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|. Abstract

Electricity markets in the United States preserdiyiploy an auction mechanism to
determine the dispatch of power generation uniks.this market design, generators
submit bid prices to a regulation agency for reviand the regulator conducts an auction
selection in such a way that satisfies electridéynand. Most regulators currently use an
auction selection method that minimizes total oftersts [bid cost minimization”
(BCM)] to determine electric dispatch. Howeverceast literature has shown that this
method may not minimize consumer payments, andstideen shown that an alternative
selection method that directly minimizes total agmer payments [‘payment cost
minimization” (PCM)] may benefit social welfare ihe long term. The objective of this
project is to further investigate the long term dfgnof PCM implementation and
determine whether it can provide lower costs toscomers. The two auction selection
methods are expressed as linear constraint programis are implemented in an
optimization software package. Methodology for gatineoretic bidding simulation is
developed using EMCAS, a real-time market simulatBesults of a 30-day simulation
showed that PCM reduced energy costs for consubyet2%. However, this result will
be cross-checked in the future with two other meshof bid simulation as proposed in

this paper.

[l. Introduction

The world is presently facing a bitter energy srisi massive scale. While the total

consumption and demand for fossil fuels is risinthwhe growth in world population,



our supply of fossil fuels is quickly dwindling artde price of energy is accordingly
escalating at an alarming pace. The United Saggartment of Energy projects that by
2012, there will be a shortage of fossil fuels, #mat the shortage will have to be made
up by still “unidentified projects.” Furthermordyy 2030, the DOE expects that
approximately half of the energy needs that woubdnrally have been supported by

fossil fuels will have to be supplied by these emitfied projects [14].

This entails that an increase in the efficienceérgy usage will be required if we are to
meet the consumer demands for electricity. Powwgineers and scientists have
discussed various options for closing this shortesgeh initiatives as investment in
renewable sources of energy and development gbdler transmission grid have been
developed in the United States and are in effect2h However, these are still very new
technologies and, while they are expected to has@rificant effect in the long term,

they may not be enough to satisfy aggregate consuwamands and prevent the
imminent energy crisis.
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Figure 1: The supply of fossil fuels will likely decreasteadily into the near future and a shortage is
expected to occuBource: EIA, US Department of Energy [14].



Meanwhile, humankind’'s past two centuries of indaktdevelopment have caused
steady and severe harm to the environment. Urdgspollution is heavily restricted
throughout the world, constant emissions of canthomide in developed and developing
nations are expected to raise the global temperatatil gradually global warming

permanently damages coastal civilizations and a#gions of the world.

The power industry is responsible for the vast oam#ion of fossil fuels and release of
harmful pollutants to the air [11]. Thus, the depenent of our electricity infrastructure
— from power generation and transmission to distidm and consumption — becomes
ever more critical. Indeed, United States Pregidgswrack Obama highlighted the
importance of rebuffing the American power grid wha 2009 he called on the
country’s engineers and bright minds to “build avreeart grid that will save us money,
protect our power sources from blackout or attackl deliver clean, alternative forms of

energy to every corner of our nation” [16].

This project seeks to address these issues. Témlbwbjective of this project is the
maximization of social welfare. However, this whle accomplished via two sub-
objectives: (1) the minimization of consumer paytsdor energy, and (2) the reduction
of carbon dioxide emissions by power generatorees& two objectives will be tackled
through investigation and analysis of the auctielection mechanism used by American

electricity regulators.



[11. Standard Electricity Market Structure

In any region, there is a certain demand for elgttr In Connecticut, this demand is
approximately 4000 MW in the day-ahead market gmeak load day. To meet this
demand, power generators interconnected througim-yoiage transmission lines
produce electricity. However, the installed capaan a region generally exceeds the
demand. In other words, power generators can peodwre energy than is demanded.
At the aggregate level, Connecticut's generatorg beaable to produce up to 6000 MW
or more. Thus, regulators face the problem of igato decide which generators should

be on and which should be off in order to meet-tiead energy demand [1].

To handle this issue, deregulated electricity marke the United States use an auction
mechanism to determine the daily dispatch of ge¢aesa In this scheme, generators that
produce publicly available energy submit a bid e tregional Independent System
Operator (ISO) [7]. Connecticut generators, fatamce, submit their bids to ISO New
England for review. Usually, a generator’s bid giets of its power capacity constraints
(minimum and maximum generation levels), bid pf8&IW(h)], and startup cost [$].
Once bids from each of the regional generatorgaliected, ISO New England conducts
an auction selection to determine the dispatchesfegators so as to meet the system
demand. Simultaneously, ISOs must consider thsipalyconstraints of the generators,
the transmission constraints of the regional posystem, and any other constraints.

