
University of Connecticut
OpenCommons@UConn

Chemistry Education Materials Department of Chemistry

2009

Lee O Case's "Elements of the Phase Rule", Chapter
2
Carl W. David
University of Connecticut, Carl.David@uconn.edu

Follow this and additional works at: https://opencommons.uconn.edu/chem_educ

Part of the Physical Chemistry Commons

Recommended Citation
David, Carl W., "Lee O Case's "Elements of the Phase Rule", Chapter 2" (2009). Chemistry Education Materials. 84.
https://opencommons.uconn.edu/chem_educ/84

http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fchem_educ%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fchem_educ%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu?utm_source=opencommons.uconn.edu%2Fchem_educ%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/chem_educ?utm_source=opencommons.uconn.edu%2Fchem_educ%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/chem?utm_source=opencommons.uconn.edu%2Fchem_educ%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/chem_educ?utm_source=opencommons.uconn.edu%2Fchem_educ%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=opencommons.uconn.edu%2Fchem_educ%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/chem_educ/84?utm_source=opencommons.uconn.edu%2Fchem_educ%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages


Lee O. Case’s “Elements of the Phase Rule”, Chapter 2, Two Component Equilibria

C. W. David∗
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: May 21, 2009)

I. TWO COMPONENT SYSTEMS

The additional features of two component systems re-
sult mainly from the fact that phase concentrations now
enter as phase rule variables in addition to pressure and
temperature. From the rule for the determination of

FIG. 1: Schematic construction of 2-component phase dia-
gram from two 1-component phase diagrams, in pseudo three
dimensional drawings. One sees the two one-dimensional
phase diagrams in the planes at xA = 0 (pure B) and xB = 1
(pure A). Furthermore, one sees the emerging traditional p−x
diagram drawn on a plane of constant T (cwd)

phase rule variables it is found that the number of such
variables for a two component system will consist in gen-
eral of U = P + 2, since in addition to p and T the
composition of each phase present may be expected to
vary. Of course only one concentration variable need be
counted since if the concentration with respect to either
component is known the concentration with respect to
the other component is immediately fixed (e.g., for mol
fractions,

x′1 + x′2 = x′′1 + x′′2 = · · · = 1

The qualification “in general” was made above in agree-
ment with an earlier remark that practical ends are often
served by neglecting very small concentrations; in such
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a case the system may be considered degenerate, to a
degree depending upon the number of neglected concen-
trations. For the non-degenerate cases the phase rule
results may be summarized by the following table (as-
suming both components present in every phase):

P V = 4-P U[1]
1 3 3 (x′1, p, T )
2 2 4 (x′1, x

′′
1 , p, T )

3 1 5 (x′1, x
′′
1 , x
′′′
1 , p, T )

4 0 6 (x′1, x
′′
1 , x
′′′
1 , x

′′′′
1 , p, T )

Thus as the total number of variables increases with
an increase in the number of phases, the number of them
which are independent decreases until, if four phases are
present, all the variables of the system are fixed. Conse-
quently it is impossible to have more than four phases in
equilibrium in a two component system.

A. Two Phase Equilibria

For the simplest case of heterogeneous equilibrium,
viz., p = 2, the table above shows that V = 2, i.e., two
independent variables are involved. This means that any
one of the variables U (or any other specific property of
one of the phases), will be found to depend in a unique
and continuous manner upon any two of the remaining
variables U . Restricting consideration to the phase rule
variables themselves, the following functional relation-
ships may be predicted:

ϕ1(x′1, p, T ) = 0
ϕ2(x′′1 , p, T ) = 0
ϕ3(x′1, x

′′
1 , p) = 0

ϕ4(x′1, x
′′
1 , T ) = 0

these representing all possible combinations of three of
the four variables . In each function, any two of the vari-
ables may be regarded as the independent one. Let p and
T be selected as the independent variables; the resulting
functions are then ϕ1 and ϕ2. The interpretation of these
relationships is either

1. that at fixed temperature and pressure the compo-
sitions of both phases in equilibrium, xj and xk,
must have definite values characteristic of the sys-
tem, or
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2. that if p and T be allowed to vary, both x′1 and x′′1
must vary as continuous functions of p and T in
accordance with ϕ1 and ϕ2 respectively, so long as
the two phases in question are coëxistent.

The underlined qualification cannot be too strongly em-
phasized. Thus, for example, although ϕ1 indicates only
the dependence of the composition of phase 1 on p and T ,
it is not valid unless phase 2 be actually present in equi-
librium with phase 1, since otherwise x′1, p and T are
quite independent of one another. (See Table for P = l).
Perhaps it would be advisable to indicate the implied
restrictions thus: ϕ1(x′1, p, T ) = 0 (phase 2 present):
ϕ2(x′′1 , p, T ) = 0 (phase 1 present), the word “present”
as here used being a contraction of “being also present
at equilibrium”.

As the simplest means of appreciating these relation-
ships the graphical method suggests itself; the result is
a phase rule diagram. Examination of the functions ex-
pressed above shows that three dimensions will be re-
quired for graphical purposes. Thus ϕ1 can be repre-
sented by a surface in the three dimensions x′1, p and
T ; ϕ2can be represented by another surface in the three
dimensions x′′1 , p and T . These two three-dimensional fig-
ures taken together serve to describe completely the con-
ditions for the coëxistence of the two phases in question.
A useful simplification is possible, however, provided the
concentrations of both phases are expressed in terms of
the same concentration scale, as would of course be the
natural choice. In this case, although x′1 and x′′1 represent
different variables the same axis may be used for both.
Thus the two characteristic surfaces can be represented
on the same figure in the three dimensions p, T, x1 (since
it is now unnecessary to distinguish x′1 from x′′1). Or in
general, for the same pair of components , the compo-
sition of any phase expressed on the same scale with x′1
and x′′1 , can be represented along the same axis. Finally,
although it is not a phase rule variable, the total compo-
sition of the system, xo

