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Abstract
The consumption capital asset pricing model is the standardeconomic model

used to capture stock market behavior. However, empirical tests have pointed out
to its inability to account quantitatively for the high average rate of return and
volatility of stocks over time for plausible parameter values. Recent research has
suggested that the consumption of stockholders is more strongly correlated with
the performance of the stock market than the consumption of non-stockholders.
We model two types of agents, non-stockholders with standard preferences and
stock holders with preferences that incorporate elements of the prospect theory
developed by Kahneman and Tversky (1979). In addition to consumption, stock-
holders consider fluctuations in their financial wealth explicitly when making de-
cisions. Data from the Panel Study of Income Dynamics are used to calibrate the
labor income processes of the two types of agents. Each agentfaces idiosyncratic
shocks to his labor income as well as aggregate shocks to the per-share dividend
but markets are incomplete and agents cannot hedge consumption risks com-
pletely. In addition, consumers face both borrowing and short-sale constraints.
Our results show that in equilibrium, agents hold differentportfolios. Our model
is able to generate a time-varying risk premium of about 5.5explanation for the
equity premium puzzle reported by Mehra and Prescott (1985).

Journal of Economic Literature Classification: G12, E44

Keywords: asset pricing, equity premium puzzle, prospect theory, heteroge-
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I Introduction

The Consumption Capital Asset Pricing Model (CCAPM) developed by Lucas (1978)

and Breeden (1979) is the standard economic framework for modeling security prices. Lucas

(1978) provides a general equilibrium framework for asset pricing in an exchange economy.

Assuming a one-good economy with rational identical agents, Lucas shows that in equilib-

rium trade does not occur as it is optimal for the representative agent to hold the asset he is

endowed with and to consume the dividend. Thus, the model fails to answer the question of

what drives trades in financial markets. However, this is not the only drawback of the model.

The resulting Euler equations provide a tool for empirical tests of the model. Such tests have

failed to validate the model (Hansen and Singleton, 1982; Hansen and Jagannathan, 1991;

Ferson and Constantinides, 1991).

Mehra and Prescott (1985) demonstrate the inability of the model to generate the high

risk premium of a representative portfolio of risky assets over relatively riskless assets ob-

served in US historical data for plausible values of model parameters. While the historical

real rate of return on a market portfolio of risky assets (such as Standard and Poor’s 500

Composite Stock Index) has exceeded the real rate of return on relatively riskless assets

(such as 3-month T-bills) by about 6% per year, Mehra and Prescott demonstrate that the

CCAPM cannot generate a risk premium of more than 0.35% for the range of plausible

parameter values that they assume. The result of their empirical test of the CCAPM was

so striking, that they termed it the “equity premium puzzle”. Subsequent empirical tests

have shown that the equity premium puzzle is neither a sample-period phenomenon (Siegel,

1992; Mehra, 2003), nor a country-specific phenomenon (Dimson, Marsh, and Staunton,

2006; Campbell, 2003; Mehra and Prescott, 2003; however, Jorion and Goetzmann, 1999,

find that the equity premium puzzle is largely a US phenomenon).

The equity premium is a puzzle only if we accept the restriction on the coefficient of

relative risk aversion imposed by Mehra and Prescott. They suggested that the coefficient of

relative risk aversion should not exceed 10 to be considered plausible. However, some empir-

ical studies imply that people are more risk averse than economists believe and a coefficient

of risk aversion as high as 30 is not implausible if small stakes are involved (see for example

Kandel and Stambaugh, 1990). However, it is a general belief that an explanation of the
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equity premium puzzle should entail a low value of the coefficient of relative risk aversion.

Lucas (1994) states that an explanation of the puzzle employing a coefficient of risk aversion

greater than 2.5 is “likely to be widely viewed as a resolution that depends on a high degree

of risk aversion” (p. 335).

In the core of the puzzle is the definition of risk. While the Capital Asset Pricing Model

(CAPM) developed independently by Sharpe (1964), Lintner (1965), and Mossin (1966) de-

fines risk as the covariance of a stock return with the return on a market portfolio, CCAPM

defines risk as the covariance of consumption growth with the market return. Empirically,

the puzzle is driven by the low correlation of stock market returns with the aggregate con-

sumption or the low “quantity” of risk. Thus, stocks are not sufficiently risky to generate the

high historical return and therefore, the price of risk or the coefficient of risk aversion must

be high to reconcile the risk premium generated by the model with its historical counterpart.

A high coefficient of risk aversion resolves the equity premium puzzle but it gives rise to

another puzzle as pointed out by Weil (1989). The standard preferences used in macroeco-

nomics link the coefficient of risk aversion with the elasticity of intertemporal substitution. If

an agent is highly risk averse he dislikes variability in consumption across states and requires

a large premium to invest in stocks. As the elasticity of intertemporal substitution is the

inverse of the coefficient of risk aversion, a risk averse agent dislikes variation in consump-

tion across time as well. Yet, people do save enough at the low risk-free rate to generate an

average growth rate of consumption of about 2% per year. This anomaly has been dubbed

the “risk-free rate puzzle” by Weil.

The seminal work of Mehra and Prescott has stemmed a large volume of theoretical and

empirical studies. This huge body of literature indicates the importance of the topic. Not

only do we not have a model that is able to shed light on the return differentials across assets

but the two puzzles point out to our inability to explain aggregate economic phenomena. As

pointed out by Kocherlakota (1996, p. 33), “the risk free rate puzzle indicates that we do

not know why people save even when returns are low: thus our models of aggregate savings

behavior are omitting some crucial element”; the equity premium puzzle indicates that “we

cannot hope to give a meaningful answer to R. Lucas’ (1987) question about how costly
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individuals find business cycle fluctuations in consumption growth.”

The literature on the equity premium puzzle can be divided into two broad categories: (1)

Research that looks closely at the historical data used by Mehra and Prescott and claim that

in fact, the equity premium is not as large as it is generally believed because of measurement

errors in the data. For example, McGrattan and Prescott (2003) attribute the large equity

premium in US data reported by Mehra and Prescott to taxes, regulatory constraints, and

diversification costs. (2) Research that does not question the reliability of historical data but

suggests that the equity premium puzzle can be attributed to the underlying assumptions

of the model. As a result, a number of modifications and generalizations relaxing the as-

sumptions of Mehra and Prescott have been offered: time-nonseparable preferences (Hansen

and Constantinides, 1991; Heaton, 1993); recursive preferences (Weil, 1989; Epstein and

Zin, 1991); state-nonseparable preferences (Nason, 1988; Abel, 1990); rare-event declines

in aggregate consumption (Rietz, 1988); transaction costs (Luttmer, 1993); combined as-

sumptions of consumer heterogeneity and incomplete consumption insurance (Mehra and

Prescott, 1985). However, none of these alternatives can overcome the drawbacks of the

original Lucas model without posing further complications (for surveys of the literature, see

Kocherlakota, 1996; Cochrane, 1997; Mehra and Prescott, 2003). Our model contributes to

this second body of research on the equity premium puzzle.

Mankiw and Zeldes (1991) raise an important objection to the empirical tests of the

CCAPM. In the United States roughly only a third of the population holds stocks. There-

fore, empirical tests based on the Euler equations of the model which employ aggregate

consumption data are doomed to fail unless the consumption processes of stockholders and

non-stockholders are highly correlated. They find that the two consumption processes differ

substantially and “failures of the consumption CAPM might be rationalized by a model with

two groups of consumers: stockholders and non-stockholders” (p. 99).

A related issue is that models which allow for agent heterogeneity typically use the same

utility function to describe the individual preferences. However, there is no a priory reason

that would lead us to believe that stockholders and non-stockholders have identical prefer-

ences. Barberis, Huang, and Santos (2001) suggest that stockholders have preferences which
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differ from the preferences of nonstockholders. They introduce elements of prospect theory

into a standard asset pricing model and are successful in generating stock returns which are

more volatile than the underlying dividends.

One of the well-regarded alternatives to expected utility theory is the prospect theory

developed by Kahneman and Tversky (1979). In contrast to expected utility, which is a

normative theory, prospect theory is a positive theory of choice under risk with objective

probabilities. Prospect theory is based on the assumption that agents derive utility not from

levels in wealth, but rather from changes in wealth. Further, agents are more sensitive to

losses than to gains in wealth: a property known as “loss aversion”.

Prospect theory is a static model of choice under risk and its incorporation into in-

tertemporal decision-making is neither straightforward nor trivial. In their pioneering work,

Barberis, Huang and Santos extend prospect theory to account for intertemporal decision-

making. They model asset prices in a representative-agent economy with complete markets.