Further, a primary objective for ISOs is to minienihe price of energy to consumers.
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Figure 2: Overview of electricity market operation. Gertera submit their bids to the regional 1ISO in the
day-ahead and real-time energy markets, and treequlnt auction is conducted by the 1SO. The @ucti
results are analyzed by suppliers for bids for leet day. Simulation of this market can be used to
compare the BCM and PCM auction selection methods.

These economic issues make the auction selectamegs for ISOs critical to the welfare
of the society. The outcome of an auction selactioectly determines the price of
electricity [1]. Also, these policy decisions hasignificant effects on the environment in
the long run. Therefore, it is crucial to fullyvestigate the auction mechanism in
electricity markets so as to determine which metbiogelection is the most beneficial for

society from the perspective of the consumer indhg term.

Previous studies have compared BCM and PCM [1322]L, However, this project is
novel because it compares the two auction seleatietihods using a continuous, holistic
bidding method with industry-standard applicati®@ssimulate the bidding process and

auction selection. Furthermore, in previous stsidigenerators were restricted to



discretized bidding so that they could submit bitgs only at certain levels [22]. This
discretization is a simplification, as in real metk generators may set their bids at any
level on a continuous range within regulated bountfs this study, generators will be
able to bid in this continuous range for profit nmization. This will be accomplished

by using a real-time market simulator to be desctiim V.

The auction selection methods will also be impleteénin a linear constraint
programming application built for mathematical omtiation known as CPLEX. This
integration of industry-standard computer applmadi allows for thorough comparison of

the two auction selection methods.

IV.BCM and PCM as Constraint Programs

The advantage of payment cost minimization over dmdt minimization can be seen
from the mathematical formulation of the two methodlhe objective function for the
bid cost minimization selection method can be giasn

mind =Y S{C (p 1))+ S (1)

iy G

Equation 1: Objective function for the bid cost minimizatisalection method.

while that of payment cost minimization is

min J= ii{ MCP(t) p; (t) + S (t)}

{MCP(O)}L{ b (1)} t=1 i=1

Equation 2: Objective function for the payment cost minimiaatselection method.



wheret is the index number of the auctions the generator indeXj; is the total cost of
uniti, S is the startup cost of unitMCP is the market clearing price of the auction, and
pi is the power generated by umit Constraints of these selection methods generally
include system demand and any physical constraintee generating units, including

minimum up/down times, maximum and minimum capaatyd ramp rates [7, 13].

In the objective function for bid cost minimizatiototal offer costs are minimized.

However, this does not minimize final consumer pegta to the market; instead, it only
minimizes the total cost of all bid prices subnuttéo the market by generators.
Conversely, payment cost minimization directly miides final consumer payments by
considering the system-wide market clearing prigkCP) or transmission-constrained
locational market price (LMP) in the formulation t$ objective function [1, 10, 18].

The fact that BCM fails to provide an auction setectthat results in minimal consumer
payments in all cases is illustrated below. Systemand and bid data is given in Table
1 for a four-generator system. Comparison of TaBland 3 shows that implementation

of PCM results in lower payment costs than BCM ienpéntation does.

Generator Min. MW | Max. MW MW Startup Cost
Unit 1 Bid 0 50 10 0
Unit 2 Bid 0 40 15 0
Unit 3 Bid 0 10 80 0
Unit 4 Bid 0 50 20 2000
System Demand: 100 MW

Sngle Hour Auction

Table 1: Problem definition with bid data for four-generagarction.



The four bids shown in Table 1 contain all foutical elements of a standard bid. Each
gives the unit capacity constraints that the platsienerator associated with the bid must
adhere to. In this example, Units 1 and 2 havey Vew bid prices ($10/MW and
$15/MW respectively) and no bid startup cost. Thus natural that the regulator will
select them in an auction so as to minimize consymagments. Together, these two
units will be dispatched to produce 90 MW, conagtof the maximum 50MW capacity
of Unit 1 and the maximum 40MW capacity of Unit 2his amount of generation covers
all of the demand but for the remaining 10MW. Thgulator will have to select either
Unit 3 or 4 to satisfy this remaining portion ofetilemand. The difference between

BCM and PCM is illustrated in this final portion thfe dispatch.