1 may be so represented if desired.
Thus, on a single p − T − x1, diagram for a given two-
component system, every possible two-phase equilibrium
will be represented by a pair of surfaces, one for each
phase [2]

II. p− x AND T − x DIAGRAMS

Since the three-dimensional p − T − x figure required
for the complete representation of the phase-relations for
a two-component system is difficult to construct, the ex-
pedient is usually adopted of projecting contours on one
of the coördinate planes. Such contours may be pro-
duced by planes of constant T, p, or x, the resulting two-
dimensional figures being p − x, T − x or p − T (not
common (cwd)) diagrams. Many examples of these are
early met with in the study of physical chemistry in con-
nection with the study of liquid mixtures.

From the phase rule point of view selection of one of
these contours corresponds to the assignment of one of

FIG. 2: Schematic construction of 2-component phase dia-
gram from two 1-component phase diagrams, in pseudo three
dimensional drawings. Planes of constant T and planes of
constant p can be seen which makes it possible to do 2-
dimensional plots of p − x and T − x respectively, leading
to traditional phase diagrams.

the available degrees of variance. This is a result the
surfaces characteristic of two-phase equilibrium become
lines on a two-dimensional diagram. Thus at constant p
or T , the equations ϕ1(x′1, p, T ) = 0 and ϕ2(x′′1 , p, T ) = 0
represent curves in the two dimensions T, x1- and p, x1

respectively.

Before proceeding with the general discussion, it may
be advisable to refer to an already familiar example of
the situation just described. In Figure 3 we see the tra-

FIG. 3: The two component liquid-vapor diagrams, one at
constant T and one at constant p.

ditional 2-dimensional 2-component (A − B) liquid ⇀↽
vapor phase diagrams. The one on the left is a constant
pressure diagram, and the one on the right is a constant
temperature one. They reflect different planar cuts in
the 3-dimensional T, p, xA space, where the curves are
the intersections of the cutting planes and the surfaces
in the 3-dimensional space (cwd).
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FIG. 4: The two component liquid-vapor azeotrope diagram
at constant p, i.e., T − x diagram.

FIG. 5: The two component liquid-vapor azeotrope diagram
at constant T , i.e., p− x diagram.

III. SOME AZEOTROPIC MIXTURE
DIAGRAMS

In Figures 4 and 5 are shown the characteristic T − x
and p − x diagrams for a pair of volatile liquids soluble
in all proportions and including a mixture of maximum
boiling point.

In Figure 6 we see the “construction” of an azeotropic
diagram using two juxtaposed “2-component” phase dia-
grams, one consisting of A and azeotrope, and the other
consisting of azeotrope and C (we forsook B in this con-
struct) (cwd).

A. Theoretical Plates and x-y diagrams

The separation of liquid mixtures (and solid solutions,
by the way) can be accomplished by removing the va-
por in equilibrium with a given liquid mixture, cooling it
until it condenses, then re-heating it until it establishes
a new equilibrium with new vapor, whereupon, one re-
peats the procedure, separating the new vapor, cooling
and condensing it, and so on and so on until the concen-

FIG. 6: Juxtaposing two two-component diagrams, A and
azeotrope with azeotrope and B, one generates the standard
azeotropic diagram.

tration of one component has risen (or lowered) to the
desired purity level. Figure 7 shows how this procedure
is pictured using a traditional T − x diagram (constant

FIG. 7: Distillation of a simple constant pressure mixture,
using theoretical plates to relate the liquid and vapor in equi-
librium with that liquid (ready to be made the liquid of the
next theoretrical plate. Also shown in the equivalent x − y
diagram.

pressure distillation, which is the most common) and a
x−y diagram showing the same construct for theoretical
plates. This material is covered in all elementary physical
chemistry texts.
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B. Return to main manuscript

In application to these figures, the functions ϕ1 and ϕ2

taken to refer respectively to the vapor (G) and liquid (L)
curves, the former representing the compositions of the
saturated vapors as functions of T or of p, the latter the
compositions of the liquids which can exist in equilibrium
with vapors. The existence of the two separate curves on
the same figure is seen to be the natural result of the
fact that the abscissa x1 may represent x′1 in case the
vapor curve is referred to, or x′′1 if reference is made to
the liquid curve. The two curves naturally touch at their
extremities since if one component is absent, C = 1 and
V = 1 + 2 − 2 = 1, which is used up by specification of
either T or p [3]. Moreover at the maximum or minimum
C = 1 since the requirement x′1 = x′′1 furnishes a relation
E among the phase rule variables. Elsewhere the liquid
and vapor lines are separate, serving to bound an area
on the diagram within which the liquid and vapor are
coëxistent.

At this point in the discussion, an apparent paradox
should be resolved. In an area on one of these diagrams
there are apparently two degrees of variance available
(V = 2 + 2 − 1 = 3, of which one degree has been used
up in the. selection of constant p or T .) Above or be-
low the liquid-vapor region this is certainly true since the
composition of a single phase can, of course, be varied as
well as T (or p) at constant p (or T ). (See arrows in Fig,
3 in region L.) But in the same way it appears that in
the area included between the liquid and vapor lines p
(or T ) can be varied and at the same time a change in
composition can he produced, for example, by addition
of component 1. Closer study of this situation, however,
shows that in the latter case addition of component 1
cannot change the phase compositions but only the total
composition and the total composition, as pointed out
many times before, is not a phase rule variable. In other
words, at constant p (or T ) there can be no phase hav-
ing a composition included between the liquid and vapor
lines. The compositions of the phases into which such
a mixture breaks up are located at the intersection of a
line of constant T (or p) with the liquid and vapor lines.
Thus although such areas are commonly designated L-G
on phase rule diagrams it must be kept clearly in mind
that the phase compositions are found on the boundaries
of the area and not within it.

