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INFORMATION & EQUILIBRIUM IN INSURANCE MARKETS 
WITH BIG DATA 

 
PETER SIEGELMAN1 

 
*** 

Asymmetric information makes the behavior of insurance markets 
very difficult to predict. But this Article argues that the increasing use of 
Big Data by insurers will not result in forecasts of loss that are so accurate 
that they eliminate uncertainty, and with it, the possibility of insurance.  
Big Data techniques might lead to a “flip” in informational asymmetry, 
resulting in a situation in which insurers know more about their customers 
than the latter know about themselves.  But the effects of such a 
development could actually be benign.  Finally, the Article considers the 
potential for Big (or at least, More) Data to create new markets for 
spreading risks that are currently uninsurable. 

*** 
 
I. INTRODUCTION 
 

Big Data is a hot topic these days, at least in the nerdosphere.2 
Pundits proclaim it to be “revolutionary,”3 “transformative,”4 and “a tidal 
wave.”5 Some have even suggested that the further use of Big Data will 
overturn our outmoded reliance on primitive notions such as “causation”6 

                                                                                                                           
1 I thank Peter Kochenburger, Rick Swedloff, and the editors of the CILJ for 

helpful comments, and Pat McCoy and Francois Ewald for initiating the 
conversation. 

2 VIKTOR MAYER-SCHÖNBERGER & KENNETH CUKIER, BIG DATA: A 
REVOLUTION THAT WILL TRANSFORM HOW WE LIVE, WORK, AND THINK (2013) 
(sitting at number 9,501 on Amazon.com’s sales rankings as of October 13, 2014: 
not bad for a book with “data” in its title). 

3 Id. at 7. 
4 ERIC SCHMIDT & JARED COHEN, THE NEW DIGITAL AGE: TRANSFORMING 

NATIONS, BUSINESSES, AND OUR LIVES (2014). 
5 BILL FRANKS, TAMING THE BIG DATA TIDAL WAVE: FINDING 

OPPORTUNITIES IN HUGE DATA STREAMS WITH ADVANCED ANALYTICS 5 (2012). 
6 “Petabytes [lots of data] allow us to say: ‘Correlation is enough.’” Chris 

Anderson, The End of Theory: The Data Deluge Makes the Scientific Method 
Obsolete, WIRED MAG. (June 23, 2008), http://archive.wired.com/science/ 
discoveries/magazine/16-07/pb_theory; see also Correlation, XKCD, http://xkcd. 
com/552/ (last visited Nov. 21, 2014). 
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and “privacy.”7 

This Article has a much narrower focus, however: I want to reflect 
critically on the role of Big Data in insurance.  In particular, I ask what 
economic theory has to say about whether Big Data will lead to new 
equilibria in insurance markets.  I focus on three questions: Might Big Data 
lead to the collapse of insurance altogether by permitting predictions of 
such accuracy that risk and uncertainty are effectively eliminated?  Even if 
it doesn’t have such drastic effects, might it alter insurance market 
equilibria, by reducing the scope for risk-spreading?  And might it be used 
to create new types of insurance that are not currently practical given 
current informational constraints?  At the risk of destroying the narrative 
suspense, my proposed answers are, respectively: “no,” “probably not,” and 
“possibly.” 

So, what is Big Data, anyway? Big Data is not a precise term, and 
several definitions are currently competing for supremacy.  For our 
purposes, it suffices to think of Big Data as (i) very large collections of 
observations, particularly those that also include very large numbers of 
variables;8 and (ii) associated statistical techniques for using these ultra-
large datasets to make predictions or forecasts. 
 

II. PROLOGUE: INSURANCE MARKETS ARE WEIRD 
 

A classic method of economic analysis is known as “Comparative 
Statics:” assume a (small) change to some variable, and then compare 
equilibria before and after this change has worked its way through the 
model or system.  Economists have come to realize, however, that this 
method tends to break down in markets where there are significant 
informational asymmetries, that is, where one party to a transaction knows 
more than their counterpart does.9 Insurance markets are the locus classicus 
                                                                                                                           

7 Claire Porter, Little Privacy in the Age of Big Data, GUARDIAN (June 20, 
2014), http://www.theguardian.com/technology/2014/jun/20/little-privacy-in-the-
age-of-big-data (“In the era of big data, the battle for privacy has already been 
fought and lost . . . .”). 

8 According to Google chief economist Hal Varian, “Google has seen 30 
trillion URLs, crawls over 20 billion of those a day, and answers 100 billion search 
queries a month. Analyzing even one day’s worth of data of this size is virtually 
impossible with conventional techniques.” Hal R. Varian, Big Data: New Tricks 
for Econometrics, 28 J. ECON. PERSP. 3, 4 (2014). 

9 See generally George A. Akerlof, The Market For "Lemons”: Quality 
Uncertainty and the Market Mechanism, 84 Q. J. ECON. 488 (1970) (using the used 
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of informational asymmetries, in the form of adverse selection and moral 
hazard,10 and this in turn implies that our ordinary intuitions about how 
markets work may fail decisively when it comes to insurance markets. 

For example, we would predict that in ordinary markets, sellers 
would view demand for their product as a good thing, and indeed would be 
delighted to sell to anyone who wanted to buy from them: picture Lucy at 
her lemonade stand when a customer arrives and says “I’ll buy all the 
lemonade you have to sell at 25¢ a glass.”  But insurance is different.  How 
will Irene react when someone rushes up to her insurance stand and says 
“I’ll buy all the life insurance you’ll sell me at 25¢ per $125 of coverage?”  
The explanation for the difference is, of course, the (fear of an) 
informational asymmetry that Irene faces but Lucy does not.  The life 
insurance customer who desperately wants lots of coverage may well know 
something about his own prospects for longevity that her potential insurer 
does not know, and this information is obviously highly relevant to the 
insurer’s profitability from transacting with this customer.11 

It is by now well-known that informational asymmetries have a 
profound effect on the institutions of insurance markets, from the language 
of contracts to the scope and function of regulation.  My point is that in the 
presence of such asymmetries, insurance market equilibria are highly 
sensitive to small and seemingly trivial details of how a market operates. 
                                                                                                                           
car market as an example to discuss the relationship between quality and 
uncertainty and the problem that relationship poses for the theory of market 
equilibrium); Kenneth J. Arrow, Uncertainty and the Welfare Economics of 
Medical Care, 53 AMER. ECON. REV. 941 (1963) (explaining that the special 
economic problems of the medical care industry are adaptations to the existence of 
uncertainty in the incidence of disease and the efficacy of treatment); Michael 
Rothschild & Joseph Stiglitz, Equilibrium in Competitive Insurance Markets: An 
Essay on the Economics of Imperfect Information, 90 Q. J. ECON. 629 (1976) 
(analyzing competitive insurance markets in which the characteristics of the 
insured are not fully known to the insurer). 