Bid Cost Minimization Results, MCP = $80

Pay as Bid | MCP
Generator MW MW Bid Costs | Payment Costs
Unit 1 50 10 500 4000
Unit 2 40 15 600 3200
Unit 3 10 80 800 800
Unit 4 0 20 0 0
Total Costs 1900 8000

Table 2: Bid cost minimization results for the bid data @ble 1.

In Table 2, we see that, following the objectiven@himizing total bid (offer) costs, the
BCM method yields $1900 worth of bid costs and $8@@rth of payment costs. BCM
selects Unit 3 to provide the remaining 10MW of dached electricity, setting the market
clearing price (MCP) to $80. In the pay-as-bidlsatent scheme, this would minimize
consumer payments since Unit 4 is not selectetsstartup cost is not paid. Units 1 and

2 are paid at the rate of their bid price for tlggneration. But as the settlement scheme



used by most American ISOs is to pay each unheatate of the MCP, the high bid price
of $80 is paid to all generators and covers allM®0 of the demand, so that the total

payment cost amounts to $80/MW x 100MW = $8000.

Payment Cost Minimization Results, MCP = $20

Pay as Bid MCP
Generator MW | MW Bid Costs Payment Costs
Unit 1 50 10 500 1000
Unit 2 40 15 600 800
Unit 3 0 80 0 0
Unit4 10 20 2200 2200
Total Costs 3300 4000

Table 3: Payment cost minimization results for the bid dzt@able 1.

With the PCM selection method as shown in Tableh@yever, payment costs are
minimized. Here, the total bid cost is higher tltaras in the case of the BCM selection
method because minimization of total bid cost isthe objective. Instead, the objective
IS minimization of total consumer payment cost,usder the MCP settlement scheme,
PCM vyields lower total payment costs. Here, Uni$ 8ot selected because it has a very
high bid price, and the MCP would have been s&@MW as it was in the case of the
BCM auction. However, here, Unit 4 is selecteddose it has a low bid price of
$20/MW. Although this unit still sets the MCP, thetal energy cost is now only
$20/MW x 100MW = $2000. Adding the startup cost Unit 4, we obtain the total
payment cost amount of $4000. In this hypotheteemple, PCM implementation

would save half of the consumer’s original paynfenenergy.

This example assumes that bids are given. Thatakle 1 contains the bid data, and

BCM and PCM are then applied to determine whichhoetprovides lower payment
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costs. PCM provides lower payment costs than BE@MIlii examples where bid data is
given. But now, we consider the case where georsr&now that PCM is the selection
method used by regulators. Would generators théndifferently, and would PCM

really provide lower costs in the long term? Tdnuestion is addressed in V.

V. Project M ethodology

To determine whether BCM or PCM is more benefitiatonsumers in the long term, a
proper method of simulating the behavior of theegators is required. The primary goal
of a generating company is profit maximization. n&mtors know their cost structure
and the regulatory procedures for determinatiodaly dispatch. They are also aware
that there are many other generators present iménket and that they are competing for

dispatch of electricity [22].

Thus, a situation of an economic game arises, weach generator seeks to maximize
profit by finding the appropriate Nash equilibriwgtnategy of bidding. Simulation of this
behavior is very complex, as each generator mudiyam its competitors’ strategies and
determine its own best course of action. A sofewpackage released by Argonne
National Laboratory, the Electricity Market Complé&xiaptive System (EMCAS), was
used to simulate this stage of the market [6]. dtheantage of using EMCAS is that all
external factors concerning the market are conslén the simulation, and also that
generating companies are able to bid at any leusl.previous studies, this was not
possible; in the study by Zhao et. al., bids waserdtized with matrix games to find the

discrete Nash equilibrium [22]. This can resultthe loss of the continuous Nash

11



equilibrium. With EMCAS, however, this equilibriustrategy is not lost as bidders are
able to bid at any level. At the end of this stuthough, some gquestions were raised
about the bid simulation process used by EMCAS @thdr methods were used for bid

simulation to cross-check the results derived ERHCAS.