C. A side trip down distillation lane (cwd)

Two-component liguid ⇀↽ vapor equilibrium is used to
introduce distillation processes, which is of great interest
to chemical engineers and chromatographers (as well as
chemists who actually do distillation). This review of bi-
nary distillation is therefore dedicated to those practical
people.

The traditional way of dealing with the vapor pressures

over liquid mixtures starts with Raoult’s Law,

pA = xAp
o
A

and

pB = xBp
o
B = (1− xA) po

B

where the superscript indicates purity, i.e., the vapor
pressures of pure A and B separately. The total pres-
sure over a solution made up at a given mole fraction (of
say A) would be

ptotal = pA + pB = xAp
o
A + (1− xA) po

B

written as a function of xB . In the vapor phase

pA = yAptotal

with an equivalent expression for B. We then have

yA =
xAp

o
A

xApo
A + (1− xA) po

B

which shows us a relationship between the mole fraction
in the liquid, and the mole fraction in the vapor which is
in equilibrium with that liquid. This leads to the idea of
plotting both x and y of A (or B) as the abscissa, with
pressures (or temperatures) as the ordinate. This double
usage causes unending confusion for many students .

IV. RETURN TO MAIN DOCUMENT

Again as in the case of one component systems it must
be borne in mind that the p-coördinate must represent
the pressure of the system and not for example of the
system plus air. Thus, in the discussion of ordinary dis-
tillation problems, these diagrams are strictly applicable
only when the boiling point has been reached (when the
vapor pressure does in fact become equal to the external
pressure.)

Since the phase rule is concerned with the number of
phases present in a system and not with their nature. It
is clear that for any possible pair of coëxistent phases in
a two-component system the same general behavior is to
expected as for coëxistent liquid and vapor phases. That
is, any two-phase equilibrium will be represented on a
p − x or T − x diagram by an area, bounded laterally
by two curves, each indicating the composition of one of
the mutually saturated phases, the compositions included
between the curves representing the range of total com-
positions which can result in the two-phase equilibrium
in question. With respect to two-phase equilibria the
phase rule itself can go no further than this. The quanti-
tative features of individual systems must be determined
by experiment, supplemented in some cases by other the-
oretical principles of physical chemistry such for example
as the Mass Action Law. The specific differences to be
noted among different examples of two phase equilibria
within this general restriction imposed by the phase rule
may be classified as follows:
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FIG. 8: The various ways in which a two-phase region can
be bounded. As noted in the text, often, vertical lines are
not perfectly vertical, indicating a solubility of the compound
whose composition is given by the “vertical” line, with the
other phase involved.

1. As to the magnitudes and signs of the slopes of the
two bounding curves, i.e., whether large or small,
of like or unlike sign. A special degenerate case of
a slope very large in absolute magnitude occurs if a
saturated phase is a pure component or a pure com-
pound, in which instance the corresponding bound-
ary curve is vertical, (Figures 8 (a) and (b) ). Ki-
netic theory considerations appear to deny this pos-
sibility except as a appearance of this feature on
actual diagrams being merely an indication that
analytical determinations have not yet been carried
out with sufficient accuracy to detect the departure
from verticality of the curve in question. Except for
these degenerate cases the saturated phases are to
be identified as saturated solutions, of which the
physical state may be gaseous (saturated vapors),
liquid or solid. Concerning the signs of the slopes of
the boundary curves it will be sufficient to note that
while in general one would expect that the slopes
might have either the same or opposite signs, na-
ture apparently imposes certain limitations which
may perhaps be best learned by experience.

For example, in the case of liquid-vapor equilibria,
the slopes of both curves have the same sign (Figure
8 c) for two mutually saturated liquids the slopes
are of opposite sign (Figures 8 d and e), while in the
case of solid-solid equilibria both types of behavior
are noted .

2. As to the physical states of the mutually saturated
phases, designating the gaseous phase by G; liquid
phases by L1, L2, solid phases by S1, S2, the possi-
ble types of two-phase equilibria in two-component
systems are as follows: G−L, G−S, L1−L2, L−S,
S1 − S2. If the degenerate case referred to in the
previous paragraph be allowed to enter as a means
of practical distinction between solid phases of es-
sentially invariable composition, designated by K1,
K2, and solid phases of variable composition (i.e.,
solid solutions), designated by α, β, the classifica-
tion becomes: G − L,G − K,G − α,L1 − L2, L −
K,L− α,K1 −K2, α−K,α− β.

3. As to the range of temperature or pressure over
which the equilibrium in question extends. The
limit of the existence of a given two-phase area on
a phase rule diagram is in general imposed by one
of the following:

• degeneration of the system from one of two
components to one of one component, as at
one of the vertical boundaries of the diagram;

• the occurrence of a so-called “critical point”,
at which the position and properties of the two
phases become identical; or

• by the occurrence of three-phase equilibria,
the conditions for which will be considered in
a later section.

A. Condensed Systems

Although as indicated above the phase rule itself in-
dicates no reasons for differences in behavior of systems
depending upon physical states of the phases in equilib-
rium, practical considerations make possible a very con-
siderable simplification of treatment of those equlibria
which involve liquid and solid phases only. The reason
for this can be found in the fact that pressure has very
little effect on such equilibria, in contrast with the very
considerable effect of pressure upon equilibria involving
the vapor phase. As a result the T−x diagram for equilib-
ria a given system at all ordinary values of the pressure,
or in particular regardless of whether the system is under
its own vapor pressure only or under the constant pres-
sure of the atmosphere. Since the latter condition is so
much easier to establish in practice it is commonly used
for the investigation of phase equilibria involving only
solid and liquid phases. The resulting systems are called
“condensed systems” for the reason that the presence of
the vapor phase is neglected. Although as pointed out
earlier the imposition of the external pressure by means
of the atmosphere will prevent the formation of the va-
por of the system, the result is the same for solid and
liquid equilibria as if the pressure were imposed, for ex-
ample, by a solid piston in which case the vapor phase
would actually be absent (provided, of course, that the
vapor pressure of the system be less than atmospheric
pressure.)

