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I. Abstract 

Electricity markets in the United States presently employ an auction mechanism to 

determine the dispatch of power generation units.  In this market design, generators 

submit bid prices to a regulation agency for review, and the regulator conducts an auction 

selection in such a way that satisfies electricity demand.  Most regulators currently use an 

auction selection method that minimizes total offer costs [“bid cost minimization” 

(BCM)] to determine electric dispatch.  However, recent literature has shown that this 

method may not minimize consumer payments, and it has been shown that an alternative 

selection method that directly minimizes total consumer payments [“payment cost 

minimization” (PCM)] may benefit social welfare in the long term.  The objective of this 

project is to further investigate the long term benefit of PCM implementation and 

determine whether it can provide lower costs to consumers.  The two auction selection 

methods are expressed as linear constraint programs and are implemented in an 

optimization software package.  Methodology for game theoretic bidding simulation is 

developed using EMCAS, a real-time market simulator.  Results of a 30-day simulation 

showed that PCM reduced energy costs for consumers by 12%.  However, this result will 

be cross-checked in the future with two other methods of bid simulation as proposed in 

this paper. 

 

II. Introduction 

The world is presently facing a bitter energy crisis of massive scale.  While the total 

consumption and demand for fossil fuels is rising with the growth in world population, 
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our supply of fossil fuels is quickly dwindling and the price of energy is accordingly 

escalating at an alarming pace.  The United States Department of Energy projects that by 

2012, there will be a shortage of fossil fuels, and that the shortage will have to be made 

up by still “unidentified projects.”  Furthermore, by 2030, the DOE expects that 

approximately half of the energy needs that would normally have been supported by 

fossil fuels will have to be supplied by these unidentified projects [14]. 

This entails that an increase in the efficiency of energy usage will be required if we are to 

meet the consumer demands for electricity.  Power engineers and scientists have 

discussed various options for closing this shortage; such initiatives as investment in 

renewable sources of energy and development of the power transmission grid have been 

developed in the United States and are in effect [5, 12].  However, these are still very new 

technologies and, while they are expected to have a significant effect in the long term, 

they may not be enough to satisfy aggregate consumer demands and prevent the 

imminent energy crisis. 

 

Figure 1: The supply of fossil fuels will likely decrease steadily into the near future and a shortage is 
expected to occur. Source: EIA, US Department of Energy [14]. 
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Meanwhile, humankind’s past two centuries of industrial development have caused 

steady and severe harm to the environment.  Unless air pollution is heavily restricted 

throughout the world, constant emissions of carbon dioxide in developed and developing 

nations are expected to raise the global temperature until gradually global warming 

permanently damages coastal civilizations and other regions of the world. 

The power industry is responsible for the vast consumption of fossil fuels and release of 

harmful pollutants to the air [11].  Thus, the development of our electricity infrastructure 

– from power generation and transmission to distribution and consumption – becomes 

ever more critical.  Indeed, United States President Barack Obama highlighted the 

importance of rebuffing the American power grid when in 2009 he called on the 

country’s engineers and bright minds to “build a new smart grid that will save us money, 

protect our power sources from blackout or attack, and deliver clean, alternative forms of 

energy to every corner of our nation” [16]. 

This project seeks to address these issues.  The overall objective of this project is the 

maximization of social welfare.  However, this will be accomplished via two sub-

objectives: (1) the minimization of consumer payments for energy, and (2) the reduction 

of carbon dioxide emissions by power generators.  These two objectives will be tackled 

through investigation and analysis of the auction selection mechanism used by American 

electricity regulators.  
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III. Standard Electricity Market Structure 

In any region, there is a certain demand for electricity.  In Connecticut, this demand is 

approximately 4000 MW in the day-ahead market on a peak load day.  To meet this 

demand, power generators interconnected through high-voltage transmission lines 

produce electricity.  However, the installed capacity in a region generally exceeds the 

demand.  In other words, power generators can produce more energy than is demanded.  

At the aggregate level, Connecticut’s generators may be able to produce up to 6000 MW 

or more.  Thus, regulators face the problem of having to decide which generators should 

be on and which should be off in order to meet real-time energy demand [1]. 

To handle this issue, deregulated electricity markets in the United States use an auction 

mechanism to determine the daily dispatch of generators.  In this scheme, generators that 

produce publicly available energy submit a bid to the regional Independent System 

Operator (ISO) [7].  Connecticut generators, for instance, submit their bids to ISO New 

England for review.  Usually, a generator’s bid consists of its power capacity constraints 

(minimum and maximum generation levels), bid price [$/MW(h)], and startup cost [$].  

