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Fugacity Examples 2: The fugacity of a hard-sphere semi-ideal gas and the van der
Waals gas

C. W. David (Emeritus)∗

Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060

The fugacity of the vander Waals gas is obtained after a review of the concept itself.

I. INTRODUCTION

The fugacity is a strange concept which is introduced
into Physical Chemistry with the intent of preserving the
notational convenience of formulas which apply to ideal
gases when one is studying real ones. This paper is a
return to the subject handled earlier [1], but with an em-
phasis this time on the derivation of the fugacity function
for the van der Waals gas. In addition, the fugacity of a
fictitious hard-sphere type gas is also obtained.

II. PAST TREATMENTS

Students complain bitterly that studying two years of
calculus and one year of physics based calculus is a waste
of time for chemists. Perhaps they are right. But since all
chemists will study Physical Chemistry and since the cur-
riculum traditionally consists of trying to convince stu-
dents that the formulas they use are valid, an emphasis
on calculus in the Physical Chemistry curriculum seems
warranted.

Here, we re-discuss the fugacity [1], a concept in-
troduced once one starts studying thermodynamics (in
chemistry). It is a strange concept indeed.

An example of an early treatment can be found in the
venerable Prutton and Lando [3], who write that, per
mole, the free energy (Gibbs) would be

G = RT`nf +B

where B is a temperature dependent constant, and

Go = RT`nfo +B

is the Gibbs’ free energy in the “standard state”. Then

G−Go = RT`n
f

fo

Moore [4] defines the fugacity as

dG = RTd`nf

∗Carl.David@uconn.edu

so that integrating “between the given state and some
freely chosen standard state, we obtain”

µ = µo +RT`n
f

fo

For an ideal gas, µig = µoig + RT`np is our starting
point; this equation has units inside the logarithm, some-
thing which is totally inappropriate. There exist texts
which write µig = µoig +RT`n p

1 atm showing that the ar-
gument of the logarithm is atm/atm (or bar/bar), i.e.,
unitless where the 1 in the denominator is assumed to be
in (or define) the same units as the numerator.

III. DEFINITIONS AND PRECURSOR
MATERIALS

We start with the primitive definition(
∂Ḡ

∂p

)
T

= V̄

i.e., ∫
dḠ =

∫
V̄ dp

We will here define a dimensionless variable, z, defined
as

z ≡ p

pstd
(3.1)

so ∫
dḠ =

∫
V̄ pstddz

V̄ = nRT
p with n = 1, i.e., V̄ = RT

p = RTpstd
z . Then∫

dḠ =

∫
V̄ pstddz =

∫
RT

zpstd
(pstddz) =

∫
RT

z
dz

It is customary to now employ indefinite integration
to introduce two constants of integration, one on the left
and the other on the right, i.e.,

Ḡ+ C1 = RT`nz + C2
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Back-substituting, we have the traditional (possibly de-
fective) form

Ḡ+ C1 = RT`n
p

pstd
+ C2

where the traditional form can be achieved by declaring
pstd to be 1 (“atm in the older literature, “bar in the
newer texts), i.e.,

Ḡ+ C1 = RT`np+ C2

(The form of the equation Ḡ + C1 = RT`np + C2 i.e.,
the natural occurrence of the natural logarithm of p, is
what motives the subsequent definition/invention of the
fugacity as a “fudged” pressure. By employing the fugac-
ity instead of the pressure, we can treat both ideal and
non-ideal gases using the same functional form.)

For the ideal gas, one has that the constant of integra-
tion is fixed by a choice of standard state, i.e., p = 1bar,

so that

Ḡideal[T, p] + C1 = RT`np+ C2

(there is a unit problem here, with the natural loga-
rithm of a pressure showing) where C2 = −RT`n1 and
C1 → −Ḡideal[T, p = 1] ≡ Ḡoideal[T ], so that one can
write (using square brackets to indicate functionality)

Ḡideal[T, p]− Ḡoideal[T ] = RT`n
p

1

Ḡideal[T, p] = Ḡoideal[T ] +RT`n
p

p0
(3.2)

The first form is the form that would have been obtained
had we done a definite integral between p = 1bar and
p = pbars. It is noteworthy that the letter “p” appears
in these formulii several times with different meanings
depending on where it is placed.