In adapting the phase rule to the treatment of con-
densed systems several different points of view might be
adopted. Perhaps the simplest is to restate the phase
rule. Since in the derivation of the phase rule, the figure
“2” entered due to the assumption that both tempera-
ture and pressure were phase rule variables, it will be
necessary to count only temperature as an external vari-
able for condensed systems. As a result the variance for
the condensed system, Vc, will be less by one, Vc = V −1
or Vc = C + 1− P . In counting the number of phases in
the system, then, the vapor phase is neglected.
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The simplification resulting by treating solid-liquid
systems as condensed systems is considerable. Instead
of having to deal with a three-dimensional phase dia-
gram, or with the three projections of its contours on
the coördinate planes, we are concerned only with two-
dimensional figures as was the case for one-component
systems. The characteristic diagram is now a T − x dia-
gram, however, instead of a p− T diagram.

B. Three-Phase Equilibria in Two -Component
Condensed Systems

Since if three phases are in equilibrium with one an-
other, each phase considered by itself must be separately
in equilibrium with each of the others, it is evident that
there is a close connection between three-phase and two-
phase equilibrium. Consequently it is simplest to intro-
duce this topic by extension of the principles already
discussed for two-phase equilibrium. For this purpose,
let the phases without distinction as to their physical
states, be designated by I, II, III, IV, and let (their com-
positions with respect to component A be designated
x′A, x

′′
A, x

′′′
A , x

′′′′
A . Suppose now that the two two-phase

equilibria I-II and I-III are possible in the same range of
temperature, as shown in Figure 9. According to the
principles previously outlined the functions which de-
scribe these situations may be realized as follows: For
the equilibrium I-II:

f1(x′A, T ) = 0; II present

f2(x′′A, T ) = 0; I present

For the equilibrium I-III:

f3(x′′A, T ) = 0; III present

f4(x′′′′A , T ) = 0; I present

These functions are obtained from the corresponding
functions ϕ1 and ϕ2 of page 1 by imposing the restric-
tion of constant pressure, required for condensed systems.
Examination of these functions shows that two of them,
f1 and f3, involve the the same variables, x′A and T , the
two equations differing, however, in the restrictions under
which each applies, namely, f1 describes the dependence
upon temperature of the composition of phase I when it
is saturated with respect to phase II, while f3 describes
the dependence upon temperature of the composition of
phase I when saturated with phase III.

The condition for three-phase equilibrium is now seen
to be that f1 and f3 be simultaneously satisfied, leading
to the result [4]:

x′A = const;T = const; both II and III present

On the phase rule diagram of Figure 9 these fixed val-
ues of x′A and T obviously represent the coördinates of

FIG. 9: A simple eutectic, with limited solubility of each com-
ponent, i.e., pure component can not be obtained by crystal-
lization from any mixture in this system.

the point of intersection, “a”, of the curves represent-
ing f1, and f3. But more than this is involved. The
condition of constant temperature resulting from the in-
tersection of the curves of, f1 and f3, when applied to
the functions f2 and f4 shows that x′′A and x′′′A must also
have definite values. Hence the existence of equilibrium
among the three phases requires that the four quantities
T, x′A, x

′′
A, x

′′′
A all have definite values fixed by nature for

the system considered. This result is, of course, that pre-
dicted formally by application of the phase rule, since for
P = 3, Vc = 2 + l− 3 = 0 . The consequences for the dia-
gram of Figure 9, however, need to be more carefully ex-
amined. These are that since T is the common coördinate
for all four curves, the condition of three-phase equilib-
rium must be represented by three points ranged along a
horizontal line, point “a” (x′A, T ) representing the condi-
tion of phase I, point “b” (x′′A, T ) that of phase II, point
“c” (x′′′A , T ) that of phase III . Removal of phase III allows
the remaining two points to describe the two curves of f1
and f2; removal of II permits the generation of curves f2
and f4. Suppose now that phase I be removed; what will
be the consequence for the diagram? Obviously, since the
new two-phase equilibrium II-III is now involved, the re-
sult must be a new two-phase area bounded by two new
curves representing these mutually saturated phases and
described by the new functions:

f5(x′′A, T ) = 0; III present, and f6(x′′′A , T ) = 0; II present

Although these new curves in Figure 9 may be regarded
as generated by the movement of the points “b” and “c”,
there is, of course, no reason why they should be pro-
longations of, or otherwise simply related to, the corre-
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sponding curves in the region above, since although the
variables are the same the restrictions are different.

The occurrence on the diagram of the two new regions
designated II and III respectively may be briefly noted.
Like the area marked I, these surely represent regions of
unsaturation in which temperature and phase composi-
tion may be independently varied. (Vc = 2 + 1− 1 = 2).
Depending upon the extent of these regions, or otherwise
stated, upon the extent of the mutual solubility of II and
III, diagrams of superficially very different characteris-
tics may result. The limiting cases are those represented
in Figure 10 showing complete solubility (phases II and

FIG. 10: A precursor of Figure 9 in which a limited solubility
(top part) and an immiscibility (bottom part) are going to
collide if the pressure is properly chosen.

III becoming in this case identical and the three-phase
equilibrium disappearing) and in Figure 11, illustrating
the degenerate case of zero mutual solubility between II
and III.