Once bids from each of the regional generators are collected, ISO New England conducts 

an auction selection to determine the dispatch of generators so as to meet the system 

demand.  Simultaneously, ISOs must consider the physical constraints of the generators, 

the transmission constraints of the regional power system, and any other constraints.  

Further, a primary objective for ISOs is to minimize the price of energy to consumers. 
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Figure 2: Overview of electricity market operation.  Generators submit their bids to the regional ISO in the 
day-ahead and real-time energy markets, and the subsequent auction is conducted by the ISO.  The auction 
results are analyzed by suppliers for bids for the next day.  Simulation of this market can be used to 
compare the BCM and PCM auction selection methods. 
 

These economic issues make the auction selection process for ISOs critical to the welfare 

of the society.  The outcome of an auction selection directly determines the price of 

electricity [1].  Also, these policy decisions have significant effects on the environment in 

the long run.  Therefore, it is crucial to fully investigate the auction mechanism in 

electricity markets so as to determine which method of selection is the most beneficial for 

society from the perspective of the consumer in the long term. 

Previous studies have compared BCM and PCM [13, 21, 22].  However, this project is 

novel because it compares the two auction selection methods using a continuous, holistic 

bidding method with industry-standard applications to simulate the bidding process and 

auction selection.  Furthermore, in previous studies, generators were restricted to 
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discretized bidding so that they could submit bid prices only at certain levels [22].  This 

discretization is a simplification, as in real markets, generators may set their bids at any 

level on a continuous range within regulated bounds.  In this study, generators will be 

able to bid in this continuous range for profit maximization.  This will be accomplished 

by using a real-time market simulator to be described in V. 

The auction selection methods will also be implemented in a linear constraint 

programming application built for mathematical optimization known as CPLEX.  This 

integration of industry-standard computer applications allows for thorough comparison of 

the two auction selection methods. 

 

IV. BCM and PCM as Constraint Programs 

The advantage of payment cost minimization over bid cost minimization can be seen 

from the mathematical formulation of the two methods.  The objective function for the 

bid cost minimization selection method can be given as 
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Equation 1: Objective function for the bid cost minimization selection method.
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Equation 2: Objective function for the payment cost minimization selection method. 
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where t is the index number of the auction, i is the generator index, Ci is the total cost of 

unit i, Si is the startup cost of unit i, MCP is the market clearing price of the auction, and 

pi is the power generated by unit i.  Constraints of these selection methods generally 

include system demand and any physical constraints of the generating units, including 

minimum up/down times, maximum and minimum capacity, and ramp rates [7, 13]. 

In the objective function for bid cost minimization, total offer costs are minimized.  

However, this does not minimize final consumer payments to the market; instead, it only 

minimizes the total cost of all bid prices submitted to the market by generators.  

Conversely, payment cost minimization directly minimizes final consumer payments by 

considering the system-wide market clearing price (MCP) or transmission-constrained 

locational market price (LMP) in the formulation of its objective function [1, 10, 18].  

The fact that BCM fails to provide an auction selection that results in minimal consumer 

payments in all cases is illustrated below.  System demand and bid data is given in Table 

1 for a four-generator system.  Comparison of Tables 2 and 3 shows that implementation 

of PCM results in lower payment costs than BCM implementation does. 

Generator Min. MW Max. MW $/MW Startup Cost 

Unit 1 Bid 0 50 10 0 

Unit 2 Bid 0 40 15 0 

Unit 3 Bid 0 10 80 0 

Unit 4 Bid 0 50 20 2000 

System Demand: 100 MW 

Single Hour Auction 

 
Table 1: Problem definition with bid data for four-generator auction. 
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The four bids shown in Table 1 contain all four critical elements of a standard bid.  Each 

gives the unit capacity constraints that the physical generator associated with the bid must 

adhere to.  In this example, Units 1 and 2 have very low bid prices ($10/MW and 

$15/MW respectively) and no bid startup cost.  Thus, it is natural that the regulator will 

select them in an auction so as to minimize consumer payments.  Together, these two 

units will be dispatched to produce 90 MW, consisting of the maximum 50MW capacity 

of Unit 1 and the maximum 40MW capacity of Unit 2.  This amount of generation covers 

all of the demand but for the remaining 10MW.  The regulator will have to select either 

Unit 3 or 4 to satisfy this remaining portion of the demand.  The difference between 

BCM and PCM is illustrated in this final portion of the dispatch. 

