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Plotting the van der Waals Fluid in pseudo-3D and the Maxwell Construction∗

Carl W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: April 8, 2016)

The van der Waals (from his thesis of 1873) equation is a cubic in the molar volume. Plotting
the equation in pseudo 3 dimensions is quite simple to do, but including tie lines is quite difficult.
Employing the solutions to the cubic van der Waals equation, the tie lines are readily available and
can be easily incorporated into the aforementioned 3D plots.

I. INTRODUCTION

A. Intro 1

After studying the ideal gas, one usually is introduced
to non-ideal behavior by means of the van der Waals gas,
whose traditional molar form is (p+ a/v2)(v − b) = RT .
Two competing effects are accounted for in this equa-
tion of state, the attraction between molecules (a) and
the finite volume of molecules (b), although these asso-
ciations are not explicitly derivable from first principles.
Since this equation of state is continuous with continu-
ous derivatives when viewed as p(v, T ), it clearly can not
show or even imitate the behavior of a real fluid below the
critical temperature without some ad hoc adjustments.

But it does display an interesting behavior with tem-
perature; it has a critical temperature above which
the pressure monotonically decreases with volume at
fixed temperature. Below the critical temperature, the
isotherms show pathological behavior which is clearly
non-physical. When plotted, isotherms at temperatures
below the critical temperature show a local minimum and
a local maximum; this behavior of the extrema in the
vicinity of the critical temperature is usually used to ob-
tain the relationship between the two constants, a and
b, and the critical constants, vc, pc and Tc. The deriva-
tion is a standard one found in all textbooks of physical
chemistry which cover gases, liquids and solids.

Further, the van der Waals equation can be recast into
a form in which the molecular constants (a and b) are
suppressed via a reduced form in which pressure, vol-
ume and temperature are replaced by reduced variables
related to the original ones by the critical values of the
same variables. This leads to the concept of a universal
equation of state, i.e., one which would apply to all sub-
stances. This turns out to be a non-viable task, but the
idea is propounded anyway.

Finally, the concept generally referred to as continuity
of states which, in large measure serves as justification
for studying this equation of state, is introduced imply-
ing that fluids, both gases and liquids share some com-
monality of behavior.

∗ This is the second of two articles published on this topic[2].

Since no substance actually obeys the van der Waals
equation, interest in teaching and learning about it ad-
dresses the analytic nature of the van der Waals equation
and the actual behavior of phases of pure substances
(van der Waals arguments have been extended to mix-
tures (and polymer mixtures) ([5]) also) as compared to
the predictions of this particular equation of state. Thus
the van der Waals equation has no discontinuities in the
p(v, T ) space, but the real isotherm of any substance be-
low its critical temperature shows two values of the vol-
ume in which the first derivative of the pressure with
respect to the volume is discontinuous. Between these
two volumes, the pressure does not change with volume,
something clearly not included in the van der Waals equa-
tion. The pressure at which this occurs is, of course, the
vapor pressure of the liquid. The discontinuity at the
smallest volume corresponds to the volume of the liquid
as it stays in equilibrium with the vapor (gas) represented
by the other larger volume at the other discontinuity.

In order to reconcile the two views, the van der Waals
continuous picture, and reality, the Maxwell construc-
tion is invoked. This algorithm consists of imagining a
temporary pressure, finding the areas of the two loops
this pressure demarcates, and adjusting the value of this
pressure until the areas between the two loops and the
constant pressure line are equal (and opposite in sign,
i.e., cancel).

B. Intro 2

The van der Waals equation is a cubic equation in v
(the molar volume) whose solution is rarely addressed
([1, 3, 6]); cubics are difficult to solve and not part of the
normal armamentarium of physical chemistry students.
Further, one needs analytical solutions, not numeric ones
to actually carry out the Maxwell construction and ob-
tain the vapor pressure at any predetermined tempera-
ture. There no longer exists a reason for avoiding the
details of this computation, as computer assisted calcu-
lus programs and spreadsheets have made it simple to
manipulate the complicated expressions that constitute
the traditional cubic polynomial solutions (vide supra).

The Maxwell construction [4] (vide infra) requires
that one has the three roots (if T < Tc) of the cu-
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bic van der Waals equation so that one can integrate
(pvdW − ptrial) dv from the first (smallest) to the second,
and from the second to the third (largest), whereupon
one adds these two integrals together and forces their
sum to zero through an appropriate choice of the pres-
sure ptrial (at fixed and predetermined temperature).

With the roots in hand, one can produced appropriate
tie lines on pseudo 3D plots of the van der Waals equa-
tion, leading to better understanding of the relationships
between fluids (liquids and gases) and their positions in
the phase diagram of a pure substance.

II. PRECURSOR TO GENERATING ROOTS OF
THE CUBIC EQUATION

The reduced van der Waals gas equation can be ex-
panded to
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Then, as shown previously ([2]), the first root is:
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Unfortunately, this resultant equation is enormous.
More important is the fact that this root (and the others)
are not in a form which can be used as limits on definite
integrals, as required for the Maxwell construction.

A similar discussion for each of the other two roots
leads to explicit solutions for all three roots.