C. Eutectic Type Diagrams

Special designations are commonly applied to certain
situations of the type of Figures 9 and 11. If the inter-
mediate phase I is liquid, the diagram is described as of
“eutectic” type; if phase I is solid, the word “eutectoid”
is employed, phases II and III in both cases being solid.
The “eutectic” itself (or the “eutectoid” as. the case may
be) is the solid mixture (not phase) of the two phases of
compositions corresponding to “b” and “c”, which sepa-
rates from the “eutectic solution” or “eutectoid solution”
of composition “a”. The “eutectic (or eutectoid) temper-
ature” is that of the horizontal line through the points
“a”, “b”, and “c”. Lack of precision in the use of these

FIG. 11: An old fashioned perfect eutectic mixture. Some-
times, a vertical dotted line is extended from the “eutectic
compound” down, separating the solid part into two regions,
one corresponding to III(s) and eu(s) while the other cor-
responds to II(s) and eu(s); the solid mixture would appear
slightly different, hence the distinction, but from the point of
the phase rule, this is irrelevant.

terms often leads’ to misconceptions. Thus the common
statement that “three phases are present at a eutectic
point”, has meaning only if the word “point” as here
used is identified with “temperature”, since as empha-
sized above, the eutectic situation involves not one point
but three points on the diagram.

D. Peritectic Type Diagrams

Returning now to the discussion by means of which the
topic of three-phase equilibrium was introduced, it will
be recalled that the condition used was the recurrence
of two two-phase equilibria involving a single phase in
common. Three-phase equilibrium was then shown to be
the result of the intersection of the two curves f1 and
f3 relating to the common phase. The actual-features of
the diagram of Figure 9 proceeded from the assumption
that two of the three two-phase areas occur above the
other below the three-phase temperature. It is however,
equally likely that this distribution right be reversed, In
such a case the diagram of Figure 12 may result, in which
the designations are the same as those of Figure 9. Al-
though systems of the types illustrated in Figures 11 and
12 are completely indistinguishable from the standpoint
of the phase rule itself, so that the discussion previously
given will apply equally to both figures, they show char-
acteristic inferences in their reaction to changes in con-
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FIG. 12: A typical peritectic phase diagram

ditions which will merit further study in a later section.
By way of differentiation from the phase previous type,
certain examples of Figure 12 are given special designa-
tions. Thus, phases II and III being solid, the system is
of “peritectic” type if phase I is liquid, “peritectoid” if
phase I is solid.

Although the discussion of this section has been re-
stricted to condensed systems, it is obvious that the same
principles apply completely to systems containing the gas
phase, provided the pressure on the system is constant.
The only important difference in general behavior is that
the location on the diagram of those curves relating to
equilibria involving the gas phase will he greatly affected
by the value selected for the constant pressure.

E. p− T − x Diagrams

If the restriction of constant pressure is removed, com-
plete representation of the.equilibrium relations requires
three dimensions. While one seldom cares to take the
trouble to construct a solid figure for the purpose, one
may sometimes wish to show it in projection. It is there-
fore worth while to see how the phase rule may assist
in the visualization of the important features of such a
figure. For the most common, the p − T − x figure, the
results in brief are as follows: (these are easily, verified
by reference to the table appearing at the beginning of
this section):

1. Two-phase equilibrium is represented by a pair of
surfaces (V = 2), one for each phase, bounding a
solid region which includes those total compositions
which can result in the two-phase equilibrium in

question.

2. Three-phase equilibrium is represented by a set of
three lines (V = 1), one for each phase. It will be
recalled from analytic geometry that a line-in three
dimensions is located by the intersection of two sur-
faces each perpendicular to one of the coördinate
planes. But among the relations predicted by the
phase rule for three-phase equilibrium, there occur
(for example for phase I of the set of three):

p = f1(T ); p = f2(x′1);T = f3(x′1): II and III present

Each of these functions may be taken to represent
either

(a) a curve in two dimensions or
(b) a surface perpendicular to one of the

coördinate planes in three dimensions. In the
p− T − x diagram therefore the space curves
for three-phase equilibrium are expressed in
terms of their projections upon the coördinate
planes. It is worthy of note that due to the
requirement of uniform pressure and tempera-
ture the space curves for all three phases must
furnish the same projection on the p−T plane.

(c) Four-phase equilibrium is represented by a set
of four points (V = 0), one for each phase.
From each such point there must radiate three
space curves, each describing the conditions
for equilibrium of the selected phase with
a possible pair of the other phases. Again
uniformity of pressure and temperature re-
quires that these four points be ranged along a
straight line perpendicular to the p−T plane.

V. COMPLEX DIAGRAMS

It has been shown that two-phase equilibrium is repre-
sented in a p−x or T −x diagram by a pair of solubility
curves, in a p − T − x diagram by a pair of solubility
surfaces. If by an accident of nature the solubility curve
or surface for a single phase in equilibrium with a second
intersects the solubility curve or surface for that same
phase in equilibrium with a third phase, then the condi-
tions for three-phase equilibrium are satisfied; moreover
with the three-phase equilibrium there must be associ-
ated three sets of two-phase equilibria. The apparent
complexities of actual phase diagrams result simply from
repetition of such situations in different regions of the
phase variables for the same system. An attempt to clas-
sify and describe all the possible types of diagrams that
might occur on the basis of the physical states of the
phases and the individual characteristics of the associated
two-phase equilibria, would be merely academic [5]. If,
however the underlying principles are once understood,
any actual diagram can readily be analyzed by reducing
it to elements of the general types described above. The
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analysis consists merely in labeling the various regions of
the diagram with symbols indicating the physical nature
of the phases concerned Recommended resignations are:
G for the gas phase, L1, L2 for liquid phases, α, β, γ for
solid solutions; pure components or pure compounds in
the solid state are designated by their chemical formulae.