10 Both concepts are central to virtually all aspects of modern economics; both 
began as terms of art in insurance. Adverse selection can loosely be defined as the 
tendency of the worst risks to find insurance price for an average risk to be 
especially attractive. Moral hazard (again, loosely) occurs whenever the presence 
of insurance causes insureds to take less care to prevent risks than they would 
exercise in its absence. 

11 See USLife Credit Life Ins. Co. v. McAfee, 630 P.2d 450 (Wash. Ct. App. 
1981) (discussing how an insurance professional took out numerous credit life 
insurance policies that required no medical underwriting, on his wife, who he knew 
was suffering from terminal cancer). 
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Under some circumstances, there may be no equilibrium possible at all;12 
under slightly different circumstances, only “separating” equilibria (those 
in which each risk-type pays a premium that fully reflects its riskiness, with 
no cross-subsidization between types); under others, “pooling” (cross-
subsidization from low-risk to high-risk insureds) is sustainable in 
equilibrium.13 Moreover, insurance supply and demand are not actually 
independent, as they are in ordinary markets.14 Thus, a mandate to buy 
insurance, rather than simply increasing demand and causing prices to rise, 
may actually lower costs and result in a fall in prices; it could even obviate 
the requirement to purchase insurance in the first instance.15 

The situation gets even more complicated and unpredictable if we 
recognize that consumers are not perfectly rational, which the evidence 
overwhelmingly demonstrates is the case.16 Consumers often buy 
“insurance” products, such as extended warranties, that no rational person 
should want;17 conversely, they frequently shun coverage for losses due to 
floods or earthquakes that a rational person would want to insure against.18 

                                                                                                                           
12 Rothschild & Stiglitz, supra note 9, at 634–37.  
13 Id.; see also Georges Dionne & Neil Doherty, Adverse Selection in 

Insurance Markets: A Selective Survey, in CONTRIBUTIONS TO INSURANCE 
ECONOMICS 116 (Georges Dionne ed., 1992). 

14 For a cogent explanation, see Liran Einav & Amy Finkelstein, Selection in 
Insurance Markets: Theory and Empirics in Pictures, 25 J. ECON. PERSP. 115, 118 
(2011). The basic idea is that unlike a purchaser of, say, broccoli, the purchaser of 
insurance contributes to both sides of the market. A low-risk purchaser lowers the 
aggregate risk of the pool of insureds as a whole, and thus reduces the cost of 
supplying insurance to everyone. Demand and cost are not independent. 

15 Raphael Boleslavsky & Sergio J. Campos, Does the Individual Mandate 
Coerce?, 68 U. MIAMI L. REV. 1, 4-8 (2012). 

16 See generally HOWARD C. KUNREUTHER ET AL., INSURANCE AND 
BEHAVIORAL ECONOMICS: IMPROVING DECISIONS IN THE MOST MISUNDERSTOOD 
INDUSTRY (2013) (discussing examples of “anomalous” behavior by consumers, 
insurance companies, investors, and regulators). 

17 For a detailed explanation and policy recommendations, see Tom Baker & 
Peter Siegelman, “You Want Insurance With That?” Using Behavioral Economics 
to Protect Consumers from Add-On Insurance Products, 20 CONN. INS. L. J. 1 
(2013). 

18 Tom Baker & Peter Siegelman, Behavioral Economics and Insurance Law: 
The Importance of Equilibrium Analysis, in OXFORD HANDBOOK OF BEHAVIORAL 
ECONOMICS AND THE LAW (Doron Teichman & Eyal Zamir eds., 2014); David M. 
Cutler & Richard Zeckhauser, Extending the Theory to Meet the Practice of 
Insurance, in BROOKINGS-WHARTON PAPERS ON FINANCIAL SERVICES (2004); 
 



2014  INFORMATION & EQUILIBRIUM 321 
 
And it turns out that correcting for some kinds of “mistakes” made by 
insufficiently-rational consumers may actually exacerbate informational 
asymmetries and reduce welfare for everyone.19 

The moral of all this is simple: beware of anyone (including me) 
who confidently tells you anything about how insurance markets behave, 
including how they will react to the increased use by insurers of Big Data. 
There is little basis in theory or empirical evidence for any confident 
forecast about how Big Data will shape insurance markets.  What follows, 
then, is more by way of cautious speculation than robust prediction. 
 
III. COULD BIG DATA VANQUISH UNCERTAINTY (AND 

DESTROY INSURANCE)? 
 

A. TMI AND THE ABSENCE OF INSURANCE 
 

Economists have long understood that uncertainty is a prerequisite 
for insurance.  Table 1 provides a simple numerical example.  A village 
consists of 100 identical houses, each of which is worth $200,000, and 
which constitutes each homeowner’s total wealth.  There is a 25% chance 
that any individual house will be completely destroyed by the next 
earthquake.  Each homeowner has the same utility function, Ui = 
U(Wealth) = ln(Wealth), which implies that they are risk-averse. 

Will the villagers demand insurance, assuming it can be purchased 
at the actuarially-fair premium (without any load)?  To see that the answer 
is yes, we can compare each villager’s expected utility without insurance to 
her utility with it.  Without insurance, a homeowner’s expected utility is 

 
Pr(Loss)H(Utility|Loss) + Pr(No Loss)H(Utility|No Loss) = 

0.25Hln(Wealth|Loss) + 0.75Hln(Wealth|No Loss) =  

0.25Hln(0) + 0.75Hln(200,000) = 8.58.20 

                                                                                                                           
KUNREUTHER ET AL., supra note 16, at 115.  