Bid Cost Minimization Results, MCP = $80 

 Pay as Bid MCP 

Generator MW $/MW Bid Costs Payment Costs 

Unit 1 50 10 500 4000 

Unit 2 40 15 600 3200 

Unit 3 10 80 800 800 

Unit 4 0 20 0 0 

Total Costs 1900 8000 

Table 2: Bid cost minimization results for the bid data of Table 1. 

In Table 2, we see that, following the objective of minimizing total bid (offer) costs, the 

BCM method yields $1900 worth of bid costs and $8000 worth of payment costs.  BCM 

selects Unit 3 to provide the remaining 10MW of demanded electricity, setting the market 

clearing price (MCP) to $80.  In the pay-as-bid settlement scheme, this would minimize 

consumer payments since Unit 4 is not selected so its startup cost is not paid.  Units 1 and 

2 are paid at the rate of their bid price for their generation.  But as the settlement scheme 
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used by most American ISOs is to pay each unit at the rate of the MCP, the high bid price 

of $80 is paid to all generators and covers all 100MW of the demand, so that the total 

payment cost amounts to $80/MW x 100MW = $8000. 

Payment Cost Minimization Results, MCP = $20 

 Pay as Bid MCP 

Generator MW $/MW Bid Costs Payment Costs 

Unit 1 50 10 500 1000 

Unit 2 40 15 600 800 

Unit 3 0 80 0 0 

Unit 4 10 20 2200 2200 

Total Costs 3300 4000 

Table 3: Payment cost minimization results for the bid data of Table 1. 

With the PCM selection method as shown in Table 3, however, payment costs are 

minimized.  Here, the total bid cost is higher than it was in the case of the BCM selection 

method because minimization of total bid cost is not the objective.  Instead, the objective 

is minimization of total consumer payment cost, so under the MCP settlement scheme, 

PCM yields lower total payment costs.  Here, Unit 3 is not selected because it has a very 

high bid price, and the MCP would have been set to $80/MW as it was in the case of the 

BCM auction.  However, here, Unit 4 is selected because it has a low bid price of 

$20/MW.  Although this unit still sets the MCP, the total energy cost is now only 

$20/MW x 100MW = $2000.  Adding the startup cost for Unit 4, we obtain the total 

payment cost amount of $4000.  In this hypothetical example, PCM implementation 

would save half of the consumer’s original payment for energy. 

This example assumes that bids are given.  That is, Table 1 contains the bid data, and 

BCM and PCM are then applied to determine which method provides lower payment 
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costs.  PCM provides lower payment costs than BCM in all examples where bid data is 

given.  But now, we consider the case where generators know that PCM is the selection 

method used by regulators.  Would generators then bid differently, and would PCM 

really provide lower costs in the long term?  This question is addressed in V. 

 

V. Project Methodology 

To determine whether BCM or PCM is more beneficial to consumers in the long term, a 

proper method of simulating the behavior of the generators is required.  The primary goal 

of a generating company is profit maximization.  Generators know their cost structure 

and the regulatory procedures for determination of daily dispatch.  They are also aware 

that there are many other generators present in the market and that they are competing for 

dispatch of electricity [22]. 

Thus, a situation of an economic game arises, where each generator seeks to maximize 

profit by finding the appropriate Nash equilibrium strategy of bidding.  Simulation of this 

behavior is very complex, as each generator must analyze its competitors’ strategies and 

determine its own best course of action.  A software package released by Argonne 

National Laboratory, the Electricity Market Complex Adaptive System (EMCAS), was 

used to simulate this stage of the market [6].  The advantage of using EMCAS is that all 

external factors concerning the market are considered in the simulation, and also that 

generating companies are able to bid at any level.  In previous studies, this was not 

possible; in the study by Zhao et. al., bids were discretized with matrix games to find the 

discrete Nash equilibrium [22].  This can result in the loss of the continuous Nash 
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equilibrium.  With EMCAS, however, this equilibrium strategy is not lost as bidders are 

able to bid at any level.  At the end of this study, though, some questions were raised 

about the bid simulation process used by EMCAS and other methods were used for bid 

simulation to cross-check the results derived with EMCAS. 