Our work is related to theirs in the sense that the investor-type agent in our model is endowed

with preferences similar to the ones specified by Barberis, Huang and Santos. Changes in

financial wealth affect directly the utility of investors who have a large share of their wealth

invested in securities. As a result, investors take anticipated fluctuations in their financial

wealth explicitly into consideration when making decisions. However, in contrast to Barberis,

Huang and Santos we model an economy with heterogeneous agents, incomplete markets and

idiosyncratic income shocks.

In a complete market, representative-agent model, individuals completely insure the id-

iosyncratic shocks to their income and individual consumption is perfectly correlated with

the aggregate per capita consumption. However, the impact of idiosyncratic shocks on indi-

vidual consumption and asset prices is not straightforward once we allow for heterogeneous

agents and market incompleteness. This impact has been shown to vary with the under-

lying assumptions of the model. As pointed out by Heaton and Lucas (1996), the impact

of idiosyncratic shocks depends on (1) the size and correlation structure of the shocks; (2)

whether the idiosyncratic shocks are transitory or permanent; and (3) the presence of trading

frictions.
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In the presence of aggregate uncertainty and transitory idiosyncratic shocks without

trading costs, asset prices in an incomplete market setting do not differ significantly from

those in complete market models (Telmer, 1993; Lucas, 1994) because agents are able to

smooth consumption by buying assets after a good, high income, state and sell assets after

a bad state. However, when there are short-sale and trading constraints the equity premium

rises when the short-sale constraint is binding (Marcet and Singleton, 1999). Interestingly,

Constantinides and Duffie (1996) show that when idiosyncratic shocks are permanent, trade

does not take place, and the volatility of consumption increases in equilibrium. Their result

indicates that allowing for agent heterogeneity is a necessary but not a sufficient condition

for trade in financial markets.

While a number of modifications of the representative-agent model have been proposed,

the literature on asset pricing with heterogenous agents has started to grow only recently

(see, for example, Constantinides, Donaldson, and Mehra, 2002; Marcet and Singleton, 1999;

Heaton and Lucas, 1996; Constantinides and Duffee, 1996). There are three avenues, which

we explore in our model: (1) We contribute to the literature on heterogenous agent mod-

els by introducing a model which allows for preference heterogeneity. To our knowledge,

this is a unique feature of this model. (2) We build on models in behavioral economics,

which introduce alternatives to the expected utility theory in decision-making. However,

typically these models do not allow for agent-heterogeneity and market incompleteness. In

line with Mankiw and Zeldes, we allow for two types of agents: Type A exhibits standard

preferences used in macroeconomics and Type B exhibits preferences that employ elements

of the prospect theory developed by Kahneman and Tversky (1979). Type A agents are non-

stockholders, i.e. individuals that either do not hold stocks or whose stock holdings represent

a negligent proportion of their income. Type B agents are stockholders or investors: their

stock holdings represent a significant proportion of their income and thus, their consumption

pattern depends on their stock market performance. In addition to consumption, a Type

B agent derives utility from changes in his financial wealth (the prospect theory element in

preferences). (3) This research is also closely related to models which consider the impact

of aggregate and individual-level uncertainty as well as trading frictions on asset prices in

heterogeneous-agent, incomplete market dynamic stochastic general equilibrium models.
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We allow for aggregate uncertainty in the form of shocks to the aggregate per share

dividend and idiosyncratic labor income shocks which have both permanent and transitory

component. We use data from the Panel Study of Income Dynamics (PSID) to calibrate the

individual income processes. In addition, we explore the impact of short-sale and liquidity

constraints on equilibrium consumption processes and asset prices in an incomplete market

setting. However, in our model we do not allow for transaction costs. Heaton and Lucas

(1996) show that sizable transaction costs or limited quantity of tradable securities generate

about half of the observed risk premium. As a result, the equity premium generated by our

model maybe biased downward in the sense that if we account for transaction costs as well,

the equity premium should rise.

Our results suggest that heterogeneous preferences and idiosyncratic labor income shocks

induce agents to hold different portfolios in equilibrium. Our model generates a substan-

tial time-varying risk premium of stocks over bonds while maintaining a low risk-free rate

and a low correlation between individual consumption and stock market returns. The pa-

per is organized as follows: Section II presents the model; Section III discusses the model

parametrization and Section IV discusses the solution algorithm; Section V presents the re-

sults; Section VI concludes.

II The Model

1. The Economy

Time is discrete and indexed by t = 0, 1, 2, .... There are two assets in the economy:

a risky asset (stock), which is a claim to a stream of stochastic dividends, and a risk-free

asset (discount bond), which is a claim to one unit of the consumption good in period t+ 1.

There are two types of infinitely-lived agents in this pure exchange economy. The agents are

price-takers in goods and securities markets.

1.1. Preferences
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For clarity, the preferences of the two types of agents are discussed separately below.

A. Type A Agent

Agents of Type A maximize an additively-separable utility function which exhibits con-

stant relative risk aversion:

E

[

∞
∑

t=0

ρt (C
A
t )1−γ

1 − γ
| Ω(t)

]

(1)

where CA
t is the consumption of Type A agent at time t; 0 < ρ < 1 is the subjective dis-

count factor; and Ω(t) denotes the time t information set which is generated by the state

variables in the model and is common to both agents. The coefficient of relative risk aver-

sion, 0 < γ < ∞, controls for the curvature of the utility function. The utility function

reduces to lnCA
t when γ = 1. It is continuous, concave and obeys the Inada conditions, i.e.

limC→0U
′(Ct) = ∞ and limC→∞ U ′(Ct) = 0.

B. Type B Agent

A Type B agent derives utility from both consumption and anticipated fluctuations in

financial wealth. His utility function is additive in these two sources of utility. The idea

that individuals derive utility from changes in wealth rather than wealth levels was first

postulated by Kahneman and Tversky (1979). The prospect theory that they developed is

a positive theory of choice under uncertainty derived on the base of experimental evidence.

The major building block of prospect theory is the assumption that individuals derive more

dissatisfaction from a loss than satisfaction from a gain of an equal size, termed “loss aver-

sion”. It has been suggested that together with risk aversion and probability weights, loss

aversion is a major component of risk attitudes (see for example Köbberling and Wakker,

2005). In the literature, several different ways of modelling loss aversion have been suggested.

Based on experimental evidence, Kahneman and Tversky (1992) suggest the following form

for the utility from gains and losses:

U(X) =











Xα for X ≥ 0

−λ(−X)β for X < 0
(2)

7



where X denotes changes in wealth with respect to a reference point and λ > 1 is a mea-

sure of loss aversion. Thus, the utility function can be represented by a piece-wise function

which is steeper for losses (X < 0) than for gains (X > 0). Figure 1 plots the utility from

gains and losses for α = β = 0.88 and λ = 2.5, the parameter values Kahneman and Tver-

sky obtained based on experimental data. The function is slightly concave in the positive

domain (risk aversion) and slightly convex (risk seeking) in the negative domain with a kink

at 0 (loss aversion). Notice that the function becomes nearly linear in its argument for large

gains and losses.

In addition to consumption, a Type B agent explicitly takes into consideration expected

fluctuations in financial wealth in his decision-making. In line with prospect theory, we as-

sume that his preferences exhibit loss aversion with respect to changes in financial wealth.

The prospect theory, however, is a static model of choice under uncertainty and to incorpo-

rate it into a dynamic model, additional assumptions on whether and how prior gains and

losses affect decision-making have to be made. Barberis, Huang and Santos (2001) show

that loss aversion by itself cannot explain the large equity premium of stocks over bonds

observed in historical data within the frames of a representative agent, complete markets

model. However, allowing for prior investment performance to influence current and future

investment decisions improves the performance of their model.

With slight modifications to be discussed below, we adopt the preference specification

suggested by Barberis, Huang and Santos for Type B agent. For simplicity, they assume

that α = β = 1, i.e. in line with prospect theory the utility from gains and losses exhibits

the loss aversion property (the utility function from losses is steeper than that from gains

and the function is kinked at 0) but the utility function is linear in gains and losses. In order

to incorporate prospect theory in a dynamic model, the authors assume that the extent to

which an investor is loss averse depends on his prior stock market performance. Thus, people

are more willing to gamble after prior gains and more conservative after prior losses. This is

the “house money” effect coined by Thaler and Johnson (1990). Thus, the Type B investor

maximizes the following utility function suggested by Barberis, Huang and Santos:
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E

[

∞
∑

t=0

(

ρt (C
B
t )1−γ

1 − γ
+ b0ρ

t+1v(Xt+1, zt)

)

| Ω(t)

]

(3)

where CB
t is the consumption of Type B agent in time t; SB

t is the risky asset holdings

of Type B agent in time t; zt is a state variable that measures gains and losses prior to time

t; v(·) is the utility the investor derives from financial gains or losses; Xt+1 is the gain or

loss from the risky asset holdings between t and t+ 1; b0 is an exogenous scaling factor that

controls for the relative importance of the “prospect theory” term in the utility function.