19 See, e.g., Benjamin R. Handel, Adverse Selection and Inertia in Health 
Insurance Markets:  When Nudging Hurts, 103 AMER. ECON. REV. 2643 (2013); 
Alvaro Sandroni & Francesco Squintani, Overconfidence, Insurance, and 
Paternalism, 97 AMER. ECON. REV. 1994, 1994 (2007); Justin Sydnor, 
(Over)insuring Modest Risks, 2 AMER. ECON. J.: APPLIED ECON. 177, 198 (2010). 

20 Since ln(0) is undefined, we innocuously substitute 0.001 for (Wealth|Loss). 
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 100 times this amount is the village’s aggregate utility when nobody 
buys insurance. 

Suppose we now introduce the possibility of insurance, sold with 
no load.  The actuarially fair premium is equal to the expected loss, which 
is just 0.25H200,000 = $50,000.  Thus, anyone who buys insurance pays a 
premium of $50,000 and has guaranteed wealth of (200,000 - 50,000 = ) 
$150,000.21 The utility of $150,000 held with certainty is just ln(150,000) = 
11.92.  Since this is larger than the expected utility of doing without 
insurance, everyone will want to purchase full coverage, and village 
aggregate utility is thus 1,192, which is higher than before. 

 
  

                                                                                                                           
21 If the earthquake does not occur, the premium is paid but there are no 

losses, so wealth is 200,000 - 50,000 = $150,000. If the earthquake does occur, the 
homeowner pays a premium of 50,000, loses 200,000, and then receives a check 
for the full amount of the loss, again leaving her with $150,000 net. 
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Table 1: Insurance vs Non-Insurance, 
No Individuation (homogenous risk) 

 
Assumptions 

 
Population Size 

 
100 

 
Individual Wealth, W 

 
200,000 

 
Size of Lossi 

 
200,000  

 
Probability of Loss* 

 
25% 

 
Utility function, U(W) 

 
ln(W) 

 
 

 
 

 
No Insurance 

 
Aggregate Expected Loss 

 
5,000,000 

 
Aggregate Expected Utility 

 
858 

 
 

 
 

 
With Insurance (Pooling) 

 
Fair Premium 

 
50,000 

 
Wealth, After Premium 

 
150,000 

 
Utility 

 
11.92 

 
Aggregate Utility 

 
1,192 

 
i Need reference here 
*For every individual. 
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Now imagine that we have access to some technology that generates 
perfect predictions: instead of each villager facing a 25% chance of having 
his or her home destroyed, we know with certainty which 25 homes will be 
destroyed and which 75 will escape any damage.  The owners of the 75 
known-to-be-safe houses will obviously have no demand for insurance at 
any positive premium, since they would be paying for coverage that would 
be of no use to them.  Conversely, owners of the 25 known-to-be-destroyed 
houses will certainly want insurance.  But the only coverage available to 
them will be at the fair premium for a certain-to-be-destroyed house 
(100%H200,000 =) $200,000, and there is no reason to buy coverage when 
the premium is equal to the actual loss.22 So once the forecasting 
technology is made available, nobody will purchase insurance. 

The loss of risk-spreading that accompanies perfect forecasting leaves 
the community as a whole worse off.23 Aggregate welfare is now the same 
as in the no-insurance state described earlier (858), which is 28% lower 
than when insurance is possible.  Before the technology is introduced, 
behind Rawls’ veil of ignorance, the community would want to ban its use.  
Too much information can reduce welfare.24 
                                                                                                                           

22 Note that it is irrelevant whether the insurance company has direct access to 
this technology or not. Suppose homeowners are the only ones who know whether 
or not their house will be destroyed; by the logic above, those who want to buy 
insurance are only the owners who know they will lose their house for sure. The 
insurance company can thus infer that anyone who demands insurance will be a 
guaranteed house-loser, and will price its product accordingly. Cf. Alexander 
Tabarrok, Genetic Testing: An Economic and Contractarian Analysis, 13 J. 
HEALTH ECON. 75, 75–76, 79–82 (1994) (providing an example of this concept in 
the genetic testing context). 

23 In fact, it in some sense destroys the meaning of “community.” Before the 
forecast, everyone in the village was subject to the same risk, and all had a 
common interest in minimizing its effects via mutual insurance. After the forecast, 
however, those who will be spared are no longer interested in sharing their fortune 
with that of their known-to-be-less-fortunate neighbors. 

24 For an elegant discussion of the divergence between the private and social 
value of information, see Jack Hirshleifer, The Private and Social Value of 
Information and the Reward to Inventive Activity, 61 AMER.  ECON. REV. 561 
(1971). Hirshleifer’s point is that in a pure exchange economy, “the community as 
a whole obtains no benefit . . . from either the acquisition or dissemination of 
private foreknowledge.” Id. at 565 (emphasis in original). Foreknowledge is 
defined as the accurate prediction of an event that will eventually come to pass (or 
not), as distinguished from the discovery of something new that need not be 
discovered at all. See, e.g., id. at 562. In my example, information prevents risk-
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B. HOW GOOD CAN BIG DATA BE? 

 
Speaking very broadly, Big Data can generate better predictions by 

uncovering new independent variables, or combinations of variables, that 
help explain the outcome of interest, and it can help uncover new ways in 
which the independent variables are related to the outcome.25 But for most 
risks for which people seek insurance, it seems virtually impossible that 
any feasible improvement in the technology of prediction could so 
significantly increase accuracy as to make insurance impossible.  

Assertions of seemingly miraculous predictions emerging from Big 
Data are often, on closer examination, grossly exaggerated. Two years ago, 
for example, New York Times reporter Charles Duhigg wrote a widely-
discussed article about how Target was able to use Big Data techniques to 
predict, on the basis of their purchasing patterns, which customers were 
pregnant.26 The story featured an account of an angry father whose teenage 
daughter received ads for diapers and wipes, even though (he believed) she 
was not pregnant. But it turned out that she actually was, and Target had 
apparently used Big Data to figure this out before he did. 