The mere labeling of phase rule diagrams does not, of
course, complete the application of the phase rule. While
this represents a necessary first step, it is of much more
practical importance to be able to interpret the diagram
as a means of predicting how the system will react to
changes in conditions. For condensed systems this re-
quires the discussion of the effect of

1. changes in temperature and

2. changes in the relative amounts of the components.

These will now be considered.

VI. EFFECT OF TEMPERATURE CHANGE IN
TWO -COMPONENT CONDENSED SYSTEMS

A. Cooling Curves

Reviewing the results for the variance for two compo-
nent condensed systems, it is noted that for P = l, 2 or
3, V = 2, 1 or 0 respectively. With respect to these sim-
ple results, the characteristics of cooling curves will be
examined for such systems. A cooling curve is, of course,
merely a graph of simultaneous readings of temperature
and time taken while heat is being continuously removed
from the system, e.g., by radiation or conduction to its
environment. The discussion will first relate to the case
that the heat is removed so slowly that equilibrium is
practically attained at all times.

1. Theoretical Cooling Curves

Suppose that the two components are mixed in a def-
inite ratio and raised to a sufficiently high temperature
so that the mixture consists of a single liquid phase (I).
Since for P = 1, Vc = 2, it is obviously possible thus to
assign both the temperature and the composition of the
phase (which in this case must be the same as the total
composition). If heat be now removed at a uniform rate,
the phase (of arbitrarily fixed composition) will assume
a succession of different temperatures (See Figure 13.

Suppose now that a temperature T1 is reached at which
a second phase makes its appearance. Since now Vc = 1,
it might at first sight appear that since the composition
was fixed in making up the original mixture no variance
is left and the temperature must remain constant. Note
carefully, however, that the fixed composition referred to
was the total composition and that this is necessarily the
same as a phase composition only if the system is ex-
isting in a single phase. It is still possible therefore to

FIG. 13: A typical set of cooling curves, showing “breaks”
and“ halts”, etc..

exercise the variance of I by continued removal of heat
resulting in a new succession of lower temperatures. In
what way then does the new situation differ from the pre-
vious one? The answer is furnished, by the Le Chatelier
principle. According to this principle the formation of
the new phase (II) from the original phase (I) must be
accompanied by the evolution of heat, since it is in this
way that the system must react in order to oppose the
effect of removal of heat by the surroundings. As result
a so-called “break” occurs in the cooling curve at the
temperature at which the new phase II begins to form;
below this temperature the rate of decrease of tempera-
ture with time will be less than before (always assuming
equilibrium and a uniform rate of heat removal), and
must so continue as long as the new phase continues to
separate. At each temperature in the series during this
process the phase compositions must be fixed, since the
available variance is used up by the specification of tem-
perature. The phase compositions must actually describe
the two curves: f1(x′A, T ) = 0; f2(x′′A, T ) = 0. Neither
phase therefore can have the same composition as the
entire system; we can in fact infer that one phase com-
position must be greater, the other less than the total
composition, since it is clearly impossible to find any ra-
tio in which two phases of different composition can be
mixed so as to give the total composition a value other
than intermediate between the two phase compositions.
With further cooling there are two possibilities:

1. the system again becomes one of one phase or

2. a third phase also appears.

1. If the system reverts to one phase, it must in gen-
eral be by the completion of the process by which
the new phase II formed at the expense of the origi-
nal phase I. Since the cooling rate was retarded, by
this process, the rate will increase again when the
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process is completed, e .g., at the temperature T2

in Figure 13; the remaining curve in the direction
T2 − T3 represents merely the cooling of phase II

2. It may happen, however, that before the phase
change I-II is completed, a third. phase III makes
its appearance, say at the temperature T4 in Fig-
ure 13. Since with three phases present, the vari-
ance Vc is zero, the Phase Rule now requires that
the temperature must remain constant in, spite of
the continued removal of heat from the system, pro-
ducing a so-called “halt” on the temperature-time
curve. This means that the process by which III
now forms in the presence of the other two phases
must not only liberate heat in accordance with Le
Chateliers principle, but must do so at a rate which
just compensates for the removal of heat by the sur-
roundings. In maintaining the constancy of tem-
perature, of course, the relative amounts of the
phases present must change since it is only by such
phase reactions that the required latent heat can
become available.

This point will be examined in greater detail later.

When, due to the continued removal of heat, one or
two of the phases disappears it again becomes possible
to lower the temperature of the system–in the first case,
in the direction T5 (loss of I or II), and in the second
case, in the direction T6 (loss of both I and II).

Obviously processes of which the ones described are
typical may occur in any sequence and, in any number
along the cooling curves for a particular system. The
interpretation of such curves, however, merely involves
repeated application of the same principles

In concluding this discussion of theoretical cooling
curves, it should perhaps be pointed out that, even, for a
constant rate of removal of heat, the inclined portions of
the cooling curves would not in general, be straight lines
and that, for example, there is no necessity that the line
T0 − T1 be parallel to the line T2 − T3 (if so, the heat
capacity of phase II would be equal to that of phase I).
Finally, it may be noted that the sharpness of the break
at T1 depends upon the magnitude of the latent heat of
the transformation I→II.