∫
dḠ =

∫
RT

x
dx = RT

∫
d`nx = RT`nx+′ a constant of integration′ (3.3)

conforms better to the notation used in introductory cal-
culus courses. This means that choosing the standard
state to be that of an equivalent amount of an ideal gas
at 1 bar leads to lots of not-so-fortuitous cancellations
and simplifications.

IV. A FICTITIOUS HARD SPHERE KIND OF
GAS [2]

Consider the non-ideal (wholly fictional) gas whose
configurational partition function is

Z =
(V −Nσ)N

N !
Λ

3N
2 λN

where Λ is the standard translational partition function,
and λ is the internal atom/molecule partition function
which includes electronic, vibrational, rotational, etc.,
energy terms. It is known that the Helmholtz Free En-
ergy for this gas is

A

kT
= −N`n(V −Nσ)− 3N

2
`nΛ−N`nλ+ `nN !

since A = −kT`nZ. The pressure of this gas (given by
the expression

(
∂A
∂V

)
T

= −p) is

pV = NkT +Npσ

and the Gibbs Free Energy (which is given by G = A +
pV) is

G

kT
= −N`nNkT

p
− 3N

2
`nΛ−N`nλ+N`nN +

p

kT
Nσ

Therefore, the partial molar Free Energy, the chemical
potential (per molecule), is

1

kT

(
∂G

∂N

)
T,p

=
µ

kT
= −`n

(
kT

p

)
− 3

2
`nΛ− `nλ+

pσ

kT

i.e.,

µ = kT`n
( p

kT
Λ−

3
2λ−1e+pσ/kT

)
and, multiplying appropriately by NAvogadro, we obtain
the “per mole” value

µ = RT`n
( p

kT
Λ−

3
2λ−1e+pΣ/RT

)
As p→ po we expect to pass to the “standard state”, i.e.,

µo = µ(p→ po) = RT`n
( po
RT

Λ−
3
2λ−1e+poΣ/RT

)
where Σ is NAvogadro × σ.

Rewriting, we have

µ− µo = RT`n
( p

RT
Λ−

3
2λ−1e+pΣ/RT

)
−RT`n

( po
RT

Λ−
3
2λ−1e+poΣ/RT

)
(4.1)
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which we wish to write in something like the form:

µ = µo +RT`nf

Clearly, we have from Equation 4.1:

µ− µo = RT`n
( p

RT
e+pΣ/RT

)
−RT`n

( po
RT

e+poΣ/RT
)

= RT`n

(
p

po
e+(p−po)Σ/RT

)

This suggests using (for real, i.e., non-ideal gases, in anal-
ogy with Equation 3.2)

Ḡreal[T, p]− Ḡoreal[T ] = RT`n
f

fo
(4.2)

where fo is the fugacity in the standard state (of the
non-ideal gas).

We therefore seem to have a definition of the fugacity,
i.e.,

f =
p

RT
Λ−

3
2λ−1e+pΣ/RT

and

fo =
po
RT

Λ−
3
2λ−1e+poΣ/RT

so that

Ḡreal[T, p]−Ḡoreal[T ] = RT`n
f

fo
= RT`n

(
p

po
e+(p−po)Σ/RT

)
(4.3)

where po is the pressure at the standard state.
This would enable us to write, subtracting Equation

3.2 from Equation 4.2,

(Ḡreal[T, p]− Ḡoreal[T, p = 1 bar])− (Ḡideal[T, p]− Ḡoideal[T ]) = RT`n
f

fo
−RT`np

1

If the standard state of the real (non-ideal) gas is chosen
to be the standard state of an ideal gas at po=1 bar, (i.e.,
choosing Ḡoreal[T ] = Ḡoideal[T ]) one obtains

Ḡreal[T, p]−Ḡideal[T, p]−
(
Ḡoreal[T ]− Ḡoideal[T ]

)
= RT`n

f
p

fo

1

and since Ḡideal[T, p]− Ḡoideal[T ] = 0

Ḡreal[T, p]− Ḡideal[T, p] = RT`n
f/p

fo/1
= RT`n

f/fo

p/1
(4.4)

Further

lim
p→0

f

p
= 1

where the fugacity shares the same units as the pressure.
As the pressure approaches zero, all gases become ideal,
and therefore the fugacity approaches the pressure and
their ratio approaches unity.

