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Abstract

A 11S wave function’s expansion for 2 electron atoms and ions is proposed employing an appro-

priate exponeential factor and Fock’s logarithmic terms. The leading coëfficient’s are presented.

I. INTRODUCTION

The ground electronic state of Helium (and its isoelectronic ions) has been studied exten-

sively since the original work of Hylleraas [1]. However, the 1S wave function for Helium’s

two electrons is not a power series in r1, r2 and r12, as shown by Bartlett, Gibbons and Dunn

[2] who demonstrated that a unique solution for ψ(r1, r2, r12) of the Hylleraas form

ψ =
∑
i,j,k

Ci,j,kr
i
1r

j
2r

k
12

does not exist. They showed that the coëfficient of
r22

r1r12
↪→ C101 = 0, that the coëfficient of

1
r1
↪→ 2c100 + c010 = 0 and that the coëfficient of r1

r12
↪→ 5C101 − 1

2
C100 = 0.

Fock [3–5] showed that there must be logarithmic terms in the expansion, and gave the

form the expansion had to take. Defining R = r21 + r22, he wrote (in current but mixed

notation)

ψ = 1− Z(r1 + r2) +
1

2
r12 +

R (ψ2,1ℓnR + ψ2,0) +

R1/2
(
ψ5/2RℓnR +Rψ5/2,0

)
+

R2
(
ψ3,2ℓn

2R + ψ3,1ℓnR + ψ3,0

)
+ . . . (1.1)

with Z = 2 for Helium. R1/2 cos(α/2) and R1/2 sin(α/2) are equal to r1 and r2 respectively,

while r12 is equal to R1/2
√

(1− sinα cosϑ).

Myers et al [6] argued that the Fock expansion should be used as a template for shaping

basis functions for future calculations on the Helium ground state. Here, it is suggested

that a certain re-formulation of the Fock expression allows us to understand and obviate the

Bartlett conundrum and thereby suggest an appropriate wave function expansion for future

investigations.
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II. ANSATZ

The following expansion is proposed:

1 + C1,0,0r1 + C0,1,0r2 + C0,0,1r12 +

+C1,1,0r2r2 + C1,0,1r1r12 + C0,1,1r2r12 +

constant ∗ (r1r12ℓnr1r12 + r2r12ℓnr2r12) + . . . (2.1)

as the first few terms. The last term shown in Equation 2.1 appears to mitigate the Bartlett,

Gibbons and Dunn conundrum. This suggests the following Ansatz:

ψ =
∑
i,j,k,ℓ

Ci,j,k,ℓr
i
1r

j
2r

k
12

[
(r1r12ℓnr1r12)

ℓ + (r2r12ℓnr2r12)
ℓ
]

(with restrictions on i, j, k and ℓ), but it fails the Bartlett Gibbons and Dunn criterion.

Here, we propose a (unfortunately) more complicated expansion which, with appropri-

ate conditions, actually achieves cancellation of offending terms in the resultant equation

resulting from substitution into the Schrödinger equation.

We have:

ψproposed = e−Z(r1+r2)+r12/2 ×{∑
i,j,k

ci,j,kr
i
1r

j
2r

k
12+

∑
i=1,j=0,k=1,ℓ=1

di,j,k,ℓr
i
1r

j
2r

k
12 (ℓnr1r12)

ℓ +
∑

i=0,j=1,k=1,ℓ=1

ei,j,k,ℓr
i
1r

j
2r

k
12 (ℓnr2r12)

ℓ

}
(2.2)

with i+j+k ≤ 2ℓ. Traditionally, we leave C1,0,0 = 1, deferring normalization considerations.

This notation is itself in-elegant but the indicees of ”d” and ”e” reflect the powers of

r1, r2 and r12 properly.

The only thing excluded from this form are terms of mixed logarithms of r1r12 and r2r12.

There is little reason to believe that these mixed logaithmic terms are required, as the

separate operators never mix r1 terms and r2 terms together inside the partial derivatives.