2. Actual Cooling Curves

Some of the features which distinguish actual from the-
oretical cooling curves should now be mentioned. The
effect of variations in the rate of heat removal is perhaps
sufficiently obvious, and may be dismissed with the re-
mark that while a uniform rate may be approximated, it
is usually easier in practice to employ a somewhat uni-
formly varying rate, such as would be obtained by melt-
ing the sample and allowing it to cool ( with or without
lagging) in surroundings of uniform temperature. The

more important differences result from the impossibil-
ity of ensuring equilibrium conditions at every tempera-
ture. This is particularly the case when a temperature is
reached at which a new phase should appear – at a “halt”
or a “break” in the curve. If equilibrium were instanta-
neously established, at such a temperature it would re-
quire the separation of an infinitesimal amount of the new
phase. Invariably, however, a finite degree of supersat-
uration must be established, before the system becomes

FIG. 14: Supercooling results in metastability of phases (out
of synch with what’s required by true equilibrium thermody-
namics.

sufficiently unstable to revert to its equilibrium condi-
tion; the resulting fall in temperature below the equilib-
rium value is known as “supercooling”. When the stable
phase does begin to form (it may be necessary to intro-
duce a small crystal of the stable phase in order to start
the process the system rapidly approximates the equilib-
rium condition by the separation of a finite amount of the
new phase and the consequent rapid liberation of suffi-
cient latent heat to cause a rise in the temperature to the
equilibrium value; thereafter the temperature again falls
as the new phase continues to separate. Where a break
would be expected the cooling curve therefore shows a
maximum, Figure 11 (a), which sometimes may even re-
semble a brief halt, Figure 11 (b); in such a case the min-
imum on the curve is always lower than the temperature
of the expected break and more so the greater the degree
of supercooling; the reason for this, of course, is that the
separation of a finite amount of the new phase produces
an appreciable change in the composition of the original
phase and that the temperature of the phase change cor-
responding to this new concentration is necessarily lower
than for the original composition.

If, however, supercooling below a three-phase tempera-
ture occurs the temperature must revert to the true equi-
librium value on relief of the unstable condition since the
composition of the phase as well as their equilibrium tem-
perature is fixed by the phase rule.

It is evident that the experimental determination of
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cooling curves for different total compositions of the sys-
tem represents a valuable method for the determination
of phase diagrams. Unfortunately it is not always possi-
ble to use this method. As the heat effects accompany-
ing phase changes become smaller and smaller and as the
rate at which the system adjusts itself to its successive
equilibrium states becomes less and less the experimental
difficulties of detecting the temperatures at which phase
changes should occur become more and more serious and
may frequently prove insurmountable. Other factors be-
ing the same, the first difficulty – that due to the magni-
tudes of the heat effects – tends to be more serious the
less the differences in the chemical and physical nature
of the components or of the phases involved. The second
difficulty – that due to the rate of phase changes – is apt
to be greatest in the solid state, although occasionally –
as in most mineral systems – even liquids may show such
pronounced supercooling that cooling curves cannot be
employed. In conclusion it may be pointed out that most
of the foregoing discussion – certainly all that relating to
theoretical cooling curve – can be readily adapted to the
reverse process of determining heating curves.

B. Relative Amounts of Phases

In the discussion of cooling curves consideration has
so far been given only to the variations of temperature
with time. It has been indicated, however, that in
adjusting itself to phase rule requirements a change in
the relative weights of the phases present has to occur,
since it is only by liberation of latent heats of transition
that “breaks” or “halts” can be produced. It is now
proposed to make this discussion quantitative, The
following notation is employed:
W ′,W ′′,W ′′′ = weights of phases I, II, 111.
W o

A,W
o
B = total weights of components A and B,

W o = W ′ +W ′′ +W ′′′ = total weight of system,
=W o

A +W o
B

f ′A, f ′′A, f ′′′A = weight fraction of component A in phases
I, II, and III respectively.
fo

A = weight fraction of component A in entire system.
Along any single cooling curve, the quantitiesW o

A, W o
B ,

W o, fo
A must, of course, remain constant.

Case I. Two phases present.
(W ′′′ = 0). A “material balance” for the component A at
any temperature along the cooling curve in such a region
gives:

W o
A = f ′AW

′ + f ′′AW
′′ = fo

A(Wo) = fo
A (W ′ +W ′′)

From the second and fourth members

W ′

W ′′
=
f ′′A − fo

A

fo − f ′A
or

W ′

W ′ +W ′′
− W ′

W o
=
f ′′A − fo

A

f ′′A − f ′A
(6.1)

FIG. 15: Two phases, connected by a tie line, so that as the
relative amounts of each phase changes, the total composition
changes or vice versa.

In words, the first expression states that the weights of
the phases are in the inverse ratio of the segments cut off
by the total composition on the horizontal line joining the
phase compositions, (See Figure 15). In each two-phase
area traversed by the line of total composition this rule
can be applied to determine the variation in the weights
of the phases present at equilibrium. It is seen at once
that the separation of a new phase along a theoretical
cooling curve is an essentially continuous process, initi-
ated at the crossing of the upper phase boundary by the
separation of an infinitesimal amount of the new phase
and proceeding by infinitesimal increments as the tem-
perature falls. It can also be seen more clearly from this
point of view why it is that after supercooling the tem-
perature tends to rise rapidly on formation of the new
phase, since in this case the separation of a finite amount
of the new phase is necessary to restore equilibrium. It
is again worth while to distinguish two special cases:

Case la. The total composition line completely tra-
verses the two-phase area (See Figure 15). In this case
application of the rule shows that at the lower phase
boundary the last infinitesimal amount of phase I dis-
appears, completing the process I→II.

Case Ib. The total composition line crosses a three-
phase temperature line, (Figure 16). In this case, appli-
cation of the rule shows that the continuous process is not
yet completed at the three-phase temperature but that
at this temperature a discontinuity occurs with respect
to the weights of the phases, resulting (for the example
shown) in the final complete disappearance of the remain-
ing phase I at constant temperature. The rule derived
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FIG. 16: Peritectic phase diagram, where above the three
phase line is the III, while on the horizontal line we have
I ⇀↽ II ⇀↽ III

above therefore cannot be applied at this temperature,
although it is still completely valid at temperatures in-
finitesimally above and below it. The process involving
the three phases accordingly requires separate treatment.