Writing in the Financial Times, economist Tim Harford effectively 
debunks this story, however. It turns out that the reported success of 
Target’s algorithm ignored the false positive problem: we didn’t get to hear 
the stories about women who received coupons for babywear but who were 
not pregnant. 
 

Hearing the anecdote, it’s easy to assume that Target’s 
algorithms are infallible–that everybody receiving coupons 
for onesies and wet wipes is pregnant.  This is vanishingly 
unlikely.  Indeed, it could be that pregnant women receive 
such offers merely because everybody on Target’s mailing 
list receives such offers.  We should not buy the idea that 

                                                                                                                           
spreading, and hence is actually destructive of social welfare.  

25 For a brief and appropriately skeptical view of the strengths and weaknesses 
of Big Data, see Sendhil Mullainathan, Why Computers Won’t be Replacing You 
Just Yet: A 25-Question Twitter Quiz to Predict Retweets, N.Y. TIMES (July 1, 
2014), http://www.nytimes.com/2014/07/03/upshot/a-25-question-twitter-quiz-to-
predict-retweets.html. 

26 Charles Duhigg, How Companies Learn Your Secrets, N.Y. TIMES (Feb. 16, 
2012), http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html. 
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Target employs mind-readers before considering how 
many misses attend each hit.27 

 
C. IS THE TMI PROBLEM A REALISTIC CONSEQUENCE OF BIG 

DATA? 
 

It is possible that Big Data may produce too much information, 
leading to the selective destruction of insurance markets.  But is this 
theoretical possibility one we should be worried about?  Although there 
may be some exceptions, I think the answer for most risks we care about is 
“no.”28  

For an example of how difficult prediction can be, consider 
forecasting someone’s future earnings at the time they graduate from high 
school.  Economists Alan Kreuger and William Bowen attempted this 
exercise, considering “an embarrassingly long list of [108] explanatory 
variables . . . including sets of variables measuring family income, parents’ 
education, parents’ occupation, students’ expected occupation [on 
graduating from high school], race, sex, religion, age, and achievement test 
scores.”29 “Perhaps surprisingly,” the authors conclude, “an ordinary least 
squares regression with these variables accounted for only one-quarter of 
the variability in earnings.”30 Big Data techniques could be used to reduce 
the list of 108 variables to a smaller number that were the most powerful 
explanatory factors.  They could be used to find additional variables that 
might enable some further gains in predictive accuracy. But they cannot 
dramatically improve the prediction of events or outcomes with millions of 
independent causes, each of which contributes only a tiny share of the 
overall effect. 

Suppose instead that we are trying to explain whether individual i’s 
house burns down over some fixed period.  We might start with traditional 
underwriting information: the date the house was built, the kind of 
materials used, the owner’s smoking status, and so on.  Now consider 
                                                                                                                           

27 Harford attributes this insight to statistician Kaiser Fung. Tim Harford, Big 
Data: Are We Making a Big Mistake?, FIN. TIMES (Mar. 28, 2014), 
http://on.ft.com/P0PVBF. 

28 Kenneth S. Abraham & Pierre-André Chiappori, Classification Risk and Its 
Regulation, in RESEARCH HANDBOOK ON THE LAW AND ECONOMICS OF 
INSURANCE (Daniel Schwarcz & Peter Siegelman eds., forthcoming 2015). 

29 Alan B. Krueger & William G. Bowen, Policy Watch: Income-Contingent 
College Loans, 7 J. ECON. PERSP. 193, 196 (1993). 

30 Id. 
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expanding the set of possible explanatory variables, augmenting traditional 
underwriting data with new information of the kind Big Data techniques 
are designed to discover and utilize, such as the homeowner’s high school 
GPA; the list of magazines she subscribes to; and the number of calls made 
from the home to area code 510. 

It is possible that one or more of these new variables, separately or 
interacted with each other or existing variables, could improve predictive 
accuracy.  For example, when it comes to predicting the chance of a fire 
this year, knowing that the homeowner had GPA of 2.3 or that she 
subscribes to Soldier of Fortune might be more useful than knowing that 
her home was built in 1956. 

Big Data methods allow the researcher to consider many more 
variables and combinations of variables than has traditionally been 
possible, including “high dimensional” cases where the number of 
explanatory variables is greater than the number of observations.31 When 
analysts are searching for a parsimonious group of a few explanatory 
variables from among many possibilities, Big Data and machine learning 
techniques can be extremely useful.  But that is not the same as saying that 
Big Data can explain the otherwise inexplicable. 

There is no doubt that there may be gains to be achieved from 
using Big Data techniques to predict fire risk.  But as Table 2 makes clear, 
it is almost algebraically impossible that any newly discovered variable 
(e.g., homeowner’s GPA) or combination of variables (Female & 
Subscribes to Soldier of Fortune magazine & GPA less than 2.5) could 
enable highly-accurate predictions of fire risk.  Imagine that, by using Big 

                                                                                                                           
31 For an introduction to the theory and some examples, see Alexandre Belloni 

et al., High-Dimensional Methods and Inference on Structural and Treatment 
Effects, 28 J. ECON. PERSP. 29, 33-34, 38-41 (2014). Moreover, these techniques 
are designed to prevent “over-fitting” or ad hoc specifications in which the 
researcher develops an explanatory model that fits the data for a given sample, but 
is useless for predictive purposes outside of the sample. Overfitting of this kind is 
more likely as the ratio of explanatory variables to observations increases. In the 
limit, there are exactly as many variables (plus a constant) as there are 
observations. In this case, the ordinary least squares estimator will fit the data 
perfectly, returning an R2 of one. However, using the estimated model is likely to 
result in very poor forecasting properties out-of-sample because the model 
estimated by least squares is overfit: the least-squares fit captures not only the 
signal about how predictor variables may be used to forecast the outcome, but also 
fits the noise that is present in the given sample, and is not useful for forming out-
of-sample predictions. Id. at 30. 
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Data, we found that being female, subscribing to Soldier of Fortune, and 
having a high school GPA of less than 2.5 are collectively associated with a 
100-fold increase in fire risk.  If Big Data techniques could generate a 
robust improvement in prediction of this magnitude, it would be truly 
shocking.32 But even if such an improvement were achievable, it would 
only raise the probability of a fire (for the small number of persons in this 
group) from 9/10,000 to 900/10,000, which is still less than 10 percent.  A 
dramatic increase from the baseline case, to be sure, but nothing remotely 
approaching a risk so high as to be virtually certain, one that would shred 
the veil of ignorance needed to make risk-spreading possible. 
 