If b0 = 0, the model reduces to the standard preferences defined in Equation 1. Barberis,

Huang and Santos scale the prospect theory term by b0C̄t
−γ

where C̄t
−γ

is the aggregate per

capita consumption at time t, exogenous to the investor in their model. As they allow for

a constant growth rate in consumption and dividends, determined exogenously, this adjust-

ment is necessary to ensure that the prospect utility term will not have an explosive impact

on the utility function as the wealth in the economy grows. However, in our model this is

not necessary as consumption is an endogenous process and we are looking for a stationary

equilibrium where consumption is determined endogenously. In our model the individual

and aggregate wealth are stationary over time.

The reference level with respect to which gains and losses are measured is usually assumed

to be the status quo, in our case the value of the risky asset in period t. The gain or loss

between t and t + 1 is the difference between the value of the risky asset holdings in t + 1

and t adjusted for the asset value in t + 1 if instead, the value of the risky asset in t were

invested in the risk-free asset:

Xt+1 = SB
t (Pt+1 + dt+1) − SB

t Pt/Pf,t (4)

where Pt and Pf,t are respectively the (ex-dividend) price of the risky asset and the price

of the risk-free asset measured in units of the consumption good at time t and dt is the

per-share dividend of the risky asset at time t.

Agents are identical in terms of their coefficient of risk aversion and discount factor. The

first term in the utility function of Type B agent is identical with the instantaneous utility

function of Type A agent. However, a Type B agent is also loss averse where the loss aversion

property is captured by the second term in his utility function. Thus, the two types of agents
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essentially differ in their attitudes towards risk: a Type A agent dislikes only fluctuations in

consumption while in addition, a Type B agent dislikes fluctuations in financial wealth as

well.

Barberis, Huang and Santos further assume that a Type B agent keeps track of losses

and gains over time. In line with the “house money” effect, losses are more painful when

they occur after prior losses than after prior gains. We define the “historical benchmark

level”, Zt, as the per unit price of the risky asset that the investor remembers. If Zt > Pt,

the investor has realized a loss in time t and future losses will be more painful. Conversely,

if Zt < Pt, the investor has realized a gain in the stock market and St(Pt − Zt) serves as a

cushion for future losses. For simplicity, we define zt = Zt/Pt. The investor has had prior

losses if zt > 1 and prior gains if zt < 1. The cushion of prior gains increases with the

increase of the rate of return on the risky asset. The law of motion for zt is given by:

zt = η

(

zt−1

R̄

Rt

)

+ (1 − η) (5)

where Rt is the real gross rate of return on the risky asset between t− 1 and t and R̄ is

chosen in such a way that in equilibrium, the median value of z is 1; η can be thought of as a

proxy for the investor’s memory. If η = 0, the investor has “no memory” and the historical

benchmark level adjusts immediately to changes in the price of risky assets. In contrast, if

η = 1, the investor has a long memory and prior losses and gains affect his decisions for a

long period of time.

Barberis, Huang, and Santos assume that the price-dividend ratio is only a function of zt

and thus, the (endogenous) rate of return on the risky asset in period t is only a function of zt

as well. As a result, zt is an endogenous state variable. Note that the meaning of endogenous

state variable in this case has a slightly different meaning from what is typically meant by

the term. Conventionally, the term “endogenous state variables” is used to describe mem-

bers of the state vector in period t which are endogenous variables in period t − 1. One of

the difficulties in solving the model of Barberis, Huang, and Santos is that we have to solve

simultaneously for the endogenous state variable zt and the price-dividend ratio in period t.

In our model we do not impose any restrictions on the price-dividend ratio and zt is an en-

dogenous state variable in the conventional sense: the state variable zt−1 is used to solve for

the values of the endogenous variables in time t. zt is found from Equation 5 after solving for
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the stock price (and thus, the rate of return on stocks for a given realization of dt) in period t.

The utility from gains and losses depends on the prior stock market performance of Type

B agent. Let Yt+1 = [Pt, Pf,t, Pt+1, dt+1] denote the array of variables that affect the utility

from gains and losses. Let

v(Xt+1(Yt+1, S
B
t ), zt) = v(Yt+1, S

B
t , zt) (6)

If zt = 1 (neither prior gains nor losses), the utility from gains and losses is given by:

v(Yt+1, S
B
t , zt = 1) =











Xt+1 for Xt+1 ≥ 0

λXt+1 for Xt+1 < 0
(7)

where Xt+1 is defined in Equation 4. Thus, the utility from a gain is given by the gain

itself and the disutility from a loss is equal to the value of the loss penalized by a factor of

λ > 1. λ is a measure of loss aversion; it indicates how much more painful a loss is than

a corresponding gain. This utility function is a close approximation to the utility function

suggested by Kahneman and Tversky for larger gains and losses.

If zt < 1, the investor has accumulated prior gains that serve as a cushion if future losses

occur. Losses which are completely cushioned by prior gains are not very painful but losses

in excess of prior gains are penalized more severely. Thus, if the cushion created in period t

is equal to or greater than the loss realized between t and t+1, i.e. if StZt ≤ St(Pt+1 +dt+1),

the disutility from a loss is equal to the loss itself. Losses in excess of prior gains are penalized

more severely, by a factor of λ. More formally, if we update the cushion created in period t,

St(Pt − Zt), by the risk free rate, for zt ≤ 1 we obtain:

v(Yt+1, S
B
t , zt) =



















SB
t (Pt+1 + dt+1) −

SB
t Pt

Pf,t
for Rt+1 ≥ ztRf,t

SB
t Pt

Pf,t
(zt − 1) + λSB

t

(

Pt+1 + dt+1 − zt
Pt

Pf,t

)

for Rt+1 < ztRf,t

(8)

where Rf,t is the gross real return on the risk-free asset between t and t+ 1. Notice that

Equation 8 reduces to Equation 7 when zt = 1.

If the investor has accumulated prior losses on the stock market (zt > 1), subsequent

losses are more painful and are penalized more severely than when the investor has had
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prior gains. The penalty factor in this case or alternatively, the measure of loss aversion,

λ(zt) > λ, is increasing in prior losses:

λ(zt) = λ+ k(zt − 1) (9)

where k > 0.

The utility from gains and losses in the case of prior losses (zt > 1) is given by:

v(Yt+1, S
B
t , zt) =















SB
t (Pt+1 + dt+1) −

SB
t Pt

Pf,t
for Rt+1 ≥ Rf,t

λ(zt)S
B
t

(

Pt+1 + dt+1 −
Pt

Pf,t

)

for Rt+1 < Rf,t

(10)

Figure 2 shows Type B agent’s utility from gains and losses for different values of zt.

When there are no prior gains or losses, zt = 1, the disutility from a loss is greater than the

utility from a gain of an equal magnitude as the utility from losses is steeper than the utility

from gains, i.e. the utility from gains and losses exhibits the loss aversion property. The

utility from gains is the same regardless of Type B agent’s prior stock market performance.

However, the disutility from a loss differs depending on whether the investor has had prior

gains, losses or neither gains or losses. When a loss comes on the heels of prior losses, it

is more painful than when there are neither prior gains nor losses. The dashed green line

on Figure 2 shows the utility from gains and losses when there are prior losses. It is drawn

for zt = 1.25. Compared to the case of zt = 1, the slope of the dashed green line is steeper

for losses implying that losses are more painful when there are prior losses. When there are

prior gains, how painful a subsequent loss is depends on how large the created cushion and

the incurred loss are. The red dash-dotted line is drawn for zt = 0.5, e.g. the investor has

had substantial prior gains. In this case losses which are completely cushioned by prior gains

are not penalized, i.e. the disutility from the loss is equal to the loss itself. However, losses

in excess of the cushion are penalized by a factor of λ.

1.2. Endowments

In addition to preferences, agents are heterogeneous with respect to their labor income

as well. In each period t, a Type i agent receives an exogenous labor income yi
t for i = A,B,

which is subject to idiosyncratic shocks. In addition, agents receive income if they have

invested in stocks and/or bonds. The stock is a claim to a stochastic stream of dividends
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and agents face aggregate uncertainty if they invest in stocks.

