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Avoiding the cubic equation in finding the van der Waals Fluid’s vapor pressures

Carl David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: September 4, 2017)

The van der Waals coexistence curve of liquid and vapor volumes as functions of the temperature
(all in reduced coordinates) as well as the correspponding vapor pressures at these temperatures, is
obtained using SageMath, a symbolic calculus/algebra computer programming language.The lack
of correspondence of the coexistence locus’ analytical form as obtained herein and those of Lekner
remains disconcerting.

I. INTRODUCTION

The van der Waals [1] equation rep-
resents the first attempt at understand-
ing phase behavior which has pedagogi-
cal legs to stand on. It offers (when cou-
pled with the Maxwell construction[2])
several opportunities to address matters
which are rarely addressed with analyt-
ical mathematical precision when dis-
cussing phases and their interrelation-
ships.

Coupled with the elementary deriva-
tion of the critical temperature, pressure
and volume based on the two van der
Waals constants a and b, the Maxwell
construction allows treatment of the
equality of chemical potentials of ℓiquid
and vapor when two phase equilibrium
is established[3]. It is also very close to
the first chemistry oriented application
of calculus, with the attendant rational-
ization for 2 arduous years of mathemat-
ical preparation for Physical Chemistry
study.

Further, the van der Waals treatment
allows students the opportunity to learn
about cubic equations, including their
solution [4]. Since this is a topic not

taught in American schools, teaching it
adds to the algebraic armamentarium of
students in an environment which is di-
rectly applied to their presumed interest.

Finally, there is a method not widely
known for obtaining the coexistence
curve between vapor and ℓiquid. This
curve exists in the p−v−T space (using
reduced variables throughout). It’s pro-
jection onto the p−v plane is well known
and drawn in every Physical Chemistry
text (or used to be). Drawn, because it’s
analytical form was, generally speaking,
not known.

In my earlier papers, the vapor pres-
sure curve for the van der Waals’ fluid
was established, and verified by com-
puting the actual molar reduced vapor
and ℓiquid volumes at fixed tempera-
tures (below the critical temperature)
using the Maxwell construction employ-
ing the explicit solution of the cubic
equation that the van der Waals equa-
tion actually is. After having the orig-
inal paper rejected by J. Chem. Ed.
and Am. J. Physics, for reasons which
made no sense, the paper was released on
UConn’s digital commons site, and two
subsequent papers were sent there (with-
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out subjecting them to editorial prej-
udices). I then stumbled on a paper
by Lekner [5] which implied that there
was more known than my brute force
method of solving cubic equations, and
so I set out to verify Lekner’s paper.
This turned out to be quite difficult,
hence this contribution.
The vapor pressure curve of Lekner has

a completely different shape from the
one normally published. It also looks
different from the vapor pressure versus
temperature curves that we’ve come to
expect.

II. INTRODUCTORY REVIEW

The van der Waals equation is

p =
RT

v − b
− a

v2
(1)

and the reduced van der Waals equation
can be written as

pr =
8Tr

3vr − 1
− 3

v2r
(2)

In what follows, we will attempt to re-
cast Lekner’s calculations using the re-
duced equation of state form rather than
the original one ne employed.

A. Converting to reduced co ordinates

Our Maxwell construction requires us
to compute

∫
pdv −

∫
pvpdp But we do

not want our computations to involve
the van der Waals constants a and b, so

with pr = p/pc, Tr = T/Tc and vr =
v/Vc the integration becomes becomes

FIG. 1. The Maxwell construction. An isotherm, withT < tc
or Tr < 1. ptest is adjusted until the two colored areas are
equal. In the case shown, ptest is too high (the blue area is
smaller than the green one) so the two areas are not equal
(and their sum is therefore not zero).When ptest is properly
chosen (the sum of the two areas is zero), ptest → pvp, the
vapor pressure at this particular temperature.

∫
pr��pcZZvcdvr −

∫
pvpr �

�pvpc ZZvcdvr i.e., the can-
celation works because the resultant will
be forced to zero:

∫
prdvr−

∫
pvpr dvr → 0

The right hand side pressure (pvpr ) is a
constant, while the left hand side pres-
sure (pr) comes from Equation (2) pr =
8Tr

3vr−1 −
3
v2r

B. The Maxwell construction

Figure shows the Maxwell construct
which requires us to perform the fol-

lowing integrals:
∫ (

8Tr

3vr−1 −
3
v2r

)
dvr −∫

pvpr dvr from the smallest root to the
center root, and from the center root to
the largest root, so that the sum of these
two integrals is zero. Thus, we have