Table 2: Back-of-the-Envelope U.S. Fire Risk 
236,200 annual average one- and two-family residential fires in the 

period 2009-2011.33 
90,742,000 single unit homes.34 
0.0026 annual probability that a house will experience a fire 

(26/10,000) 
 

But what about rare medical conditions, such as Huntington’s 
disease, you might ask? Estimates apparently vary quite widely, but one 
recent study estimated the annual incidence of Huntington’s disease to be 
0.38 per 100,000, which is only 1/685th as high as the US annual house-
fire risk.35 Yet some scholars have suggested that Huntington’s is 

                                                                                                                           
32 By “robust,” I mean that the correlation would hold up in the future, and 

would reflect not just a random association in the sample of cases on which the 
predictive model was estimated. In Mullainathan’s example, a Big Data algorithm 
predicted “which [of a given pair of] tweet[s] gets retweeted [more often] about 67 
percent of the time, beating humans, who on average get it right only 61 percent of 
the time.” Mullainathan, supra note 25. Impressive as this is, it represents only a 
10% improvement (6%/61%) over human performance.  

33 Nat’l Fire Data Center, U.S. Fire Admin., One- and Two-family Residential 
Building Fires (2009-2011), 14 TOPICAL FIRE REP. SERIES 1, 1 (Sept. 2013), 
available at http://www.usfa.fema.gov/downloads/pdf/statistics/v14i10.pdf. 

34 Table C-01-AH: General Housing Data—All Housing Units, H150/11 AM. 
HOUSING SURV. FOR U.S.: 2011 at 3 (2013), available at 
http://www.census.gov/content/dam/Census/programs-
surveys/ahs/data/2011/h150-11.pdf. 

35 “Meta-analysis of data from four incidence studies revealed an incidence of 
0.38 per 100,000 per year,” while a meta-analysis of eleven studies suggested that 
“[t]he [lifetime] service-based prevalence of HD . . . in Europe, North American 
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essentially uninsurable36 because it is almost perfectly predictable based on 
genetic screening: the disease occurs because of a trinucleotide repeat, and 
anyone with more than 40 repeats is certain to be affected.37 

For insurance purposes, the relevant difference between 
Huntington’s risk and house fire risk is not their relative magnitudes.  
Rather, it is that Huntington’s has a single, identifiable predictor, the 
genetic defect is the only source of the condition, and everyone with the 
defect develops the disease.  House fires, by contrast, are not mechanically 
linked to any single predictable-in-advance cause.  Many women have low 
high school GPAs and read Soldier of Fortune, but even in our hypothetical 
world, only a small fraction of them will experience a house fire.  The 
social world is inherently more complex than the bio-physical world in this 
respect.  And even many medical conditions are more like type-2 diabetes 
than like Huntington’s disease: they are the result of a complicated and 
poorly-understood mix of environmental and biological factors, and there is 
simply no clear-cut causal structure that explains when the risk will 
materialize and when it won’t.38 

                                                                                                                           
[sic], and Australia, . . . [was] 5.70 per 100,000.” Tamara Pringsheim et al., The 
Incidence and Prevalence of Huntington's Disease: A Systematic Review and 
Meta-Analysis, 27 MOVEMENT DISORDERS 1083, 1083 (2012). 

36 Pierre-André Chiappori, The Welfare Effects of Predictive Medicine, in 
COMPETITIVE FAILURES IN INSURANCE MARKETS: THEORY AND POLICY 
IMPLICATIONS 55, 56, 65–66 (Pierre-André Chiappori & Christian Gollier eds., 
2006). 

37 The defect involves the repetition of a group of three nucleotides (CAG: 
Cytosine, Adenine and Guanine). Healthy people have between 7 and 35 
repetitions of this group. However, an incidence of more than 40 repetitions leads 
to the presence of the disease. Francis O. Walker, Huntington’s Disease, 369 
LANCET 218, 220 (2007). The condition is autosomal dominant, which means that 
a defective gene inherited from either parent is sufficient to cause the disease. Id. 

38 Consider diabetes (which is actually several different conditions). “Most 
patients with type 2 diabetes [which “accounts for 80% to 90% of cases of diabetes 
in the United States”] . . . have some degree of tissue insensitivity to insulin 
attributable to several interrelated factors . . . . These include putative (mostly as 
yet undefined) genetic factors, which are aggravated in time by further enhancers 
of insulin resistance such as aging, a sedentary lifestyle, and abdominal visceral 
obesity. Not all patients with obesity and insulin resistance develop hyperglycemia, 
however.” Umesh Masharani & Michael S. German, Chapter 17: Pancreatic 
Hormones and Diabetes Mellitus, in GREENSPAN’S BASIC & CLINICAL 
ENDOCRINOLOGY (David G. Gardner & Dolores Shoback eds., 9th ed. 2011), 
available at http://accessmedicine.mhmedical.com/book.aspx?bookid=380. 
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The bottom line is that Big Data techniques are not all that useful 
for single-predictor risks such as Huntington’s disease, the cause of which 
was discovered using ordinary scientific methods.  And however useful 
they are for more complex predictive structures, Big Data techniques do 
not permit accurate prediction of multiply-caused rare events.  While even 
small improvements in predictive accuracy can be quite valuable,39 it seems 
highly unlikely that Big Data techniques will produce dramatic 
improvements in prediction.  Mathematician Jordan Ellenberg recently put 
it this way: 
 

There are lots of . . . problems where supplying more data 
improves the accuracy of the result in a fairly predictable 
way.  If you want to predict the course of an asteroid, you 
need to measure its velocity and its position . . . The more 
measurements you can make of the asteroid and the more 
precise those measurements are, the better you’re going to 
do at pinning down its track.  But some problems are more 
like predicting the weather[,] [because weather is, in the 
technical sense of the word, chaotic.] . . . [H]uman 
behavior [is] even harder to predict than the weather.  We 
have a very good mathematical model for weather, . . . 
[but] [f]or human action we have no such model and may 
never have one.40 

 
IV. WHAT IF INSURERS KNOW MORE THAN INSUREDS DO 

ABOUT INDIVIDUAL RISK? 
 