The one-period zero-coupon bond yields one unit of the consumption good in period t+1

with certainty. Agents of Type A and B face standard budget constraints:

CA
t + PtS

A
t + Pf,tB

A
t = yA

t + (Pt + dt)S
A
t−1 +BA

t−1 (11)

CB
t + PtS

B
t + Pf,tB

B
t = yB

t + (Pt + dt)S
B
t−1 +BB

t−1 (12)

where Bi
t is the riskless asset holdings of Type i agent for i = A,B at time t and yi

t is the

stochastic labor income of agent i for i = A,B at time t.

We assume that there is no population growth and normalize the size of the population

to 1. Thus, the aggregate income in the economy yt at any t is given by:

yt = θyA
t + (1 − θ)yB

t + dt (13)

where θ is the share of Type A agents in the economy.

1.3. Borrowing and Short-Sale Constraints

Agents can trade securities to transfer wealth across states and time in order to smooth

their consumption. There are only two assets in the economy: a riskless bond and a risky

stock. However, agents cannot diversify away all risks as markets are incomplete and they

cannot write contracts contingent on their expected labor income. In addition, individuals

face state-dependent short sale and borrowing constraints in the asset markets. The short

sale constraint, Ki
s,t faced by agent i for i = A,B in time t depends on the agent’s income.

In each period t the short-sale constraint is given by:

Si
t ≥ Ki

s,t where Ki
s,t = myi

t (14)

where m ≤ 0. In our basic model, we rule out short sales, i.e. m = 0 irrespective of the

state of the economy. However, we test our results for sensitivity to this assumption.

Individuals may not be able to smooth their consumption over time because of credit

rationing. In each period t agents can borrow only a fraction h ≤ 0 of their income:

Bi
t ≥ Ki

b,t where Ki
b,t = hyi

t (15)
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where Ki
b,t is the state-dependent borrowing constraint faced by agent i for i = A,B. The

borrowing constraint is binding in some states but not in others. Besides being a realis-

tic feature of financial markets, the borrowing constraint ensures that consumers will not

rollover debt, or get involved in Ponzi schemes.

2. Market Equilibrium

The equilibrium consumption and asset holdings as well as asset prices are determined

endogenously in our model. Each consumer maximizes his stochastic consumption stream

subject to the budget and portfolio constraints for a given stream of prices {Pt}
∞

t=0 and

{Pf,t}
∞

t=0. Employing the Kuhn-Tucker conditions, the relevant stochastic Euler equations

for consumer i’s maximization problem for i = A,B are given by:

• Bonds

Either

(Ci
t)

−γPf,t = ρE
[

(

Ci
t+1

)

−γ
| Ω(t)

]

and Bi
t > Ki

b,t (16)

or

(Ci
t)

−γPf,t ≥ ρE
[

(

Ci
t+1

)

−γ
| Ω(t)

]

and Bi
t = Ki

b,t (17)

for i = A,B

• Stocks

Either

(CA
t )−γPt = ρE

[

(

CA
t+1

)

−γ
(Pt+1 + dt+1) | Ω(t)

]

and SA
t > KA

s,t (18)

or

(CA
t )−γPt ≥ ρE

[

(

CA
t+1

)

−γ
(Pt+1 + dt+1) | Ω(t)

]

and SA
t = KA

s,t (19)

Either

(CB
t )−γPt = ρE

[

(CB
t+1)

−γ(Pt+1 + dt+1) | Ω(t)
]

+ b0ρE [v̂(Yt+1, zt) | Ω(t)] and SB
t > KB

s,t

(20)

or

(CB
t )−γPt ≥ ρE

[

(CB
t+1)

−γ(Pt+1 + dt+1) | Ω(t)
]

+ b0ρE [v̂(Yt+1, zt) | Ω(t)] and SB
t = KB

s,t

(21)
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where for zt ≤ 1

v̂(Yt+1, zt) =















Pt+1 + dt+1 −
Pt

Pf,t
for Rt+1 ≥ ztRf,t

Pt

Pf,t
(zt − 1) + λ

(

Pt+1 + dt+1 − zt
Pt

Pf,t

)

for Rt+1 < ztRf,t

(22)

and for zt > 1

v̂(Yt+1, zt) =















Pt+1 + dt+1 −
Pt

Pf,t
for Rt+1 ≥ Rf,t

λ(zt)
(

Pt+1 + dt+1 −
Pt

Pf,t

)

for Rt+1 < Rf,t

(23)

If the short sale and borrowing constraints are non-binding, the Euler equations are given

by Equations 16, 18, and 20. The Euler equations for bonds are standard: if the consumer

decreases incrementally his consumption in period t and invests his savings in the riskless

asset, his utility cost in t should be equal to the discounted expected value of the utility

benefit in t+1 adjusted for the rate of return on the riskless asset between t and t+1. This

is a necessary condition for optimality for any t. Similarly, the Euler equation for stocks for

Type A agent is standard and has a similar interpretation. However, the Euler equation for

stockholders has a different interpretation. If the stockholder reduces his consumption by an

infinitesimal amount in time t and invests the savings in the risky asset, his utility cost in

t should be equal to the discounted value of the expected utility benefit in the next period

adjusted for the expected rate of return on the risky asset plus the expected change in the

value of the risky assets. When the investor realizes a loss, v̂(·) is negative implying that he

would require a higher expected rate of return to invest in stocks. How high the expected

rate of return would be depends on whether the investor has had prior losses or gains. If he

has had prior losses, he is more loss averse and he would require a higher rate of return on

the risky asset to invest in it and conversely, if he has had prior gains, he would require a

lower rate of return.

For simplicity, the outstanding shares of the risky asset are normalized to one. We only

allow for private borrowing and lending and therefore, bonds are in zero net supply. Thus,

the market clearing conditions for stocks and bonds in each period t are given by:

θSA
t + (1 − θ)SB

t = 1 (24)

θBA
t + (1 − θ)BB

t = 0 (25)
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We assume that there is no population growth and the population size is normalized

to one. Walras law guarantees that the goods market clear, i.e. θCA
t + (1 − θ)CB

t = yt is

satisfied for each t. The aggregate income in the economy yt is given by Equation 13.

Each agent faces idiosyncratic shocks to his labor income as well as aggregate shocks to

the per share dividend. Markets are incomplete as while there are three sources of uncer-

tainty, there are only two markets, the bond and the stock markets, to hedge consumption

risks. In addition, borrowing and short sale constraints limit the agents’ ability to smooth

consumption across states and time.

Information is complete and symmetric, i.e. both agents know the past realizations of

stock prices as well as shocks to their individual incomes and the per share dividend. There

are eight endogenous variables in our model in each t: Pt, Pf,t and Ci
t , B

i
t , S

i
t for i = A, B.

We use the four (relevant) Euler equations, the equilibrium conditions (Equations 24 and

25), the income process (Equation 13) and the budget constraint for Type A agent to find

the equilibrium distributions of the endogenous variables as a function of the state vector.

Because of Walras Law, the budget constraint for Type B agent is redundant. For conve-

nience, we discuss the state vector separately below.

3. State Variables

3.1. Exogenous State Variable

The exogenous state of the economy at every t is given by [ln(yA
t ) ln(yB

t ) ln(dt)]
′ where ln

denotes the natural logarithm. We use annual data on 632 households over the period 1968-

1997 from the Panel Study of Income Dynamics (PSID) to calibrate the income processes of

stockholders and non-stockholders and data from NIPA accounts to calibrate the aggregate

dividend process. The individual incomes and the aggregate dividend are assumed to follow

first-order autoregressive processes.

The income of Type i agent for i = A,B is assumed to be a stationary first-order

autoregressive process:
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ln(yi
t) = ξi + ωi ln(yi

t−1) + εi
t (26)

where εi
t ∼ Niid(0, (σi

ε)
2) for i = A,B. We use PSID data to classify individuals as stock-

holders and non-stockholders. Results from Abowd and Card (1989), Heaton and Lucas, and

Marcet and Singleton suggest that aggregate shocks have little impact on the conditional

mean and unconditional variance of individual incomes. As a result, we assume that lagged

values of the aggregate dividend have no impact on the individual income processes.

The aggregate dividend is assumed to be independent of the individual income processes

and follows a stationary first-order autoregressive process:

ln(dt) = a1 + a2 ln(dt−1) + et (27)

where et ∼ Niid(0, σ2
e). The section on calibration below provides details on data esti-

mation and calibration.

3.2. Endogenous State Variable

The state vector contains endogenous variables as well. These are the elements of wealth

defined in the previous period as well as prior investment outcomes, i.e. BA
t−1, S

A
t−1, zt−1.