III. THE MAXWELL CONSTRUCTION

In order to identify the proper pr to use in this equa-
tion, we need to carry out the Maxwell construction [4]
integrating the reduced pressure difference from the first

(as yet unknown) root to the central one (also unknown)
and compare that integral to the from the the central to
the largest (third) root, both of which are still unknown.
Analytically, this is∫ middle

small

(pvdW − ptrial) dvr+

∫ large

middle

(pvdW − ptrial) dvr = 0

To make them known, choose that reduced pressure
which makes these two areas equal (and opposite in sign)
to each other (and the sum of the two areas equal to zero,
since one is negative, the other positive) at this partic-
ular temperature. We then repeat the process for any
other temperatures of interest.
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The equation we are attempting to force equal to zero is:

8Tr
3
`n(3vr` − 1)−
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vr`
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−
[
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3
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(
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+

6
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]
= 0 (7)

and its solution is obtained by goal seeking on the value
of the pressure (pr) as the independent variable (all at
fixed, pre-chosen temperature) which makes the equation
true. Here, the smallest root corresponds to v` and the
largest root corresponds to vg. So, one chooses a Tr and a
pr, obtains the two relevant roots, substitutes them into
Equation 7, and compares the value to zero. Choosing
other values of pr one continues until the zero value is
obtained.

A few of the values obtained numerically for the vapor
pressures (vpr in reduced terms) are displayed in the
on-line spreadsheet vide supra. The second column is
the pressure, and the last column is Equation 7. This

last column is the target, and the control variable for
the goal seeking is the pressure entry (second column),
all at a given temperature. The detailed spreadsheet
which “solves” this equation (https://docs.google.
com/spreadsheets/d/1fmfaj1sYURADmGwO5hma8_
ujFtzE5bgDZMZ2iH5XAH8/pubhtml) uses goal seeking
to obtain the solution of either the vapor pressure at
a given temperature, or temperature for a given vapor
pressure.

IV. PLOTTING THE VAN DER WAALS
EQUATION IN 3D INCLUDING TIE LINES

Given the data from the spreadsheet one can easily
plot the connecting lines (tie-lines) using gnuplot.

FIG. 1. A 3D plot of the van der Waals equation including
tie lines.

Further, again using gnuplot, it is easy to construct the fence plot shown herein. Here is the gnuplot input data:

unset key

set view 35,140
set xrange [0.6 : 0.9]#Temperature (T)
set yrange [0.34 : 5.4]#Volume
set zrange [-1 : 1]#pressure
set iso 100

https://docs.google.com/spreadsheets/d/1fmfaj1sYURADmGwO5hma8_ujFtzE5bgDZMZ2iH5XAH8/pubhtml
https://docs.google.com/spreadsheets/d/1fmfaj1sYURADmGwO5hma8_ujFtzE5bgDZMZ2iH5XAH8/pubhtml
https://docs.google.com/spreadsheets/d/1fmfaj1sYURADmGwO5hma8_ujFtzE5bgDZMZ2iH5XAH8/pubhtml
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set samp 100
set xlabel "T_r"
set ylabel "v_r (per mole)"
set zlabel "p_r"
yf(y, a) = (abs(y-a)<.002) ? 1. : NaN# .02 originally

vdw(x,y) = 8*x/(3*y-1)-3/(y**2)

set style function impulses
#tie lines truncated on high vallues to stay inside drawing

# T v_g p T v_l p

set arrow 1 from 0.9, 2.12507, 0.675167005374748 to 0.9, 0.5986, 0.675167005374748 nohead
set arrow 2 from 0.8, 2.62777, 0.495328223104105 to 0.8, 0.512, 0.495328223104105 nohead
set arrow 3 from 0.7, 3.50626, 0.344286195055004 to 0.7, 0.4641, 0.344286195055004 nohead
set arrow 4 from 0.6, 5.31219, 0.215049013324912 to 0.6, 0.4312, 0.215049013324912 nohead

set arrow 5 from 0.9, 2.12507, 0.675167005374748 to 0.8, 2.62777, 0.495328223104105 nohead lt rgb "cyan"
set arrow 6 from 0.8, 2.62777, 0.495328223104105 to 0.7, 3.50626, 0.344286195055004 nohead lt rgb "cyan"
set arrow 7 from 0.7, 3.50626, 0.344286195055004 to 0.6, 5.31219, 0.215049013324912 nohead lt rgb "cyan"

set arrow 8 from 0.9, 0.5986, 0.675167005374748 to 0.8, 0.512, 0.495328223104105 nohead lt rgb "cyan"
set arrow 9 from 0.8, 0.512, 0.495328223104105 to 0.7, 0.4641, 0.344286195055004 nohead lt rgb "cyan"
set arrow 10 from 0.7, 0.4641, 0.344286195055004 to 0.6, 0.4312, 0.215049013324912 nohead lt rgb "cyan"

#splot yf(y,1)*sin(x)**2 lw 2, yf(y,2)*sin(x+1)**2 lw 2, yf(y,3)*sin(x+2)**2 lw 2

splot yf(x,0.9)*vdw(x,y) lw 1, yf(x,0.8)*vdw(x,y) lw 1, yf(x,0.7)*vdw(x,y) lw 1, yf(x,0.6)*vdw(x,y) lw 1

FIG. 2. A fenceplot of the van der Waals equation including tie lines. Note that the diagram when shown on a monitor, can
be rotated to see the parts which have been clipped off in the rendering show here.
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VI. CAVEATS

These materials have not been published in a journal
because of reasons outlined in the material referenced
here: http://tinyurl.com/nlu6836.

The first version of this paper had a major calculus
error in it, which had to be fixed. That error was prop-
agated into this material, so this paper had to be fixed
also. If there remains errors in this work, I would appre-
ciate knowing about them.
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