Even if Big Data methods are not sufficient to generate perfect (or 
even very good) predictions, they could well have other effects that would 
be worth taking seriously.  Since policyholders themselves are not very 
good at predicting their own riskiness in many situations, Big Data 
techniques might offer insurers an improvement on the status quo that 

                                                                                                                           
39 Netflix offered a $1M prize to anyone who could improve its movie-

recommending algorithm by more than 10 percent. According to a Netflix official, 
a 10% improvement in their recommendations, small as that seems, would recoup 
the million in less time than it takes to make another Fast and Furious movie. 
JORDAN ELLENBERG, HOW NOT TO BE WRONG: THE POWER OF MATHEMATICAL 
THINKING 166 (2014). 

40 Id. at 164-65. 
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allows them to out-predict their customers.  As we saw earlier, the 
economic theory of insurance suggests that market equilibria are highly 
sensitive to small changes in underlying assumptions or parameters, so 
things might look very different if insurers were able to use Big Data 
techniques to discover more about policyholders’ riskiness than the 
policyholders themselves knew.  Thus, whether or not these methods yield 
good predictions in some absolute sense, they could still profoundly shape 
equilibria, even if all they do is improve insurers’ predictions relative to 
what insureds know.41 

What follows is an attempt to illustrate this relatively simple 
observation. 
 

A. CHARACTERIZING INFORMATION: WHO KNOWS WHAT 
 

Consider a very simple description of possible information stocks.  
Policyholders face a known loss, L, which is the same for everyone.  Each 
policyholder j has a unique probability of experiencing this loss, pj.  The 
actuarially fair premium for policyholder j is equal to j’s expected loss: 

E(L) = pjHL.  
In turn, the probability of loss depends on facts about the policyholder, 
which we can describe as a vector of characteristics, Xj.  We can thus write 

pj = f(Xj), 
which says nothing more than that the probability that individual j will 
experience a loss is a function of the value of the various explanatory 
variables for that individual, Xj.  

We can go further and partition the variables that make up Xj into 
two possibly-overlapping parts.  Xj,P represents all the information the 
policyholder knows about himself—for example, how recklessly he drives.  
Xj,I represents the insurer's information about j (for example, the riskiness 
of j's car, or of the area where he typically drives).  Some information will, 
of course, be uniquely held by one party, while some will be common to 
both (j's sex or age).  In addition, we should allow for information that is 
known to nobody, which we can denote as random error, ε.  Thus, the 
expected loss (and fair premium) for policyholder j can be written as:  

E(L) = f(Xj,P, Xj,I, ε)L. 

                                                                                                                           
41 Two hikers spot a bear getting ready to charge them. The first hiker drops 

his pack, takes off his hiking boots, and begins to put on running shoes. The 
second hiker asks, "What’s the point? You're never going to outrun that bear." The 
first replies: "You're right, I won't; but all I need is to outrun you." 



332   CONNECTICUT INSURANCE LAW JOURNAL  Vol. 21.1 
 

 
Figure 1 

 
Figure 1 presents some possible configurations of information sets.  

For example, in panel 1, the insurer knows everything the policyholder 
knows, as well as some information in addition.  In panel 2, the situation is 
reversed; the policyholder knows everything the insurer knows, and more.  

It has generally been assumed by economists that (2) is the best 
description of how the world works.  For example, all models of adverse 
selection and moral hazard are based on this characterization.  While it may 
seem implausible, there is actually a sophisticated justification for this 
assumption.  When the insurer quotes a price for insurance coverage for 
individual j, j's premium, it will presumably make an optimal computation 
of j's riskiness, based on all the information it has at its disposal. So the 
insurer's estimated fair premium for j will be f(XjI)HL.  But that's just the 
expected loss for policyholder j, given the information available to the 
insurer, XjI.  And since the premium is actuarially fair,42 policyholder j can 
easily deduce what the insurer thinks his risk of loss must be.  For example, 
                                                                                                                           

42 This is required in a competitive equilibrium. A premium that is less than 
actuarially fair can be expected to earn losses, and the insurer will prefer not to 
offer any policy at all than to offer one that loses money. A premium priced above 
the actuarially fair level will attract competitors who can offer a slightly lower 
price and lure away all customers. So the only sustainable price in a competitive 
market is the fair premium. 
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suppose the loss is known to be 100.  Then a quoted premium of 2 implies 
that the insurer must believe there is a 2% chance it will have to pay out 
100.  That, in turn, suggests that even if the policyholder does not know 
exactly what the insurer knows, he can infer all he needs to know about the 
insurer's information via the premium he is quoted, which will necessarily 
reveal exactly what the insurer believes about the policyholder's expected 
loss.  So the insurer effectively ends up having to surrender all its private 
information in a competitive equilibrium, while the policyholder doesn’t.43 
That situation resembles panel (2) of Figure 1. 

But this simple story, appealing as it is, need not be correct.  It is 
possible to have equilibria in which the insurer knows less about insureds 
than they know about themselves, even with completely rational 
consumers, a competitive market, zero-cost (no load factor) insurance, and 
no uncertainty about the size of the loss.44 The next section explains, by 
way of an example. 
 

B.  EQUILIBRIUM WHEN POLICYHOLDERS ARE BETTER INFORMED 
THAN INSURERS45 

 
Suppose that the population consists of equal numbers of two types 

of insureds, high-risk and low-risk.  The first group has a risk of loss equal 
to 0.4 (pH = 40%); the second has a risk of loss equal to 0.3 (pL = 30%).  
The loss is known to be 100 for all individuals who experience a loss.  The 
fair premium for the group as a whole is just the average loss: 

                                                                                                                           
43 The policyholder reveals some information when he decides to accept or 

reject the insurer's offer, but it should be clear that this decision does not give away 
everything the policyholder knows about his own riskiness. 