III Calibration

1. Law of Motion of the Exogenous State Variables

We use data from the Panel Study of Income Dynamics (PSID) to calibrate the indi-

vidual income processes of Type A and B agents. There is a huge body of literature on

the dynamic process that governs the individual earnings recorded in longitudinal studies.

While this process does not seem to be clearly understood as yet, it is clear that shocks to

individual earnings are highly persistent and follow a complex dynamic structure.

Annual data on the individual labor processes from the PSID is used to calibrate the

exogenous income processes of the two types of agents. The PSID is a longitudinal study
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of a sample of the US population conducted annually since 1968 and biannually since 1997.

The original 1968 sample consists of two independent samples: a sample drawn by the Sur-

vey Research Center (SRC sample) that includes about 3,000 households representative of

the US population and a sample of about 2,000 households drawn from the Survey of Eco-

nomic Opportunity respondents (SEO sample) which represents low-income families. As we

are interested in a representative sample of the US population, we only consider the SRC

sample in line with Lillard and Willis (1978) who suggest dropping the SEO sample because

of endogenous selection problem.

The PSID follows both the original families as well as their split-offs. We use both

individual- and family-level data to find the total family money income as a sum of the

reported taxable income of head and wife, as well as the taxable income of other earners

in the family and transfer income received by family members from all sources. Transfer

income and other sources of income are included to measure idiosyncratic shocks net of the

implicit insurance offered by transfer payments and other sources of income. Taxable in-

come includes labor income as well as income from other sources. Labor income includes

the labor portion of income from all sources such as wages and salaries, bonuses, overtime,

tips, commissions, professional practice or trade, and market gardening. Transfer income

includes social security income, unemployment and workers compensation, child support,

retirement income as well as other welfare transfers to the head and wife. The total family

money income weighted by the number of family members and deflated by the CPI is used

as a proxy for the individual labor income in our model.

The PSID survey is retrospective in the sense that it is administered at the beginning of

the year and the income reported in a given year refers to the previous calendar year and

is measured in previous year dollars. Thus, our sample refers to the period from 1967 to

1996. There are several restrictions that we impose on the data. We include in our sample

only families that completed the survey in all years from 1968 to 1997. We exclude missing

observations, i.e. families, which once in the survey, did not complete the survey in a given

year. We also exclude families with zero reported income in a given year. We use data from

the Wealth Supplements in 1984, 1989 and 1994 to categorize families as stockholders and

non-stockholders. As our model does not allow individuals to move from one category to
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the other, we exclude from the sample all families that were stockholders in one year and

non-stockholders in the others. We also exclude those families who declined to answer the

question on whether they hold stocks and thus, cannot be categorized as stockholders or

non-stockholders. In our sample we have a total of 652 families of which 431 (about 65%

of the population) are non-stockholders and 221 (about 35%) are stockholders. Thus, we

set the proportion of non-stockholders in the population θ = 0.65 and the proportion of

stockholders to 0.35.

To account for the observed agent heterogeneity in empirical data, we follow the approach

suggested by Heaton and Lucas (1996). For each individual we use OLS to estimate his

individual income process:

ln(yjt) = ξj + ωj ln(yjt−1) + εjt (28)

where {ξj}
N
j=1 and {ωj}

N
j=1 are parameters and N is the number of individuals in our

sample. Permanent differences in the individual labor incomes are captured by {ξj}
N
j=1

while {ωj}
N
j=1 captures the persistence of idiosyncratic income shocks to labor incomes. We

assume that innovations to the income of individual j follow a white noise process with

E[εjt] = 0, E[εjtε
′

it] = σ2
j if j = i and 0 otherwise, and E[εjtε

′

jt−1] = 0. The parameters

in Equation 26 for a Type i agent for i = A,B are found as cross-sectional averages of

the corresponding parameter estimates of all individuals who fall in the category of non-

stockholders and stockholders, respectively. For example, if M denotes the number of non-

stockholders in our sample, ξA in Equation 26 is given by:

ξA =
1

M

M
∑

j=1

ξj (29)

The cross-sectional averages of the ordinary least squares estimates of the coefficients in

Equation 28 and averages of their standard errors are reported in the first two rows of Table 1.

Income shocks to the individual labor incomes are highly persistent with the shocks to

the labor income of non-stockholders being more persistent than the shocks to the labor

income of stockholders. The estimated cross-sectional mean of the standard deviation of the

idiosyncratic shocks to the labor income of non-stockholders is σA
ε = 0.37 with a standard

deviation of 0.15 while the corresponding value for stockholders is σB
ε = 0.32 with a standard
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deviation of 0.14. It is somewhat counterintuitive that innovations to the labor income of

non-stockholders are more volatile than for stockholders. The reason could be that stock-

holders, who on average have a higher income than non-stockholders, are more likely to have

a more stable income as well.

Our results are consistent with empirical estimates based on microeconomic data. For

example, based on PSID data MaCurdy (1982) finds that the standard deviation of the

residual in a regression with real labor income per capita in logarithms as a dependent

variable is 0.58. However, Deaton (1991) argues that MaCurdy’s estimate overstates the

true volatility of innovations to the individual labor income because of measurement errors.

Deaton suggests that this volatility for shocks to the logarithm of income in first differences

should be between 0.1 and 0.15. As a result, we scale down the variance of shocks to the

individual income processes that we estimate by about 2/3, i.e. we assume that σA
ε = 0.17

and σB
ε = 0.15 thus placing Type B agent at the upper bound of the interval suggested by

Deaton and Type A agent just above that bound.

The PSID does not provide data on the dividend income for the whole sample period.

We use annual data on the net dividend from the National Income and Product Account

(NIPA) tables published by the Bureau of Economic Analysis to calibrate the process of the

aggregate dividend. To increase the precision of our estimates, we use all the available data,

which spans the period from 1929 to 2006. We weigh the dividend by CPI and the U.S. pop-

ulation in a given year to obtain the real dividend per capita. Data on the U.S. population is

obtained from the U.S. Census Bureau. The regression estimates of the parameters in Equa-

tion 27 for the detrended series of the real dividend in logarithms are presented in the third

row of Table 1. The estimated standard error of the shock to the dividend process is 0.1.

To be consistent with the assumed volatility of shocks to the individual income processes,

we scale down this estimate by 2/3 as well. Thus, the standard deviation of innovations to

the dividend process is σe = 0.06. The aggregate income in the economy in any given year

is the weighted sum of the individual labor incomes of the two agents and the aggregate per

capita dividend. The aggregate income is normalized, so that its average is 1.
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2. Structural Parameters

Table 2 summarizes the chosen parameters for the model. The discount factor ρ is set

equal to 0.96. There is still an ongoing debate on the average value of the coefficient of risk

aversion (see, for example, Kocherlakota, 1997). As discussed above, the equity premium

puzzle exists only if we assume that values of γ greater than 10 are implausible. We set γ =

2, well into the plausible region suggested by Mehra and Prescott. Based on our data we set

the share of non-stockholders in the population θ to 0.65. The importance of the prospect

theory term in the overall utility of Agent B is controlled by b0; k is a penalty factor for

losses when they occur after prior losses and η is a proxy for investor’s memory. For our

base model we adopt the parameter values of k, η, and the lower bond of b0 suggested by

Barberis, Huang and Santos. However, we test the sensitivity of our model to these pa-

rameter values. λ penalizes losses when there are no prior gains or losses. We set it equal

to 2.25, the value estimated by Tversky and Kahnemnan (1992) based on experimental data.

While it is intuitive that the borrowing constraint is a function of individual’s income,

it is not immediately clear what the lower bound of the constraint is. For our baseline

model we set h = -1/3 and therefore, the state-dependent borrowing constraint is given by

Ki
s,t = −1/3yi

t for i = A,B. Even though our results presented below show that the borrow-

ing constraint is rarely binding, we test the sensitivity of our results to this assumption. In

our baseline model we rule out short sales, m = 0.

IV Solution Algorithm

We solve for the equilibrium numerically using a modification of the parameterized expecta-

tions algorithm (PEA) developed by Marcet (1988) and den Haan and Marcet (1990, 1994).