∫ central

smallest pdv +
∫ largest

central pdv −
∫ central

smallest p
vpdv −

∫ largest

central p
vpdv = 0
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where we are dropping the reduced des-
ignation and taking it for granted in

what follows. This which means

∫ central

smallest

(
8T

(3v − 1)
− 3

v2

)
dv +

∫ largest

central

(
8T

(3v − 1)
− 3

v2

)
dv

− pvp(vlargest − vsmallest) = 0 (3)

We re-write this is slightly better form:∫ vcentral

vsmall

(
8RT

(3v − 1)
− 3

v2

)
dv +

∫ vlarge

vcentral

(
8T

(3v − 1)
− 3

v2

)
dv

− pvp(vlargest − vsmallest) = 0 (4)

which becomes

������������8

3
Tℓn(3vcentral − 1)− 8

3
Tℓn(3vsmall − 1) +

3

vcentral
− 3

vsmall

+
8

3
Tℓn(3vlarge − 1)−

������������8

3
Tℓn(3vcentral − 1)− pvp(vlargest − vsmallest) = 0 (5)

Combining terms, we have

8

3
Tℓn

(
3vlarge − 1

3vsmall − 1

)
+

3

vlarge
− 3

vsmall

− pvpvlarge + pvpvsmall = 0 (6)

which we re-write as

8

3
Tℓn

(
3vg − 1

3vℓ − 1

)
+

3

vg
− 3

vℓ
−pvpvg+pvpvℓ = 0

(7)
to emphasize the gas and ℓiquid ends of
the isotherm’s intersection with the con-

stant vapor pressure.

C. Removing T and pvp from these expressions

Equation 7 needs to be manipulated
one more time before we’re done. We
note that the vapor pressure at the T−vg
and the T−vℓ breakpoints is the same, so
we can substitute for the vapor pressure
using either breakpoint as we see fit. We,
of course, substitute in the way which
makes the most sense, combinging vapor
or gas values on the one hand and ℓiquid
values on the other. We obtain:

8

3
Tℓn

(
3vg − 1

3vℓ − 1

)
+

3

vg
− 3

vℓ
−
(

8T

3vg − 1
− 3

v2g

)
vg +

(
8T

3vℓ − 1
− 3

v2ℓ

)
vℓ = 0 (8)
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This transformation is now specific to
the Maxwell construction. We see that
the pressure at the terminus of the liq-
uid part of the isotherm with the liquid
vapor coëxistence constant pressure lo-
cus, and the same pressure at the other
end of this locus when the vapor pressure
morphs into the pressure of the vapor
(or gas) have been explicitly included.
Thus, we have removed pvp from Equa-
tion 7.

Next, we need to remove T . We had

pvp =
8T

3vg − 1
− 3

v2g
andpvp =

8T

3vℓ − 1
− 3

v2ℓ
(9)

so, combining these two we obtain an
equation for T in terms of vg and vℓ, i.e.,

widetext

8T

3vg − 1
− 3

v2g
=

8T

3vℓ − 1
− 3

v2ℓ
(10)

or

T

(
8

3vg − 1
− 8

3vℓ − 1

)
=

3

v2g
− 3

v2ℓ
(11)

so

T =

3
v2g
− 3

v2ℓ(
8

3vg−1 −
8

3vℓ−1

) (12)

Lekner claims that this equation for T
and the earlier Equation 8 where known
to Gibbs [6].

D. Abhorring hand calculations

The messiness of the manipulations re-
quired to continue makes it manifest
that alternative methods must be em-
ployed.
And, this is the 21st century!
So we use Sage which has a cloud ver-

sion which means we can use it where
ever the web is available (we actually
started with wxMaxima, but found Sage
easier, especially for internal plotting).
The central trick concerns an Ansatz for
the term 3vℓ−1 and 3vg−1. The relevant
Sage code is

eqn5 = eqn4.subs(vg = (exp(d)*f+1)/3)

eqn6 = eqn5.subs(vl = (exp(-d)*f+1)/3)

i.e.,

vg =
f(d)ed + 1

3

and

vℓ =
f(d)e−d + 1

3

The genius of this Ansatz is that

f(d)eg(d) and f(d)e−g(d) leads to can-

celation of f(d) in the logarithms, and
converts the resulting equation into a
straightforward algebraic equation for
f(d). Solving this equation is non-
trivial.