A four-generator, four-generating company (GenCodleh was developed in EMCAS as
shown in Figure 3, and a 30-day simulation was ootedl as shown in Figure 2. For this
method, one day was simulated in EMCAS, day-ahédsl for the four generators were
extracted, and auctions for PCM and BCM were exstutising the CPLEX

implementations described later in this sectionuctlon results were then used as
historical data input for the second day in EMCASd the second day’s bidding events
were subsequently determined and extracted foadlsgon to run in CPLEX. This cycle

was repeated for 30 days, and total consumer pagnaeare calculated for the BCM and
PCM selection methods. Units Base 1A, 2A, and 44 ho startup cost, while Base 3A

had a startup cost of $12,000.

=
SRV

[90.94624 W 67.36323 W

Figure 3: EMCAS case study power system topography. Nudé there are four generators at one node
and no transmission constraints present in the mode
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A simplification made in this model is the assuraptof single-block bidding. While in
the New England market, GenCos are able to bicheremental bid blocks, single bid
blocks were used in this study to avoid an addgdrlaf complexity. Furthermore,
transmission constraints are not considered inrttfadel and uniform MCPs are used as
opposed to transmission congestion-based LMPs.ei@em startup costs are assumed to
be fully compensated. These computational singalifons are consistent with those of

previous studies of electricity markets [7, 13, 22].

To simulate the auction selection conducted by rdgulating 1ISO marked as (1) in
Figure 2, BCM and PCM were implemented as condtqaiograms with CPLEX, an
industry-standard linear optimization package istelaby IBM. The key to this step was
to first formulate the BCM and PCM constraint pramss linearly. Subsequently, these
linear formulations were implemented with data used the EMCAS bid simulations.
For illustration and reference, the specificatidas the constraint programs for both

auction selection methods appear in the appendix.

V1. Simulation Resultswith EMCAS and CPLEX

Results from the simulation using EMCAS for bid gation and CPLEX for auction
selection show that the PCM auction method fordabiction provides lower consumer

payments than that of BCM. Results are providetables 4 and 5.

13



Unit ID Capacity (MW) Startup Cost ($) Average Bid Price
[30-day sim] ($MW)
Base 1A 50 0 18.34
Base 2A 40 0 35.06
Base 3A 50 0 46.59
Base 4A 60 12,000 23.53

Table 4: Example case study, generator characteristics anekults

Objective Cost BCM (%) PCM ($) Difference (%)
Total (First Seven Days) 752,352 536,948 215,404
Total (All 30 Days) 2,864,344 2,522,565 341,779

Table 5: Example case study, objective payment results

While these results seemingly show that the PCMi@uenechanism is preferable from
the perspective of consumers as it yields loweal fpayments, this is not entirely clear.
Further inspection of the full data results sugdbkat, though the BCM-PCM payment
gap is high early in the early days of the simolatiin the last week, the gap is very
small or zero. This result raises some issue wathard to the reality of the bid

generation method employed by suppliers in EMCAS.

VII. Results Discussion and Future Testing

Discrete game theoretic approach

In light of the results from the 30-day simulatiith EMCAS for the simulation of bids,
it is desirable to cross-check the effectivenesthefPCM auction mechanism by using

other methods of bid generation. Zhao et. al. hssed a game theoretic approach to

14



solve this problem, with the Nash Equilibrium fadders determined through a matrix
game [22]. Their simplified model uses two biddérat can bid at three discrete levels.
Auction selections are executed using the BCM a@iMRlgorithms for each strategy
tuple, and Nash Equilibriums are determined udmggrhatrix game concept. In the case
that no equilibrium is found from the discrete magame, approximate equilibriums are
sought in a methodical manner. If any equilibriuane found using this strategy, they

constitute the optimal bidding strategy for the tsuppliers in the game.

This method will be implemented in MATLAB and CPLEX cross-check the results
found from 30-day simulation example case withdmaeration provided by EMCAS. It
is expected that the findings of Zhao et. al. Wélconfirmed for the example case of this

study to support the results of the 30-day simoilatiase.

Probabilistic bidding model

An alternative bidding model with four generatolatt maximizes each generator’s
expected profit based on historical data will d&oimplemented for cross-checking the
results of the 30-day simulation example case. utydor each generator include
historical demand levels and historical bid pric&ach generator has access to the other

generators’ bids from six months before the auctsnwell as the historical load levels.