Marcet and Singleton (1999) extend the algorithm to account for agent heterogeneity. The

appendix to this chapter offers a concise discussion of the numerical algorithm. We simulate

the equilibrium path of the economy for 2,000 periods and exclude the first 100 periods to

eliminate any impact of the initial conditions on results. All computations are executed in

Matlab.
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V Results

1. Representative Agent Models

We first solve the representative agent model to see whether accounting for loss aversion

improves the results. We essentially solve the model of Mehra and Prescott where the rep-

resentative agent’s labor income is set equal to the aggregate labor income in the economy

which a weighted average of the individual incomes of the two agents. However, in con-

trast to Mehra and Prescott, who set the consumption of the representative agent equal to

the aggregate per share dividend, we set consumption equal to the aggregate income in the

economy, which is the sum of the per share dividend and the aggregate labor income. This

is our Model A. We then perform the same exercise except for the fact that the representa-

tive agent’s preferences account for loss aversion (Equation 3). This is our Model B which is

similar to the model solved by Barberis, Huang, and Santos. Results are presented in Table 3.

Our results are consistent with results obtained by Heaton and Lucas. The equity pre-

mium generated by the models is higher than the premium generated by models based on

aggregate data. The reason is that microeconomic data are more volatile than aggregate

data. This can be corrected to some extent if we assume a higher value for the discount

factor. Our results suggest that Model B outperforms Model A as it generates a higher eq-

uity premium for a lower correlation of consumption with stock returns. The reason is that

Model B introduces a second source of risk aversion, namely loss aversion. Thus, allowing for

heterogeneity in preferences may enable us to obtain a better match to the equity premium

observed in historical data.

2. Heterogenous Agents: Loss Aversion

To evaluate the performance of our model, we have to compare our estimates to the cor-

responding values reported in empirical studies. While an average equity premium of 6% and

a risk free rate of return of 1% in real terms are widely cited in the literature, these empirical

values (and their volatility) are not robust to the sample period. Siegel (1999), for example,

reports an equity premium of 4.1% based on U.S. data for the period 1802-1998. However,

the equity premium has been more pronounced during the post World War II period pre-

dominantly due to a decrease in the risk-free rate. The moments of asset returns observed
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in historical data that we use as a base for comparison with our results are obtained from

estimates reported by Mehra and Prescott (2003). As a benchmark we use the 30-year aver-

age of the U.S. equity premium over the period 1951-2000 reported by Mehra and Prescott

(2003) because this period most closely matches the sample period of the data we use to

estimate the law of motion of the individual income and aggregate dividend processes. Fur-

ther, Mehra and Prescott report that the standard deviation of stock returns in real terms is

about 20% per year while the standard deviation of returns to T-bills is about 4% per year.

These are the volatility values of the variables of interest that we use to compare our results

to. The empirical values of the mean and volatility of the price-dividend ratio are borrowed

from Barberis, Huang and Santos.

The sample moments of the distributions of asset returns for our calibrated economy are

reported in Table 4. Our model is able to generate a substantial average risk premium of

5.5% while maintaining a low risk-free rate. The risk-free rate generated by our model is

a match to its historical counterpart. The risk premium of 5.5% generated by our model

is very close to the historical risk premium of 6% which is widely cited in the literature.

However, the rate of stock return generated by our model (while substantial at 6.9%) falls

short from the chosen historical benchmark by about 2%.

In line with historical data, our model generates a time-varying risk premium (see Figure

3). Stocks are much more volatile than bonds and as a result, they offer higher returns.

However, the average stock and bond volatility predicted by our model exceed the corre-

sponding volatilities observed in historical data. Specifically, our model generates a risk-free

rate of return which is nearly three times more volatile than its historical counterpart. We

conclude that while our model matches the first moments of the empirical distributions of

asset returns closely, it overstates the volatility of the risk free rate.

Our model also matches quite closely the mean and volatility of the price-dividend ratio.

It is an important result as the representative agent model of Barberis, Huang, and San-

tos fails to match the volatility of the price-dividend ratio. For example, their model with

b0 = 0.7 and k = 3 (the same parameters that we choose) generates an equity premium of

1.3% with a standard deviation of 17.39%, and a mean price-dividend ratio of 29.8 with a
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standard deviation of 2.9. While our model matches the mean of the price-dividend ratio

predicted by the model of Barberis, Huang, and Santos, we are also able to account for its

volatility. Thus, our result suggests that allowing for agent heterogeneity and not imposing

restrictions on the price-dividend ratio provide a better match to the data.

One of the implications of the complete market representative agent model is that in

equilibrium, individual consumption is perfectly correlated with aggregate income. Our re-

sults suggest that the optimal consumption is less than perfectly correlated with aggregate

income for both types of agents and therefore, the optimal consumption allocation in our

model departs from the one predicted by a complete market model. The consumption of

Type B agents is more strongly correlated with aggregate income than the consumption of

Type A agents. This is due to the fact that the aggregate income is a weighted sum of the

income processes of the two types of agents and the aggregate dividend. Even though Type

B agents represent only 35% of the population, their income accounts for 56% of aggregate

income. As suggested by microeconomic data, consumption of both types of agents is more

strongly correlated with their own income than with aggregate income.

The consumption processes for the two agents for 1,000 periods are depicted on Figure

4. The consumption of Type B agent has higher mean and volatility than the consumption

of Type A agent. The result is not surprising as Type B agent has higher average income

and higher income volatility as well (see Figure 5). Furthermore, prior gains and losses on

the stock market are an additional source of consumption volatility for Type B agent.

The consumption of Type B agent is negatively correlated with z (correlation coefficient

of -0.41) implying that consumption tends to be high when the investor has had prior gains

in the stock market (see Figure 6). In fact, prior gains and losses affect the consumption of

Type A agent as well through general equilibrium effects. The equilibrium distribution of

z is depicted on Figure 7. R̄ is set equal to 1.03 to ensure that in equilibrium, the median

value of z is 1, i.e. half of the time Agent B has losses and half of the time he has gains.

z appears to be normally distributed. It is quite volatile with a standard deviation of 0.24.

The distribution of z is consistent with the one obtained by Barberis, Huang and Santos.
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Consistent with historical data, our model also predicts a low correlation between the

individual consumption processes and the real rate of return on stocks. The consumption of

non-stockholders is more highly correlated over time with stock returns than the consump-

tion of stockholders. While this result may appear counterintuitive, it is not immediately

clear what drives it. One possibility is that the result is driven by the different income

processes. Another possibility is that it is driven by the preference heterogeneity. While

for a Type A agent the source of risk is the correlation of his consumption process with the

rate of return on risky assets, a Type B agent has a second source of risk as well, namely

fluctuations in his financial wealth. Thus, the consumption process of a Type B agent is

sensitive not only to fluctuations in the rate of return on risky assets but to changes in his

financial wealth as well as prior losses and gains.

Agents can trade on the bond and/or stock market to smooth their consumption. The

volume of trading in stocks and bonds is high as Figures 8, 9, 10, and 11 show. Through

trading, both agents achieve smoother consumption than their individual income processes.

The standard deviation of Agent A’s consumption is 0.105 while the standard deviation of

his individual income is 0.136. The standard deviation Type B’s consumption is 0.28 while

his income volatility is 0.32.

As expected, zt and Rt in our data have a high negative correlation (correlation coefficient

of -0.56). In the presence of prior losses, higher expected rates of return on the risky asset

are necessary to induce a Type B agent to invest in the stock market.

The bond holdings and the bond constraints for Type A and B agents are depicted in

Figures 8 and 9. The bond constraint is weak in the sense that it is rarely binding for both

types of agents. On average, Type A agent is a lender and Type B agent is a borrower. The

stock market is more volatile than the bond market as Figures 10 and 11 show. While Type

B agents (stockholders) represent only 35% of the population, they hold about 50% of the

stocks in the economy.

Figure 12 shows the income, bond and stock holdings of Type A agent for 200 peri-

ods. Type A agent uses predominantly the bond market to smooth his income. He mainly
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borrows when his income is low and lends when his income is high. In contrast, Type B

agent uses predominantly the stock market to smooth his consumption as Figure 13 shows.

Stock holdings are highly positively correlated with the individual income process of Type

B agents (a correlation coefficient of 0.53) and weekly positively correlated with the indi-

vidual income process of Type A agent (a correlation coefficient of 0.18). The converse is

true for bond holdings: they are highly correlated with the income of non-stockholders (a

correlation of 0.7) and weakly correlated with the income of stockholders (correlation of 0.21).

The stock price is quite volatile as Figure 14 shows. The income and consumption of

Type A agent tend to be high when the stock price is high. However, the stock price is not

as highly correlated with the income and consumption of Type B agent. The reason is that

prior stock market performance affects the decision-making of stockholders. As a result, the

stock price has a high negative correlation with zt (correlation coefficient of -0.77) implying

that Type B agents are less loss averse after prior gains (zt < 1) and thus, require a lower

rate of return to invest in stocks and are willing to pay a higher price.