V. CONVENTIONAL DETERMINATION OF
FUGACITY

For a real gas

dḠ = V̄ dp

and for an ideal gas

dḠideal = V̄idealdp

the difference between the two can be integrated from
some low pressure Plo to the pressure desired (This is
the standard argument based on Equation 4.4.) (as the
Gibbs Free Energy of the non-ideal gas approaches that
of the ideal gas at low pressure, and therefore their dif-
ference vanishes at this lower limit):∫ Pdesired

Plo

d(Ḡ− Ḡideal) =

∫
d

(
RT`n

f/fo

p/1

)

∫ Pdesired

Plo

d(Ḡ− Ḡideal) =

∫ Pdesired

Plo

(V̄ − V̄ideal)dp
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which is

(Ḡ− Ḡideal)
∣∣Pdesired

Plo
=

∫ Pdesired

Plo

(V̄ − RT

p
)dp

or

(Ḡ[Pdesired]− Ḡ[Pdesired]ideal)− (Ḡ[Plo]− Ḡideal[Plo]) =

∫ Pdesired

Plo

(V̄ − RT

p
)dp

so that, in the limit Plo → 0 we have

lim
p→0

(Ḡ[Plo]− Ḡideal[Plo])→ 0

and thus we finally obtain

(Ḡ[Pdesired]−Ḡideal[Pdesired]) =

∫ Pdesired

0

(V̄ [T, pdesired]−
RT

p
)dp

(5.1)

where we are emphasizing the functional dependence of
V̄ on T and pdesired.

We re-write this equation as

(Ḡ[T, Pdesired]− Ḡideal[T, Pdesired]) =

∫ Pdesired

0

(
V̄ [T, x]− RT

x

)
dx = RT`n

fdesired
pdesired

(5.2)

to emphasize that the p inside the integral is a dummy
variable.

VI. THE VAN DER WAALS FUGACITY;
DOING THE INTEGRATION EXPLICITLY

The van der Waals [1] in obtained by explicit inte-
gration and requires some attention to limits and other

aspects of calculus which are worthy of review in this
context.

Since the integration by parts required here can be
confusing, it is included here in some detail. We had (in
Equation 5.2):

(Ḡ[pdesired, T ]− Ḡ[pdesired, T ]ideal) =

∫ pdesired

0

(
V̄ [x, T ]− RT

x

)
dx

but now, we use the van der Waals equation of state(
p+

a

V̄ 2

)
(V̄ − b) = RT

(admittedly, with p = x when we do the substitution,

so as to reduce the numbers of confusing pressures being
discussed) which can not be solved for V̄ in order to do
the integration classically. Instead, we attempt integra-
tion by parts (knowing that we will eventually go to the
limit plo → 0), i.e.,

∫ pdesired

plo

(
V̄ [x, T ]− RT

x

)
dx = xV̄ [x, T ]

∣∣pdesired
plo

−
∫ iV̄ [pdesired,T ]

V̄ [plo,T ]

xdV̄ −
∫ pdesired

plo

(
RT

x

)
dx
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or, suppressing the functionality of V̄ ,

(Ḡ[pdesired, T ]− Ḡideal[pdesired, T ]) =

(
RTV̄

V̄ − b
− aV̄

V̄ 2

)∣∣∣∣pdesired
plo

−
∫ pdesired

plo

(
RT

V̄ − b
− a

V̄ 2

)
dV̄ −

∫ pdesired

plo

(
RT

x

)
dx

or, again using plo rather than zero, and knowing that we will pass to the limit plo → 0 later, we have

=

(
RTV̄

V̄ − b
− aV̄

V̄ 2

)∣∣∣∣pdesired
plo

−RT `n(V̄ − b)
∣∣V̄ [pdesired]

V̄ [plo]
− a

V̄

∣∣∣V̄ [pdesired]

V̄ [plo]
−RT `nx|pdesiredplo

which is

=
RTV̄ [pdesired]

V̄ [pdesired]− b
− a

V̄ [pdesired]
−
��

�
��*

RT
RTV̄ [plo]

V̄ [plo]− b
+
�
�
��>

0
a

V̄ [plo]

−RT`n(V̄ [pdesired]− b) +RT`n(V̄ [plo]− b)

− a

V̄ [pdesired]
+
�
�
��>

0
a

V̄ [plo]

−RT`npdesired +RT`nplo (6.1)

since V̄ [plo] > b, as V̄ [plo]→∞ i.e., V̄ [plo]− b→ V̄ [plo],
we have

lim
V̄ [plo]→∞

RTV̄ [plo]