A four-generator, four-generating company (GenCo) model was developed in EMCAS as 

shown in Figure 3, and a 30-day simulation was conducted as shown in Figure 2.  For this 

method, one day was simulated in EMCAS, day-ahead bids for the four generators were 

extracted, and auctions for PCM and BCM were executed using the CPLEX 

implementations described later in this section.  Auction results were then used as 

historical data input for the second day in EMCAS, and the second day’s bidding events 

were subsequently determined and extracted for the auction to run in CPLEX.  This cycle 

was repeated for 30 days, and total consumer payments were calculated for the BCM and 

PCM selection methods.  Units Base 1A, 2A, and 4A had no startup cost, while Base 3A 

had a startup cost of $12,000. 

 

Figure 3: EMCAS case study power system topography.  Note that there are four generators at one node 
and no transmission constraints present in the model. 
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A simplification made in this model is the assumption of single-block bidding.  While in 

the New England market, GenCos are able to bid in incremental bid blocks, single bid 

blocks were used in this study to avoid an added layer of complexity.  Furthermore, 

transmission constraints are not considered in this model and uniform MCPs are used as 

opposed to transmission congestion-based LMPs.  Generator startup costs are assumed to 

be fully compensated.  These computational simplifications are consistent with those of 

previous studies of electricity markets [7, 13, 21, 22]. 

To simulate the auction selection conducted by the regulating ISO marked as (1) in 

Figure 2, BCM and PCM were implemented as constraint programs with CPLEX, an 

industry-standard linear optimization package released by IBM.  The key to this step was 

to first formulate the BCM and PCM constraint programs linearly.  Subsequently, these 

linear formulations were implemented with data used from the EMCAS bid simulations.  

For illustration and reference, the specifications for the constraint programs for both 

auction selection methods appear in the appendix. 

 

VI. Simulation Results with EMCAS and CPLEX 

Results from the simulation using EMCAS for bid generation and CPLEX for auction 

selection show that the PCM auction method for bid selection provides lower consumer 

payments than that of BCM.  Results are provided in Tables 4 and 5. 
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Unit ID Capacity (MW) Startup Cost ($) Average Bid Price 
[30-day sim] ($/MW) 

Base 1A 50 0 18.34 

Base 2A 40 0 35.06 

Base 3A 50 0 46.59 

Base 4A 60 12,000 23.53 

Table 4: Example case study, generator characteristics and bid results 

Objective Cost BCM ($) PCM ($) Difference ($) 

Total (First Seven Days) 752,352 536,948 215,404 

Total (All 30 Days) 2,864,344 2,522,565 341,779 

Table 5: Example case study, objective payment results 

While these results seemingly show that the PCM auction mechanism is preferable from 

the perspective of consumers as it yields lower final payments, this is not entirely clear.  

Further inspection of the full data results suggest that, though the BCM-PCM payment 

gap is high early in the early days of the simulation, in the last week, the gap is very 

small or zero.  This result raises some issue with regard to the reality of the bid 

generation method employed by suppliers in EMCAS. 

 

VII. Results Discussion and Future Testing 

Discrete game theoretic approach 

In light of the results from the 30-day simulation with EMCAS for the simulation of bids, 

it is desirable to cross-check the effectiveness of the PCM auction mechanism by using 

other methods of bid generation.  Zhao et. al. have used a game theoretic approach to 
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solve this problem, with the Nash Equilibrium for bidders determined through a matrix 

game [22].  Their simplified model uses two bidders that can bid at three discrete levels.  

Auction selections are executed using the BCM and PCM algorithms for each strategy 

tuple, and Nash Equilibriums are determined using the matrix game concept.  In the case 

that no equilibrium is found from the discrete matrix game, approximate equilibriums are 

sought in a methodical manner.  If any equilibriums are found using this strategy, they 

constitute the optimal bidding strategy for the two suppliers in the game. 

This method will be implemented in MATLAB and CPLEX to cross-check the results 

found from 30-day simulation example case with bid generation provided by EMCAS.  It 

is expected that the findings of Zhao et. al. will be confirmed for the example case of this 

study to support the results of the 30-day simulation case. 

Probabilistic bidding model 

An alternative bidding model with four generators that maximizes each generator’s 

expected profit based on historical data will also be implemented for cross-checking the 

results of the 30-day simulation example case.  Inputs for each generator include 

historical demand levels and historical bid prices.  Each generator has access to the other 

generators’ bids from six months before the auction, as well as the historical load levels. 

