et al. 2010b) was used to vali-
date cis- and trans-acting differences in alternative splicing. Seven
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events from RI and eight events from SE were chosen for valida-
tion. Primers were designed such that the 39 ends of each primer
crossed SNPs. Total RNA was reverse transcribed using random
primers and SuperScript II reverse transcriptase according to the
manufacturer’s specifications (Invitrogen). cDNA was amplified for
30 cycles using species-specific primers and Taq (Invitrogen). PCR
products were separated on 2% agarose gels and visualized by
ethidium bromide staining. Gel images were processed with
ImageJ (Schneider et al. 2012) to quantify products. PSI values were
calculated by normalizing brightness by PCR product length. RNA-
seq and RT-PCR PSI values were compared for linear correlation
using R.

Data access
High-throughput sequencing data have been submitted to the
NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/
sra) under accession number SRP023274. Genome sequences
are accessible at the McManus (http://www.bio.cmu.edu/labs/
mcmanus/), Wittkopp (http://www.umich.edu/;pwlab/), and Grav-
eley (http://graveleylab.cam.uchc.edu/Graveley/) laboratorywebsites.
Contigs with novel sequences from D. simulans and D. sechellia
have been submitted to GenBank (http://www.ncbi.nlm.nih.
gov/genbank/) under accession numbers JAQJ00000000 and
JAQR00000000, respectively.
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