V̄ [plo]− b
= RT

and

lim
V̄ [plo]→∞

a

V̄ [plo]
= 0

we have

RTV̄ [pdesired]

V̄ [pdesired]− b
− 2a

V̄ [pdesired]
−RT

−RT`n
(
V̄ [pdesired]− b
V̄ [plo]− b

)
−RT`n

(
pdesired
plo

)
(6.2)

and, passing to the limit plo → 0, we have

=
RTV̄ [pdesired]

V̄ [pdesired]− b
− 2a

V̄ [pdesired]
−RT −RT`n

((
pdesired(V̄ [pdesired]− b)

)(
plo(V̄ [plo]− b)

) )
(6.3)

But

pV̄ − b) +
a

V̄ 2
= RT → (p(V̄ − b) = RT − a(V̄ − b)

V̄ 2

so

=
RTV̄ [pdesired]

V̄ [pdesired]− b
− 2a

V̄ [pdesired]
−RT −RT`n


(
RT − a(V̄ [pdesired]−b)

V̄ [pdesired]2

)
(
RT − a(V̄ [plo]−b)

V̄ [plo]2

)
 (6.4)
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dividing through by RT inside the logarithm, we have

=
RTV̄ [pdesired]

V̄ [pdesired]− b
− 2a

V̄ [pdesired]
−RT −RT`n


(

1− a(V̄ [pdesired]−b)
RTV̄ [pdesired]2

)
(

1−���
���: 0

a(V̄ [plo]−b)
RTV̄ [plo]2

)
 (6.5)

or, in the limit V̄ [plo, T ]→∞ we have

=
RTV̄ [pdesired]

V̄ [pdesired]− b
− 2a

V̄ [pdesired]
−RT −RT`n

(
1− a(V̄ [pdesired]− b)

RTV̄ [pdesired]2

)
(6.6)

or,

=
RT (V̄ [pdesired]− b+ b)

V̄ [pdesired]− b
− 2a

V̄ [pdesired]
−RT RT (V̄ [pdesired]− b)

V̄ [pdesired]− b
−RT`n

(
1− a(V̄ [pdesired]− b)

RTV̄ [pdesired]2

)
(6.7)

and multiplying RT by 1 (the third term disguised as RT (V̄ [pdesired]−b)
V̄ [pdesired]−b = 1 )

=
RT (V̄ [pdesired]− b+ b)

V̄ [pdesired]− b
− 2a

V̄ [pdesired]
−RT RT (V̄ [pdesired]− b)

V̄ [pdesired]− b
−RT`n

(
1− a(V̄ [pdesired]− b)

RTV̄ [pdesired]2

)
(6.8)

After some further algebraic manipulations, what finally emerges is the result quoted [5], i.e.,

RT`n
f

pdesired
=

RTb

V̄ [pdesired]− b
− 2a

V̄ [pdesired]
−RT`n

(
1− a(V̄ [pdesired]− b)

RTV̄ [pdesired]2

)
(6.9)

A. Is there a reduced form for the van der Waals
fugacity?

Assuming

pc =
a

27b2
→ a = 27b2pc

and

vc = 3b

(we have changed to lower case v for the molar volume)
we obtain

RT`n
f

pdesired
=

RT vc
3

v[pdesired]− vc
3

− 2(27b2pc)

v[pdesired]
−RT`n

(
1−

(27b2pc)
(
v[pdesired]− vc

3

)
RTv[pdesired]2

)
(6.10)

which becomes, changing to reduced molar volumes (vr is the new dependent variable)

RT`n
f

pdesired
=

RT vc
3

vrvc − vc
3

−
2(27

(
vc
3

)2
pc)

vrvc
−RT`n

(
1−

(27
(
vc
3

)2
pc)
(
vrvc − vc

3

)
RT (vrvc)2

)
(6.11)

or

RT`n
f

pdesired
=

RT

3(vr − 1)
− 6vcpc

vr
−RT`n

(
1− vcpc(vr − 1)

RTv2
r

)
(6.12)

The inelegance of these formulas is a powerful antidote
to pursuing the issue further.

VII. CONCLUSIONS

The are no gases such as the two used here. The value
of the discussion, in my mind, concerns pure pedagogy,
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i.e., having concrete examples to deal with, so that when
one is dealing with real data, and doing the integrations
numerically, one can check the algorithm for numerical
integration against these known values. And then again,
perhaps there is no value at all.
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