The expected profit for one generator is calculated using the probability distributions of 

historical bids of the other three generators, the probability distribution of the load level, 

the expected level of power generation dispatched given the other generators’ bids (which 

are cycled-through with a step equal to the bid interval specification), and the expected 
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payout per megawatt (which would either be equivalent to the MCP if selected or 0 if not 

selected).  The expected profit given the first generator’s bid can be expressed as 
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Equation 3: Expected profit function for the first of four generators engaged in a game based on the 
proposed probabilistic model of bidding. 

 

where the 1
, Gindiindq  are the predicted generator bids, )Pr( 1

, indiind qq
Gind

= , are the probabilities 

that the predicted generator bid is equal to the actual generator bid, P is the expected 

generation level given other generators’ bids 1
, Gindiindq  and the first generator’s bid, and 

payout is the expected level of payout per megawatt given the same information (the 

payout per megawatt being the MCP if P > 0 or 0 if P = 0).  This expected profit method 

is a function of the bid of the first generator; all other inputs to this method are static user 

inputs (including capacities, the historical bid and demand data, and number of intervals 

for the demand data, nd, and number of intervals for the historical bid data, nb).  The 

program implementation cycles through the range of possible bids for the first generator 

and determines the bid that will maximize the expected profit depending on the behavior 

of the competing generators. 

 

VIII. Numerical Testing Apparatus 

The selection methods for BCM and PCM auctions were implemented in CPLEX and 

executed on an Intel Xeon E3510 PC at 1.60 GHz with two processors and 8.00 GB of 
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RAM.  The EMCAS market simulation model was constructed and run on an Intel Core 2 

Duo PC at 2.20 GHz with 2.00 GB of RAM.  The same PC was used to implement the 

game theoretic bidding model and probabilistic bidding model in MATLAB. 

 

IX. Conclusions 

The decreasing supply of fossil fuels is expected to cause an energy crisis of immense 

magnitude in the near future.  Increased efficiency in electricity markets can relieve some 

of this pressure.  Implementation of PCM may reduce the price of energy for consumers 

and have some effect on the quantity of harmful emissions.  This project has attempted to 

determine what effect use of the PCM auction selection method has on energy price. 

In review, this study was fruitful in showing that implementation of PCM as an auction 

selection method may reduce consumer payments in the long term.  However, we cannot 

draw any strong conclusions at this time and will seek to cross-check simulation results 

with alternative methods of bid simulation.  Successful implementation of these 

alternative bid simulation methods may support the results found in this study.  

Subsequently, more concrete conclusions may be stated with respect to the 

efficaciousness of employing the PCM auction selection method in electricity markets.  

The discrete game theoretic model presented in section VII can show through 

determination of the discrete Nash equilibrium that PCM may minimize total consumer 

payments in the long term.  The probabilistic model can be used to arrive at the same 

result using historical data associated with the generators. 
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XII. Appendix 

BCM, objective function specification 

dvar int Take[providers][time] in 0..1; 

dvar float Power[providers][time] in 0..maxDemand; 

dvar float MCP[time] in 0..90;  

dvar int u[providers][time] in 0..1; 

 

minimize 

    sum (t in 1..nbHours) (sum (p in providers) suppliers[p][2] * u[p][t]) + // Startup Costs 

    sum (t in 1..nbHours) (sum (p in providers) suppliers[p][1] * Power[p][t]); // Prices every hour 

 

 

 
PCM, objective function specification 

dvar int Take[providers][time] in 0..1; 

dvar float Power[providers][time] in 0..maxDemand; 

dvar float MCP[time] in 0..100; 

dvar int u[providers][time] in 0..1; 

 

minimize 

    sum (t in 1..nbHours) (sum (p in providers) suppliers[p][2] * u[p][t]) + // Startup Costs 

    sum (t in 1..nbHours) (MCP[t] * demand[t]); // Prices every hour 

 

 

Constraint Specification for BCM and PCM 

subject to { 

    sum (p in providers) Take[p][0] == 0; 

    sum (p in providers) Power[p][0] == 0; 

    forall (t in 1..nbHours) 

    { 

        sum (p in providers) Power[p][t] == demand[t]; 

        forall (p in providers) { 

            MCP[t] >= (suppliers[p][1] * Take[p][t]); 

            u[p][t] >= 0; 

            u[p][t] >= (Take[p][t] - Take[p][t-1]); 

            ((Power[p][t] >= suppliers[p][4] && Power[p][t] <= suppliers[p][3]) || Power[p][t] == 0); 

            ((Take[p][t] == 1 && Power[p][t] >= 0.0001) || (Take[p][t] == 0 && Power[p][t] == 0));      

        } 

    } 

} 
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