The expected profit for one generator is calculatsidg the probability distributions of
historical bids of the other three generators,ptabability distribution of the load level,
the expected level of power generation dispatclvehghe other generators’ bids (which

are cycled-through with a step equal to the bidrirdl specification), and the expected

15



payout per megawatt (which would either be equivaie the MCP if selected or O if not

selected). The expected profit given the firstegator’s bid can be expressed as

EP=Y">" 3 S [Pr(e, . =a,) * Pril, . =ay) * Pr(a, . =q.) *Pr(d, =D)]*[F* [ payout]

g2 lg3 lga Ip

Equation 3: Expected profit function for the first of four genators engaged in a game based on the
proposed probabilistic model of bidding.

where theqilm,vieind are the predicted generator bi<ﬂ>3:(qi1m,,isind =g ), are the probabilities

that the predicted generator bid is equal to thaahgenerator bidP is the expected

generation level given other generators’ bq’ﬁ,im and the first generator’s bid, and

payout is the expected level of payout per megawatt gitrensame information (the
payout per megawatt being the MCHPit 0 or O ifP = 0). This expected profit method
is a function of the bid of the first generatot;@her inputs to this method are static user
inputs (including capacities, the historical biddatemand data, and number of intervals
for the demand datayy, and number of intervals for the historical bidajat,). The
program implementation cycles through the rangpasiible bids for the first generator
and determines the bid that will maximize the expe@rofit depending on the behavior

of the competing generators.

VIIIl. Numerical Testing Apparatus

The selection methods for BCM and PCM auctions wemglemented in CPLEX and

executed on an Intel Xeon E3510 PC at 1.60 GHz twth processors and 8.00 GB of

16



RAM. The EMCAS market simulation model was constied and run on an Intel Core 2
Duo PC at 2.20 GHz with 2.00 GB of RAM. The sant& Was used to implement the

game theoretic bidding model and probabilistic mddnodel in MATLAB.

| X. Conclusions

The decreasing supply of fossil fuels is expectedduse an energy crisis of immense
magnitude in the near future. Increased efficienoglectricity markets can relieve some
of this pressure. Implementation of PCM may rediheeprice of energy for consumers
and have some effect on the quantity of harmfulssians. This project has attempted to

determine what effect use of the PCM auction selechethod has on energy price.

In review, this study was fruitful in showing thatplementation of PCM as an auction
selection method may reduce consumer payment®ifotiy term. However, we cannot
draw any strong conclusions at this time and valsto cross-check simulation results
with alternative methods of bid simulation. Sustek implementation of these
alternative bid simulation methods may support tesults found in this study.
Subsequently, more concrete conclusions may beedstatith respect to the
efficaciousness of employing the PCM auction selactnethod in electricity markets.
The discrete game theoretic model presented iniogec?ll can show through
determination of the discrete Nash equilibrium tR&M may minimize total consumer
payments in the long term. The probabilistic mocksh be used to arrive at the same

result using historical data associated with theegators.
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XI11. Appendix

BCM, objective function specification

dvar int Take[providers][time] in 0..1;

dvar float Power[providers][time] in 0..maxDemand,;
dvar float MCP[time] in 0..90;

dvar int u[providers][time] in 0..1;

minimize
sum (t in 1..nbHours) (sum (p in providers) suppliers[p][2] * u[p][t]) + // Startup Costs
sum (t in 1..nbHours) (sum (p in providers) suppliers[p][1] * Power[p][t]); // Prices every hour

PCM, objective function specification

dvar int Take[providers][time] in 0..1;

dvar float Power[providers][time] in 0..maxDemand,;
dvar float MCP[time] in 0..100;

dvar int u[providers][time] in 0..1;

minimize
sum (t in 1..nbHours) (sum (p in providers) suppliers[p][2] * u[p][t]) + // Startup Costs
sum (t in 1..nbHours) (MCP[t] * demand[t]); / Prices every hour

Constraint Specification for BCM and PCM

subject to {
sum (p in providers) Take[p][0] == 0;
sum (p in providers) Power[p][0] == 0;
forall (t in 1..nbHours)
{
sum (p in providers) Power[p][t] == demand|t];
forall (p in providers) {
MCP[t] >= (suppliers[p][1] * Take[p][t]);
u[p][t] >= 0;
u[p][t] >= (Take[p][t] - Take[p][t-1]);
((Power[p][t] >= suppliers[p][4] && Power[p][t] <= suppliers[p][3]) | | Power[p][t] == 0);
((Take[p][t] == 1 && Power[p][t] >=0.0001) | | (Take[p][t] == 0 && Power[p][t] == 0));
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