44 If consumers are unable to make rational inferences—and the evidence cited 
suggests this is indeed the case—their ability to extract the insurer's estimate of 
their own riskiness from the premium quotation they receive is obviously 
diminished. The ability to extract this information is further diminished by any 
markup over the fair premium to cover the insurer's cost and by failures of 
competition to drive prices down to the zero-profit level. KUNREUTHER ET AL., 
supra note 16. 

45 Bertrand Villeneuve, Competition Between Insurers with Superior 
Information, 49 EUR. ECON. REV. 321 (2005), provides the careful analysis on 
which this loose paraphrase is based. There are important background conditions 
(e.g., that all policyholders are risk averse enough so that they will demand 
insurance at each of the possible premiums) which are too technical to consider 
here. 
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ߨ  = ൬12݌ு + ௅൰݌12 × 100 = 35. 

 
Assume further that for any individual j, the insurer knows exactly 

which group j is in, while j knows only the average risk of the population 
as a whole, but not his own individual risk. The industry contains N 
competitive firms, so that premiums are driven down to the actuarially fair 
level (given that there are no operating or other costs).  Thus, all firms earn 
zero profit. 

Suppose the insurer makes an offer to sell insurance to individual j 
by quoting her a premium.46 Consider first the possibility that the insurer 
quotes the group-wide average premium of 35.  How would a policyholder 
react to this offer?  If she knew she were a low-risk individual, she should 
reject the offer, because in a competitive market, she would be able to 
attract a better one from another insurer until the premium was actuarially 
fair for a known low-risk individual.  (Conversely, a known high-risk 
individual would be delighted to be quoted a premium that was less than 
his actuarially fair value.)  But the whole point is that the policyholder does 
not know her own risk type, so the premium of 35 is the best she can 
expect, given her ignorance of her own riskiness.  Thus, both high and low-
risk individuals would be content to stick with the average or “pooled” 
premium, if they were offered it. 

But for this to be an equilibrium, we have to establish that the insurer 
would want to quote the average price in the first place.  Consider first what 
happens when the insurer knows that j is low-risk (but remember, j herself 
does not).  A premium of 35 implies that the insurer would earn profits of 35-
30 = 5 for this customer, if she accepts the offer.  But if the insurer offers a 
premium appropriate for the population average risk of 35, it will then be 
competing with every one of the other N insurers in the market who also offer 
this price.  That in turn means that the insurer faces a 1/N chance of landing 
this consumer, for an expected profit of 5/N.  Alternatively, the insurer might 
consider quoting a slightly lower premium, say 34, and having a 100% chance 
of attracting this policyholder given that all its competitors are quoting a price 
of 35.  That would yield a profit of 100%×(34-30) = 4.  As long as the number 

                                                                                                                           
46 Significantly, this is what is known as a “signaling” equilibrium because the 

informed party—here, the insurer—makes the offer. In standard models of 
insurance market equilibrium, it is the uninformed party (still the insurer, but the 
policyholder knows everything that the insurer does and more, so the insurer is 
uninformed) who makes the offer, which leads to a “screening” equilibrium. 
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of rivals is greater than 2, the insurer would prefer to offer the lower price and 
land the customer with certainty.  

Thus, it might look as if quoting the blended premium (35) cannot 
be an equilibrium, because an insurer would prefer to do something else.  
But that intuition turns out to be wrong.  Once an uninformed customer 
receives a quote of 34 from an insurer—who is known to be better 
informed than she is—she will instantly know that the insurer knows she is 
low-risk.47 With this knowledge, she is then in a position to demand a 
reduction in premium to 30 (befitting a known low-risk customer); in a 
competitive equilibrium with full information on all sides, the zero-profit 
price is the only one that can prevail.  

 The point is that by quoting an even slightly more-appropriate 
price, the insurer ends up telling the consumer exactly what her risk is, and 
the consumer is then in a position to use that information against the 
insurer, by insisting on an even lower premium.  And in a competitive 
market, she will, in fact, receive that lower premium.  Thus, a small 
deviation from the blended (average) premium will not be profitable for the 
insurer.  Sticking with the “pooled” rate will be the best the insurer can 
hope to do. 

 
 C. POOLING VS SEPARATION 

 
The careful reader—if he or she has gotten this far—might find 

something surprising here.  A world in which insurers know more about 
each policyholder than the policyholder does about herself is actually 
supportive of a pooling equilibrium, one in which all consumers pay the 
same “bundled” or average premium.  The non-existence of a pooling 
equilibrium in the presence of adverse selection is one of the key insights 
of the pioneering Rothschild/Stiglitz model of insurance markets: when 
consumers know more than insurers do, policyholders’ ability to select a 
policy based on their “inside” information makes a pooling equilibrium 
unsustainable in a competitive market.48 

You might think that as insurers learn more and more about their 
customers, premiums would become more and more individualized and the 
possibility of pooling would only be diminished.  But the weird economics 
of insurance markets demonstrates that this need not be true.  The example 
above illustrates that when the insurer knows each customer’s risk exactly, 

                                                                                                                           
47 An offer of 34 is only profitable if made to a known low-risk consumer. 
48 Rothschild & Stiglitz, supra note 9, at 639. 
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while customers know only the group average risk, pooling equilibria are 
possible.  Unfortunately, theory predicts that separating equilibria (in which 
each type pays a premium appropriate to its riskiness) are also possible.49 

So, in the end, the lesson is cautionary.  Theory does not support the idea 
that as insurers learn more about their customers, pricing will necessarily 
become more individualized and pooling and attendant risk-spreading will 
necessarily decrease.  Instead, a world in which insurers know more about 
policyholders than the latter know about themselves might actually give 
rise to more pooling. 
 