The choice of pre-exponential is intentional, since using this term removes the triple

collision singularity and it is wiser than making the subsequent power series undo the damage

of having reciprocal distances occurring throughout the forthcoming calculation.
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A. Some coëfficients of wavefunctions

The Hamiltonian operator used in the best calculation to date [7] applicable to the ground

state of the Helium-like atom’s/ion’s two electrons is:

−1

2

 1

r21

∂
(
r21

∂
∂r1

)
∂r1

+
1

r22

∂
(
r22

∂
∂r2

)
∂r2

− 1

r212

∂
(
r212

∂
∂r12

)
∂r12

−r
2
1 − r22 + r212
2r1r12

∂2

∂r1∂r12
− r22 − r21 + r212

2r2r12

∂2

∂r2∂r12

−Z

r1
− Z

r2
+

λ

r12
(2.3)

where λ = 1 and Z is the atomic number of the nucleus.

Substituting 2.2 into this Hamiltonian results in an set of equations for coëfficients. As

expected, c1,0,0 = 0 and does c0,1,0 and c0,0,1 = −(1− λ)/2.

The situation becomes murkier the deeper into the terms we proceed. C1,0,1 = (λ ∗ Z −

4 ∗D1,0,1,1 − 4 ∗D1,0,1,2)/2 with an equivalent expression for C0,1,1 = (λ ∗ Z − 4 ∗ E0,1,1,1 −

4 ∗ E0,1,1,2)/2.

The Appendix shows the SageMath/CoCalc coding that was used in this effort.

Clearly, better programming would result in extending the set of relations which deter-

mine the wave function’s eigenfunctionality.

B. Accuracy of wavefunctions

The fact that the eigenenergy for this problem is known to more then 40 significant

figures [7] (-2.903 724 377 034 119 598 ...) does not mean that the associated wave function

is ”exact”.

All the expansions proposed to date fail this test(see, for example, Aznabaev et al) [8].

Even those which include logarithmic terms fail the test, as they have not been properly

constructed to cancel relevant terms generated elsewhere in the expansion as shown above.

As an example,

ψnew log
0 = [1 + ℓn(r1 + r2) + βr12]e

−α(r1+r2)

is used in the best calculation [7] to obtain a spectacular energy, but an unknown local

energy profile.
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It would seem that incorporating logarithmic terms of the type described, into approxi-

mate wave functions for use in computations of many electron systems would also improve

the accuracy of such calculations.

III. RESULTS AND DISCUSSION

These results suggest that a simple variational calculation carried out analytically would

result in a good first approximation to the ”true” value. The simplest one parameter Ansatz,

e−α(r1+r2), is known to yield a value of -2.84765 au. However, such a wave function yields

local energies varying from minus to plus infinity.

Extending the proposed series in standard variational calculations to include more

terms (including properly constructed logarithmic ones) should rapidly give an approximate

eigenenergy to any desired number of digits with minimal or no local energy divergences.

It would appear that a reasonable wavefunction Ansatz might be:

ψ = e−Z(r1+r2)+
1
2
r12

(
eA∗(r1r12)ℓnr1r12 + eA∗(r2r12ℓnr2r12)

)
f(r1, r2, r12)

This Ansatz keeps the correlation functions separated in the same way they are separated

in the Hamiltonian.

In any case, no matter what the Ansatz, the resultant integrals required for variational

calculations are quite daunting. It is not clear whether these computations are practical in

execution.

A. Demurral

The continuation of developments with respect to coëfficient recursion relationships, vari-

ational calculations based on wave function choices shaped by the results shown here, and

the ultimate finding of simple functional forms for which this series is the expansion, exceeds

the ability and timeline of the author.

IV. ACKNOWLEDGEMENTS

The mathematics employed herein was done using SageMath/CoCalc. Using SageMath

on a remote server has limited the ability to carry out very large sample size computations.
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In addition, chatGPT has helped immeasurably in dealing with SageMath problems.
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A. Appendix

# 2023-11-07-revisiting

# 2021-09-03-WORKING SERIES-GENERATED exp version

reset();

sage_server.MAX_HTML_SIZE = 150000;

var(’r1 r2 Z r12 L E’);

function(’psi’)(r1,r2,r12);

N = 3

show("N = ",N)

R.<r1,r2,r12> = PolynomialRing(QQ)

psi(r1,r2,r12) = R.sum([var("C"+str(i)+str(j)+str(k))*r1^i*r2^j*r12^k

for i in range(0,N) for j in range(0,N) for k in range(0,N)])