The Sage code displayed below obtains
f(d) as



5[
f = 0, f = −

2 e(2 d) log
(
fe(−d)

)
− 2 e(2 d) log

(
fed

)
+ e(4 d) − 1(

e(3 d) + ed
)
log

(
fe(−d)

)
−
(
e(3 d) + ed

)
log (fed) + 2 e(3 d) − 2 ed

]
(13)

It is hard to understand why no matter what I try, simplification of this expression
fails.

var(’p’,’T’,’vg’,’vl’,’v’,’d’,’f’,’yl’,’yg’,’d’,’p’)

de = 1

p = 8*T/(3*v-1)-3/v^2

pvg = p.subs(v=vg);

pvl = p.subs(v=vl);

show(pvg)

show(pvl)

assume(v>0)

assume(3*vl-1>0)

assume(vg>vl)

int1 = p.integral(v,vl,vg)#integrate from vl to vg

show(int1)

eqn1 = int1 - (pvg*vg - pvl*vl)# subtract constant pressure integration

print ("===========================================")

print("eqn1 = ",eqn1)

show(eqn1)

print ("===========================================")

Teqn = 8*T/(3*vg-1)-3/vg^2 -(8*T/(3*vl-1)-3/vl^2)

print ("===========================================")

print ("T eqn = ",Teqn)

show(Teqn)

print ("===========================================")

eqn2 = solve(Teqn == 0,T)

print ("===========================================")

print("SOLUTION TO Temperature Equation, eqn2")

show(eqn2)



6

eqn3 = eqn1.subs(eqn2[0])

print("The relevant solution")

show(eqn3)

eqn3a = eqn3.simplify()

show(eqn3a)

print("eqn3a = ")

eqn3b = eqn3a.normalize()

print("eqn3b = ")

show(eqn3b)

print ("ratnum equivalent(?) follows")

eqn4 = eqn3b.numerator()

print("eqn4 = ")

show(eqn4)

eqn5 = eqn4.subs(vg = (exp(d)*f+1)/3)#3*vg-1=f*exp(d) so vg = (fe^d+1)/3

eqn6 = eqn5.subs(vl = (exp(-d)*f+1)/3)#3*vl-1=f*exp(-d)

eqn7 = solve(eqn6==0,f)

eqn7 = simplify(eqn7)

print ("eqn7 = solve(eqn6==0,f)")

show(eqn7)

The first two parts of the following, i.e., the numerator of equation 13,

2 e(2 d) log
(
fe(−d)

)
− 2dė(2 d) log

(
fed

)
+ e(4 d) − 1

should be

2 e(2 d) log (f) + 2e(2 d) log
(
e(−d)

)
− 2 e(2 d) log

(
fed

)
+ e(4 d) − 1

or

2 e(2 d) log (f)− 2de(2 d) − 2 e(2 d) log
(
fed

)
+ e(4 d) − 1

and then the second part should read

���������
2 e(2 d) log (f)− 2de(2 d)((((((((((

−2 e(2 d) log (f)− 2 e(2 d) log
(
ed
)
+ e(4 d) − 1

or

−2de(2 d) − 2d e(2d ) + e(4 d) − 1
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or, finally,

−4de(2 d) + e(4 d) − 1

Why Sage can’t do this is beyond me.
The denominator of the expression in question should also simplify. We have(

e(3 d) + ed
)
log (f)− d

(
e(3 d) + ed

)
−

(
e(3 d) + ed

)
log

(
fed

)
+ 2 e(3 d) − 2 ed

Or, again(
e(3 d) + ed

)
log (f)− d

(
e(3 d) + ed

)
−
(
e(3 d) + ed

)
log (f)− d

(
e(3 d) + ed

)
+ 2 e(3 d) − 2 ed

i.e.,

−2d
(
e(3 d) + ed

)
+ 2 e(3 d) − 2 ed

So the solution we seek is

f =
−4de(2 d) + e(4 d) − 1

−2d
(
e(3 d) + ed

)
+ 2 e(3 d) − 2 ed

(14)

Using CoCalc (SageMath) in a clearly kludgy way, we have the following sim-
plification [7]:

print ("===========================================")

print("eqn 8 = eqn7[1].rhs()")

eqn8 = (eqn7[1].rhs())

eqn81 = eqn8.numerator();

show(eqn81)

eqn81a= eqn81.substitute(log(f*e^(-d))==log(f) -d)

#show(eqn81a)

eqn81b = eqn81a.substitute(log(f*e^(d))==log(f) +d)

#show(eqn81b)

eqn81c = eqn81b.substitute(log(f*e^(-2*d))==log(f) -2*d)

#show(eqn81c)

eqn81d = expand(eqn81c.substitute(log(f*e^(2*d))==log(f) + 2*d))

show(eqn81d)

latex(eqn81d)
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eqn82 = eqn8.denominator();

show(eqn82)

eqn82a= eqn82.substitute(log(f*e^(-d))==log(f) -d)