V. BIG DATA, BIG INSURANCE 
 

In this section, I want to very briefly discuss 2013 Nobel Laureate 
Robert Shiller’s50 visionary51 ideas for using Big (or at least More) Data to 
dramatically increase risk-spreading by allowing consumers to insure 
(pool) risks that they are currently forced to bear themselves.  Shiller’s 
insight is that new kinds of data, aggregated in new ways, could lead to 
radically new forms of insurance against risks that consumers are currently 
forced to bear themselves.  (This is a somewhat different take on what “Big 
Data” means, since we are no longer talking about data-mining techniques 
to extract predictive information from high-dimensional data.  Rather, as I 
explain below, we are concerned with the prospect of creating new kinds of 
information beyond that which is currently available.)  
 Consider, for example, the risk that one’s house might decline in 
value (something few people did in fact consider in 2003, when Shiller’s 
book was published), or the risk that one’s chosen line of work might 

                                                                                                                           
49 Villeneuve, supra note 45. The existence of separating equilibria depends on 

the degree of consumers’ risk aversion and the difference in riskiness between the 
two types.  Note that despite its complexity, the model admits only an extremely 
limited degree of consumer heterogeneity. Policyholders differ only in their 
riskiness and not, for example, in their degree of risk aversion.  Nor are consumers 
subject to any behavioral “flaws” or deviations from rationality.  For an attempt to 
incorporate such heterogeneity into a theoretical (simulation) model of insurance 
markets, see Tsvetanka Karagyozova & Peter Siegelman, Can Propitious Selection 
Stabilize Insurance Markets?, 35 J. INS. ISSUES 121 (2012). 

50 ROBERT J. SHILLER, THE NEW FINANCIAL ORDER: RISK IN THE 21ST 
CENTURY (2003). 

51 Some have almost gone so far as to suggest that “hallucinatory” would be a 
better description. See Stephen A. Ross, Review of The New Financial Order by 
Shiller. 42 J. ECON. LIT. 1098 (2004). 
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experience a drop in demand, causing a fall in one’s earnings.  Risk-averse 
individuals should want these products, which protect against important 
risks that they would prefer not to fact. 
 But individualized insurance against these risks cannot work, 
Shiller points out, because of Moral Hazard.52 If the value of my home is 
fully insured, I have an incentive to under-maintain it: maintenance is 
costly, after all, and my home value insurance policy will cover any drop in 
price when it comes time to sell the property.53 Similarly, if my livelihood 
(earnings) is fully insured, I may slough off because hard work is costly 
and my livelihood insurance will pick up any shortfall in my paycheck that 
results from my shirking.54 

Shiller’s brilliant insight is that even if some component of these 
risks is uninsurable at an individual level, it is possible to create a viable 
insurance product that covers aggregate-level risks without any moral 
hazard risks.  Thus, instead of insuring against a fall in the value of my 
house, I would buy coverage against a drop in the value of all houses in my 
city or neighborhood.  Instead of insuring against a fall in my own earnings, 
I would buy coverage against a drop in the earnings of all persons in my 
profession (law professor) or perhaps some narrower aggregate (all law and 
economics professors).  

Under Shiller’s solution, some risks remains with the consumer, as 
they must to preserve incentives, but at least medium- to large-scale risks can 
be insured against.  If the largest employer in town closes its factory and all 
local house prices plummet, I am covered. If nobody wants to go to law school 
any more, and law professor salaries plunge, I am covered there as well. 

The genius of this approach is that it offers maximal insurance with no 
potential for Moral Hazard, since insurance is offered only against drops in an 
aggregate (price index), over which no individual exerts any control.  If I 
under-maintain my house, I bear 100% of the marginal loss in value, relative to 
the average house in my neighborhood.  If I slack off rather than working hard, 
I do less well than the average law professor (even if all salaries drop), and 
                                                                                                                           

52 And possibly Adverse Selection as well, although Shiller scarcely mentions 
adverse selection in his book. 

53 Of course, if it were possible to write an insurance contract that covered 
exactly what kind of maintenance I was required to do, this problem could be 
solved. But, it seems clear that maintenance is simply too complicated, 
heterogeneous and subjective to be captured by an ex ante contract. 

54 See, e.g., Soviet-era Russia. There are possible selection issues as well if 
homeowners know better than their insurers whether their house needs repairs or 
what their own future work plans entail. 
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those losses are not covered by my insurer.  Shillerian insurance thus preserves 
maximal incentives for me to work hard and to maintain my home, while 
permitting me to pool risks that I would like to avoid.55 

But in order for this kind of insurance to work, we need “Big” data 
on aggregates (neighborhood home values, earnings by occupation or sub-
specialty).  This information would need to be built up from detailed data 
collected at an individual level.  For each house, we have to know its age, 
its square footage, its condition, and of course its price.  This data could 
then be aggregated to provide quality-weighted neighborhood-level 
information that could then be used to set premiums and payouts. Shiller 
and his collaborator Karl Case actually created such a dataset, which is now 
maintained (for several cities) by the rating agency Standard and Poors.56 

 
VI.  CONCLUSION 
 
 Equilibrium in insurance markets is highly sensitive to seemingly-
innocuous details about how offers are made and received, by whom, and 
under what conditions.  Robust predictions about how markets will respond to 
any exogenous change are very difficult.  It would therefore be silly to claim, 
at least as a theoretical matter, that Big Data will have little or no effect on 
insurance market equilibria.  But at least the notion that Big Data techniques 
will enable some sort of perfect prediction seems pretty far-fetched. 
 And while the collection and analysis of additional information 
may pose some significant privacy concerns, it may also make possible the 
creation of new markets for spreading risks that rational individuals should 
greet with approval. 

                                                                                                                           
55 There is a structural similarity between this kind of insurance and Robert 

Cooter’s theory of the law and economics of “precaution.” See Robert Cooter, 
Unity in Tort, Contract, and Property: the Model of Precaution, 73 CAL. L. REV. 1 
(1985). In both models, one party (the insurer or the injurer) bears responsibility 
for the inframarginal precautions, while the other party (the insured or the tort 
victim) bears responsibility for the marginal precautions, thereby providing 
simultaneous incentives for both parties to take efficient levels of care. 

56 See S&P/Case-Shiller Home Price Indices, S&P DOW JONES, 
http://us.spindices.com/index-family/real-estate/sp-case-shiller (last visited Aug. 
11, 2014). 
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