+ sum([var("D"+str(i)+str(j)+str(k)+str(l))*r1^i*r2^j*r12^k*((log(r1*r12))^l)

for i in range(1,N) for j in range(0,N)for k in range(1,N) for l in range(1,N)])+

sum([var( "E"+str(i)+str(j)+str(k)+str(l))*r1^i*r2^j*r12^k*(log(r2*r12))^l

for i in range(0,N) for j in range(1,N)for k in range(1,N) for l in range(1,N)])

psiexp= exp(-Z*(r1+r2)+r12/2);

psi(r1,r2,r12)=psi(r1,r2,r12)*psiexp;

show("psi (before substitutions) = ",psi);

psi(r1,r2,r12)=psi(r1,r2,r12).substitute(C000=1)

psi(r1,r2,r12)=psi(r1,r2,r12).substitute(C100= 0)
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psi(r1,r2,r12)=psi(r1,r2,r12).substitute(C010= 0)

psi(r1,r2,r12)=psi(r1,r2,r12).substitute(C001= - (1-L)/2)

psi(r1,r2,r12)=psi(r1,r2,r12).substitute(C101 = (L*Z-4*D1011-4*D1012)/2)#ok up to n=4

show("=========");

psi(r1,r2,r12)=psi(r1,r2,r12).substitute(C011 = (L*Z-4*E0111-4*E0112)/2)#ok up to n=4

show("=========");

show("psi (final) = \n",psi);

show("=========");

t1 = expand(((1/(r1^2))*(derivative((r1^2)*derivative(psi(r1,r2,r12),r1),r1))));

#show("t1 = ",t1)

t2 = expand(((1/(r2^2))*(derivative((r2^2)*derivative(psi(r1,r2,r12),r2),r2))));

#show("t2 = ",t2)

t3 = expand(((1/(r12^2))*(derivative((r12^2)*derivative(psi(r1,r2,r12),r12),r12))));

#show("t3 = ",t3)

t4 = ((r1^2+r12^2-r2^2)/(r1*r12))*derivative(derivative(psi(r1,r2,r12),r1),r12);

#show("t4 = ",t4)

t5 = ((r2^2+r12^2-r1^2)/(r2*r12))*derivative(derivative(psi(r1,r2,r12),r2),r12);

#show("t5 = ",t5)

t = -(1/2)*(t1+t2)-t3-t4-t5;

#show("t = ",t)

t = expand(t+(-Z/r1-Z/r2+L/r12- E)*psi(r1,r2,r12))

t=expand(t/psiexp);

s1 = t.coefficient(1/(r1*r12));

t = expand(t - s1/(r1*r12));#cleanup

#s1 =numerator(s1).collect_common_factors();

s1 = s1.collect(r2);

show ("s1, 1/(r1*r12) coeff numerator = ",expand(s1));

#show ("s1, 1/(r1*r12) coeff numerator = ",(s1));
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#show("r1*r12 coefficient in final t using mycoeff")

#show(expand(mycoeff(t, (r1*r12),-1)))

show("=========1");

#exit()

#----------------------

s1 = t.coefficient(1/(r2*r12));

t = expand(t - s1/(r2*r12));#cleanup

#n1 = numerator(s1);

s1 = s1.collect(r1);

show("=========2");

show ("\n 1/(r2*r12) coeff = ",expand(s1));

#-------------------------

show("===========3");

show("==========");

s1 = t.coefficient(1/(r1));

t = expand(t - s1/(r1));#cleanup

show ("s1, 1/r1 coeff = ",s1.collect(r2));

s2 = t.coefficient(1/(r2));

t = expand(t - s2/(r2));#cleanup

show("=========4");

show ("s2, 1/r2 coeff = ",s2);

show("=========5");

s1 = t.coefficient(1/r12);

t = expand(t - s1/r12);#cleanup

#s1 = s1.simplify();

show ("s1, 1/r12 coeff = ",s1);

show("=========6");

t = t.collect(r1);

show("term (after 1/r1, 1/r2, & 1/r12 removal)= ",t);
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show("=========");
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