We are particularly interested in quantifying the effect of the loss aversion term in the

preferences of Type B agent on our results. To do so, we simulate a model (Model A) where

we keep all the properties of the model presented above with one exception: we assume that

both agents have the standard preferences of Type A agent. The results for this simulated

economy are presented below.

3. Heterogenous Agents: Standard Preferences

Table 5 presents our results for a model with heterogeneous agents with identical standard

preferences (Model C). The model generates a risk premium of 4.58% but as in the model

with loss aversion, it fails to approximate the second moment of the empirical distribution

of the risk free rate. Therefore, accounting for loss aversion increases the risk premium by

about 17%. In addition to matching the first moments of the distributions of asset returns

better, the introduction of loss aversion in the preferences of Type B agent improves the

performance of the model in matching the second moments of the distributions as well. A

comparison of the correlation coefficients obtained under the two models shows that the
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introduction of loss aversion has little impact on the co-movements of individual consump-

tion processes with stock returns, individual incomes and the aggregate income. However,

it appears that the loss aversion property in the utility function of a Type B agent leads to

a decrease in the co-movements of consumption and the risky asset return.

VI Robustness

1. The Significance of the Prospect Utility Term in Type B Agent

Preferences

On average, the share of the loss aversion term in the utility function of Type B agent

in our model is 0.31. Therefore, it is of interest to explore the implications of changing the

weight of the utility from gains and losses in the overall utility function. Table 6 presents

the sensitivity of our results to changes in b0, the term which controls for the importance of

prior stock market outcomes in the utility function. Our results show that the performance

of our model in terms of its ability to match the first moments of the empirical distributions

of asset returns increases with the increase in b0. When b0 = 1, the model generates a risk

premium of about 7% in real terms. This represents a 50-percent increase in the risk pre-

mium compared to a model without loss aversion. It is also notable that this increase in the

equity premium is due to both a decrease in the risk-free rate and an increase in the return

on the risky asset. When b0 = 0.6, on average the loss aversion term weighs for 27% of the

total utility of Type B agent while when b0 = 1, the weight of the loss aversion term in-

creases to 40.4%. This result indicates that accounting for loss aversion (and more precisely,

for loss aversion and prior stock market performance) in preferences improves significantly

the performance of the model and enables us to match closely the empirical distributions of

asset returns.

2. Investor’s Memory

Barberis, Huang, and Santos argue that loss aversion by itself is not able to account for

the equity premium puzzle. Our results presented in Table 7 support their argument that

tracking prior gains and losses is instrumental in accounting for the empirical value of the

average risk premium. The risk premium is increasing in η implying that the longer the
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investor’s memory, the higher the equity premium generated by our model.

3. Borrowing Constraints

We test our results for robustness to the specification of the borrowing constraints. Table

8 shows the averages for the variables of interest for different specifications of the budget

constraint. Our results show that tightening the budget constraint increases the equity pre-

mium generated by our model as the risk-sharing opportunities decrease. This is true even

though the borrowing constraint is rarely binding in our benchmark model (in less than 5%

of the cases for both agents). The return on bonds decreases when the borrowing constraint

is more restrictive.

Tightening the budget constraint decreases the ability of individuals to smooth idiosyn-

cratic shocks through trading in financial markets. As a result, when the borrowing con-

straints are tighter, the correlation of agent’s consumption with their individual incomes

increases.

VII Conclusion

We have calibrated a general equilibrium model with heterogeneous agents, incomplete mar-

kets, and portfolio constraints. While Type A agents are non-stockholders and have the

standard preferences used in macroeconomics, Type B agents are stockholders who explic-

itly take into consideration prior stock market performance when making consumption and

savings decisions. In equilibrium, consumers hold different portfolios and use both the stock

and bond markets for consumptions smoothing. Our results suggest that prior investment

performance has a significant impact on the decision-making of Type B agents. Market clear-

ing conditions imply that prior gains and losses in the stock market have spillover effects on

the decision-making of Type A agents as well.

Our model generates a high average equity premium of about 5.5% while the risk-free

rate is kept low at 1.5%. In line with historical data, the individual consumption has low
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correlation with stock returns. However, our model does not match as well the second mo-

ments of the asset return distributions and particularly, the volatility of the risk-free rate.

This is a feature that our model shares with consumption-based capital asset pricing models.
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Appendix: The Solution Algorithm

As our model does not have an analytical solution, we use the parameterized expecta-

tions algorithm (PEA) developed by Marcet (1988) and den Haan and Marcet (1990, 1994)

to solve numerically for the stationary distribution of the endogenous variables in our model.

There are several advantages of using the algorithm for solving our model: (1) The algorithm

performs well when the state space is large and there are a number of stochastic shocks in the

conditional expectations as its wide use in a variety of economic environments has shown; (2)

Theoretically, we are still lacking understanding on the existence, uniqueness, and properties

of equilibrium when markets are incomplete. The PEA enables us to solve the model based

on the Euler equations even though we may not know theoretically the properties of the

solution. The flip side of the coin though, is that the PEA can provide an arbitrarily close

approximation to models with a unique stationary and ergodic distribution but it does not

guarantee that the obtained solution is a global maximum. This can be a problem in models

with multiple equilibria.

In what follows we first briefly describe the algorithm and then we discuss its application

to our model. For a detailed discussion of the algorithm the reader should refer to Marcet;

den Haan and Marcet; and Marcet and Lorenzoni (1998). Marcet and Singleton discuss

the application of the algorithm to a heterogenous agent, incomplete markets model. Our

discussion below borrows from these sources.

The equilibrium in dynamic general equilibrium models with uncertainty is usually de-

scribed by a set of Euler equations, budget constraints and equilibrium conditions. Let xt

be a vector of n endogenous non-state variables, yt a vector of m endogenous state variables,

and ut a vector of s exogenous processes that follow a first-order Markov process. For each

t the equilibrium relations can be summarized in the following system:

0 = g(Et{φ(xt+1, yt+1)}, xt, yt, xt−1, yt−1, ut) (30)

where g : Rp×Rn×Rm×Rn×Rm×Rs −→ Rq and φ : Rn+m −→ Rp are known functions

and Et denotes the conditional expectations operator. The PEA considers solutions such

that

E{φ(xt+1, yt+1)|ut, xt−1, yt−1, ut−1, xt−2, yt−2, . . .} = E{φ(xt+1, yt+1)|yt−1, ut} (31)
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where yt is a finite-dimensional vector. The PEA computes a recursive solution to (30)

where the conditional expectation is given by a time-invariant function Υ such that

Υ(yt−1, ut) = Et{φ(xt+1, yt+1)} = E{φ(xt+1, yt+1)|yt−1, ut} (32)

The PEA consists of finding an approximation to Υ by finding ξ and a flexible function

ψt(ξ; yt−1, ut) : Rm+s −→ Rp such that for all t

0 = g(ψt(ξ; yt−1(ξ), ut), xt(ξ), yt(ξ), xt−1(ξ), yt−1(ξ), ut) (33)

where ξ ∈ Rw×p denotes a vector of parameters. The function is such that as w −→ ∞

we can approximate Et{φ(·)} and therefore, Υ(yt−1, ut) arbitrarily well. For example, we

can choose a polynomial function for ψt(ξ; ·) as it can approximate any function when the

order of the polynomial increases. The algorithm entails 4 different steps:

1. A major assumption is that the system g in (30) is invertible with respect to its second

and third arguments. Thus, the first step is to ensure that the system in (30) is

invertible with respect to xt and yt, so that the endogenous variables can be uniquely

determined from (30). Choose starting values for the endogenous state variables y0

and exogenous processes u0. Draw a series {ut}
T
t=1 from the specified distribution of u

with T sufficiently large.

2. Specify the initial values of ξ. For these values and the realizations of u drawn in

the previous step, substitute ψt(ξ; ·) for the conditional expectations in (30). Use (33)

to compute recursively the law of motion for the endogenous variables [xt(ξ), yt(ξ)] =

f(ξ; yt−1(ξ), ut) and the series {xt(ξ), yt(ξ)}
T
t=1. A necessary condition for the imple-

mentation of the algorithm is to choose ξ in such a way that {xt(ξ), yt(ξ)}
T
t=1 is an

ergodic process.