#show(eqn82a)

eqn82b = eqn82a.substitute(log(f*e^(d))==log(f) +d)

#show(eqn82b)

eqn82c = eqn82b.substitute(log(f*e^(-2*d))==log(f) -2*d)

#show(eqn82c)

eqn82d = expand(eqn82c.substitute(log(f*e^(2*d))==log(f) + 2*d))

show(eqn82d)

latex(eqn82d)

final = eqn81d/eqn82d

show(final)# vg = (fe^d+1)/3

latex(final)

plot(final,(d,0.0,1),axes_labels=[’$d$ axis’,’f’],axes=True)

vg = ((exp(d)*final+1)/3)

vl = ((exp(-d)*final+1)/3)

print("limit vg(0) = ",limit(vg,d=0))

p = plot((vg,vl),(d,0,1),

axes_labels=[’$d$ axis’,’$v_g,v_{\ell}$ axis’],axes=True)

show(vg)

show(vl)

show(p)

The SageMath[8] output for the end re-
sults follow:

4 de(2 d) − e(4 d) + 1 (15)

for the numerator and

−2 de(3 d) − 2 ded + 2 e(3 d) − 2 ed (16)

for the denominator, so we finally have

− 4 de(2 d) − e(4 d) + 1

2
(
de(3 d) + ded − e(3 d) + ed

) (17)

This is in agreement with the hand re-
sult in Equation 14, which is heartening.
However, it does not appear to agree
with Lekner’s result:

d cosh (d)− sinh (d)

cosh (d) sinh (d)− d
(18)

i.e.,

−
2
(
de(−d) + ded + e(−d) − ed

)
4 d− e(2 d) + e(−2 d)

(19)

I need to apologize for the lack of so-
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FIG. 2. vg and vℓ as functions of d. It appears disconcerting
it vide supra that the two meet with a discontinuity, as nor-
mal behavior shows them approaching each other “smoothly”.
That they both approach a value of 1 at d = 0 indicates con-
sistency with expected reduced volume behavior.

FIG. 3. The T (d) plot, showing the proper behavior at d = 0,
where the reduced absolute temperature is 1.

phistication in the Sage coding. Assum-
ing I am typical, there is a large element
of trial and error in creating mathemat-
ics in this kind of environment, since
each of the systems currently in use use
slightly different notation for common
operations in calculus and algebra. I’ve
left the code in it’s naked form rather
than attempting dressing it in finery.
The resultant vg and vℓ plots are shown

here:

The SageMath code for the final plot in this paper is shown here:

from sage.manifolds.utilities import set_axes_labels

y=1

p1 = parametric_plot3d( (

volume(x,y),

Temp(x),

pressure(x)

), (x, 0.01, 1.99) , plot_points=50,frame=False)

y=2

p2 = parametric_plot3d( (

volume(x,y),

Temp(x),

pressure(x)

), (x, 0.01, 1.99) , plot_points=50,frame=False)

p3 = p1 + p2
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p4 = set_axes_labels(p3, ’pressure’,’Temperature’,’volume’, color=’red’)

#p3.set_axes_labels=([’p’,’T’,’$v])

from sage.plot.plot3d.plot3d import axes

S =axes(2,color=’black’)

show(p4+S)

p5 = p4+S

p5.save(’vdw4-fig4.png’)

The table of values refer-
enced in the SageMath cod-
ing is partly reproduced herein:
d T vg vℓ p

0.01 0 0.99999 1.0067 0.99337 0.99996
1.01 0.89911 2.3611 0.60232 0.64426
2.01 0.70029 7.7960 0.46731 0.20088
3.01 0.52842 33.303 0.41344 0.040035
The code took lots of tinkering and

fooling around to make it work, as is
typical in this method of doing calcu-
lus/algebra using symbolic mathematics

on computers.

Presumably, expensive programs such
as Mathematica and Maple can allow
more elegant solutions, especially to the
plotting problem discussed herein. To
the best of my knowledge, including
the bounding box of this plot forces
the axes to be labelled inappropriately.
Of course, over the coming years, bet-
ter plotting programs will handle these
problems better than I could.

III. ACKNOWLEDGEMENTS
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FIG. 4. The 3 dimensional p−v−T coexistence locus, showing
the pvp versus vℓ and T for v < 1 and versus vg and T for
v > 1. The continuity at the critical point is heartwarming.
The crudity of labels and axes is the best that I could do with
sagemath parametric plot.The vertical axes is the p axes. v
runs left to right. On screen, one can rotate and enlarge the
figure which helps.
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