3. Find the mapping G(ξ) : Rw×p −→ Rw×p such that

G(ξ) = arg min
ξ∈Rw×p

1

T

T
∑

t=0

‖φ(xt+1(ξ), yt+1(ξ)) − ψt(ξ
′; yt−1(ξ), ut)‖

2 (34)

where ξ′ is the new set of parameters that minimize the difference between the esti-

mated expectations and their realizations. Typically, given ξi a non-linear least squares

regression (NLS) is used to compute ξi+1 for i = 1, 2, ... (for more information on NLS

please see Pindyck and Rubinfeld (1981, sec. 9.4.1).
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4. Iterate until

ξf = G(ξf) (35)

by repeating steps 2 and 3. In the literature, the following iterative scheme is used to

update ξ until a fixed point ξf is found:

ξi+1 = (1 − τ)ξi + τG(ξi) for i = 1, 2, ... (36)

The approximate solution at the fixed point is given by a series for the endogenous

variables {xt(ξf), yt(ξf)}
T
t=1, a law of motion for the endogenous variables, f(ξf ; ·),

and an approximation to Υ(·) given by ψt(ξf ; ·). The algorithm ensures that ψt(ξf ; ·)

is the best predictor of Et{φ(xt+1, yt+1)} and thus, consistent with the rationality

assumption, if agents use ψt(ξf ; ·) to predict Et{φ(·)} on average, they do not make

systematic errors.
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Table 1: Parameters of the first-order autoregressive models for the exogenous variables;
standard errors are shown in parenthesis

Dependent c ln yA
t−1 ln yB

t−1 ln dt−1

ln yA
t 4.276 0.521

(1.377) (0.154)
ln yB

t 3.492 0.644
(1.307) (0.134)

ln dt 1.028 0.789
(0.309) (0.062)

Table 2: Parameter values

Parameter Value

ρ 0.96
γ 2
θ 0.65
b0 0.7
k 3
λ 2.25
η 0.9
h -1/3
m 0

Table 3: Moments of Asset Returns and Consumption Implied by a Representative Agent
Model

Sample Moments Data Model A Model B
Bond return

Mean 0.0141 0.0233 0.0208
Standard deviation 0.04 0.1198 0.1116

Stock return
Mean 0.0898 0.0716 0.0784
Standard deviation 0.2 0.2594 0.2862

Equity premium 0.0758 0.0484 0.0577
Correlation of consumption with stock returns 0.4213 0.4153
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Table 4: Sample Moments of Asset Returns and Consumption Implied by the Heterogeneous
Agent Model

Sample Moments Data∗ Model

Bond return
Mean 0.0141 0.0142
Standard deviation 0.04 0.117

Stock return
Mean 0.0898 0.0691
Standard deviation 0.2 0.272

Equity premium
Mean 0.0758 0.0549
Standard deviation 0.2413

Price-dividend ratio
Mean 25.5 29.54
Standard deviation 7.1 9.03

Average loss aversion
Correlation of Agent A’s consumption with stock returns 0.39
Correlation of Agent B’s consumption with stock returns 0.32
Correlation of Agent A’s consumption with aggregate income 0.80
Correlation of Agent B’s consumption with aggregate income 0.91
Correlation of Agent A’s consumption with own income 0.87
Correlation of Agent B’s consumption with own income 0.92

∗ Source: Dividend-price ratio data are taken from Barberis, Huang and Santos (2001). All other
statistics are from Mehra and Prescott (2003)
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Table 5: Sample Moments of Asset Returns and Consumption Implied by a Model Without
Loss Aversion (Model C)

Sample Moments Data Model

Bond return
Mean 0.0141 0.0158
Standard deviation 0.04 0.118

Stock return
Mean 0.0898 0.0615
Standard deviation 0.2 0.2582

Equity premium 0.0758 0.0458
Price-dividend ratio

Mean 25.5 34.33
Standard deviation 7.1 9.95

Correlation of Agent A’s consumption with stock returns 0.41
Correlation of Agent B’s consumption with stock returns 0.34
Correlation of Agent A’s consumption with aggregate income 0.81
Correlation of Agent B’s consumption with aggregate income 0.91
Correlation of Agent A’s consumption with own income 0.87
Correlation of Agent B’s consumption with own income 0.92
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Table 6: Robustness: b0

Sample Moments Data b0 = 0.6 b0 = 0.8 b0 = 0.9 b0 = 1
Bond return

Mean 0.0141 0.0145 0.0146 0.014 0.0139
Standard deviation 0.04 0.117 0.1168 0.1163 0.1162

Stock return
Mean 0.0898 0.0684 0.0695 0.0699 0.0703
Standard deviation 0.2 0.27 0.2736 0.2752 0.2766

Equity premium
Mean 0.0758 0.054 0.0553 0.0559 0.0564
Standard deviation 0.2 0.2396 0.2429 0.2443 0.2456

Price-dividend ratio
Mean 25.5 30.23 30.09 30.03 29.98
Standard deviation 7.1 9.05 9.07 9.09 9.11

Average loss aversion 2.45 2.43 2.41 2.41
ρCA,R

∗ 0.39 0.39 0.39 0.39
ρCB ,R

∗ 0.32 0.32 0.32 0.32
ρCA,y

∗ 0.80 0.80 0.80 0.80
ρCB ,y

∗ 0.91 0.91 0.91 0.91
ρCA,yA

∗ 0.88 0.88 0.88 0.88
ρCB ,yB

∗ 0.92 0.92 0.92 0.92

∗ ρ is the correlation coefficient of the respective variables
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Table 7: Robustness: η

Sample Moments Data η = 0.5 η = 0.7 η = 0.8
Bond return

Mean 0.0141 0.013 0.0141 0.0145
Standard deviation 0.04 0.1165 0.1172 0.1173

Stock return
Mean 0.0898 0.0657 0.0671 0.0679
Standard deviation 0.2 0.2601 0.2638 0.2676

Equity premium
Mean 0.0758 0.0527 0.0529 0.0534
Standard deviation 0.2 0.2313 0.2337 0.2371

Price-dividend ratio
Mean 25.5 30.78 30.17 30.16
Standard deviation 7.1 9.09 8.82 8.89

Average loss aversion 2.26 2.31 2.36
ρCA,R

∗ 0.4 0.39 0.39
ρCB ,R

∗ 0.32 0.32 0.32
ρCA,y

∗ 0.80 0.81 0.80
ρCB ,y

∗ 0.91 0.91 0.91
ρCA,yA

∗ 0.88 0.88 0.88
ρCB ,yB

∗ 0.93 0.92 0.92

∗ ρ is the correlation coefficient of the respective variables
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Table 8: Robustness: Borrowing constraint

Sample Moments Data h = 0.15 h = 0.2 h = 0.25 h = 0.35 h = 0.4
Bond return

Mean 0.0141 0.0113 0.0126 0.0133 0.015 0.0154
Standard deviation 0.04 0.1177 0.1172 0.1169 0.1167 0.1164

Stock return
Mean 0.0898 0.0697 0.0692 0.0688 0.0695 0.0703
Standard deviation 0.2 0.282 0.278 0.2723 0.2718 0.2709

Equity premium
Equity premium 0.0758 0.0584 0.0566 0.0554 0.0545 0.0549

Standard deviation 0.2517 0.2474 0.2417 0.2412 0.24
Price-dividend ratio

Mean 25.5 31.75 31.28 30.39 29.68 28.91
Standard deviation 7.1 9.88 9.58 9.13 8.94 8.74

Average loss aversion 2.47 2.43 2.47 2.43 2.46
ρCA,R

∗ 0.4 0.4 0.39 0.39 0.39
ρCB ,R

∗ 0.31 0.32 0.31 0.33 0.33
ρCA,y

∗ 0.78 0.79 0.79 0.81 0.81
ρCB ,y

∗ 0.9 0.9 0.90 0.91 0.91
ρCA,yA

∗ 0.89 0.89 0.88 0.87 0.87
ρCB ,yB

∗ 0.93 0.93 0.93 0.92 0.92

∗ ρ is the correlation coefficient of the respective variables
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Figure 1: Kahneman and Tversky’s Value Function

−100 −80 −60 −40 −20 0 20 40 60 80 100
−300

−250

−200

−150

−100

−50

0

50

100

Loss or gain, X

U
(X

)

z=1
z < 1
z >1

Figure 2: Utility from gains and losses for different values of zt
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Figure 3: The volatility of excess stock returns for t = 0: 2000
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Figure 4: Consumption for t = 1000:2000
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Figure 9: Bond holdings and bond constraint for 1,000 periods, Type B agent
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Figure 10: Stock and bond holdings for 1,000 periods, Type A agent
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Figure 11: Stock and bond holdings for 1,000 periods, Type B agent
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Figure 12: Income, stock and bond holdings for 200 periods, Type A agent
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Figure 13: Income, stock and bond holdings for 200 periods, Type B agent
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Figure 14: Stock price for 1,000 periods
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