Case II. Three phases present. For any change in the
weights of the phases present, a material balance for the
component A requires (since W o

A = f ′AW
′ + f ′′AW

′′ +
f ′′′A W

′′′):

dW o
A = 0 = fAdW

′ + f ′′AdW
′′ + f ′′′A dW

′′′ +
dfAW

′ + df ′′AW
′′ + df ′′′A W

′′′

But for the condensed system existing in three phases,
the phase rule requires not only dT = 0 but df ′A = df ′′A =
df ′′′A = 0, whence

0 = f ′AdW
′ + f ′′AdW

′′ + f ′′′A dW
′′′

Also for a constant total weight of the system:

dW o = 0 = dW ′ + dW ′′ + dW ′′′

Multiplying the last equation successively by fA, f ′A
and f ′′′A and subtracting from the preceding equation
gives:

(f ′′A − f ′A) dW ′′ + (f ′′′A − f ′A) dW ′′′ = 0
(f ′A − f ′′A) dW ′ + (f ′′′A − f ′A) dW ′′′ = 0
(f ′A − f ′′′A ) dW ′ + (f ′′A − f ′′′A ) dW ′′ = 0

or
dW ′′

dW ′′′
=
f ′′′A − f ′A
f ′A − f ′′A

and
dW ′

dW ′′′
=
f ′′A − f ′′′A

f ′A − f ′′A
Inspection of these expressions shows:

1. the amount of the phase of intermediate composi-
tion changes in the opposite sense to the amounts
of the phases of extreme composition, ergo, if f ′′A >
f ′′′A > f ′A, then

dW ′′

dW ′′′
< 0;

dW ′

dW ′′′
< 0

The same result follows if the signs of the inequal-
ities are reversed.

2. The rate at which the weight of any phase changes
with respect to the weight of another is a constant
depending only upon the (fixed) compositions of
the phases present at the three-phase temperature
and entirely independent of the total composition
of the system.

The first conclusion above may perhaps be put in more
usable form by application to the two characteristic gen-
eral types of three-phase equilibria to which attention has
previously been called. Let the compositions of the three

FIG. 17: What happens in cooling a melt due to undergo a
peritectic reaction. Paths “a”, “b”, and “c” cool differently,
and the cooling curve for “b” actually looks like the cooling
of a pure compound.

phases I, II, III, capable of coëxistence be in the order

f ′A < f ′′A < f ′′′A
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1. If at the three phase temperature, Phase I (or III)
starts to form, it must be at the expense of phase
II and accompanied by the formation of III (or I)
in a definite ratio, (a, b, c, Figure 17.)

2. If at the three-phase temperature, phase II starts
to form (Figure 18), it must be at the expense of
both I and III which are consumed in a definite
ratio. Depending then upon the relative amounts
of phases I and III which were present just as the
three-phase temperature was reached, the system
resulting when the process is completed will consist
of I and II (e, Figure 18), or II only (e, Figure 18), or
II and III (f, Figure 18). As a matter of fact both

FIG. 18: Colling a peritectic mixture at various overall com-
positions.

situations arise on the same diagram if addition
as well as removal of heat is allowed, since it will
be noted that Figure 18 represents essentially the
inversion of Figure 17.

The reason for the behavior of the system shown in
Figure 18 can now be explained more precisely in terms
of the quantitative relations worked out for the cases of
two and three-phase equilibria: For any total composition
between f ′A and f ′′′A , phases I and III must have adjusted
their compositions to f ′A and f ′′′A just as the three-phase
temperature is reached; this is accomplished by the sep-
aration of an amount of phase III which depends upon
the total composition and which can be calculated from
Equation 6.1. If the total composition happened to be
equal to f ′′A, then just as the three-phase temperature is

reached,

W ′

W ′′′
=
f ′′′A − f ′′A
f ′′A − f ′A

In this case the relative rate at which these two phases
disappear at the three-phase temperature, dW ′

dW ′′ , is just
equal to the ratio in which they were present when that
temperature was reached; consequently both disappear
together, leaving only phase II. If instead the total com-
position is greater or less than f ′′A then a relative excess
of III or I respectively is present over that required to
maintain the compositions at the fixed values of f ′A, f ′′A,
f ′′′A : this excess is then still present when the other phase
has disappeared.

C. Changes in Relative Amounts of Components

As pointed out previously any one-phase area in a T−x
diagram is a region of unsaturation; any two-phase area is
a region of mutual saturation. In general one-phase and
two-phase areas will be expected to alternate across the
diagram at constant temperature, although degenerate
cases are frequently noted in which one or more expected
areas of either type are apparently missing; this merely
means that its limits are so narrow that they either do
not show on the scale of the diagram or have not yet been
determined.

Although it would be readily possible to develop a new
set of quantitative relations to describe the changes in the
amounts of the phases resulting when increasing amounts
of one component are added to a fixed amount of a phase,
there is little gain in precision to be derived thereby over
the use of the relations just developed. It will be sufficient
for the purpose to discuss one hypothetical case. (Figure
19) Suppose that component A be continuously added to
a fixed amount of component B at a temperature above
the melting point of B. A at first dissolves increasing the
concentration of the solution, (and, of course, the weight
of it as well) until when the concentration of the solution
reaches the value f ′A, it becomes saturated with respect
to the solid solution α. Continued addition of A will
cause the formation of increasing amounts of the phase
α for each value of the total composition the ratio of
the weights Wα

WL
can be determined by application of eq.0

(10), and is readily shown to vary from 0 to∞ as the total
composition changes from f ′A to f ′′A. The mechanism by
which the system makes the required adjustment in this
case is by the destruction of the liquid phase since α must
contain some of component B which can be derived only
from the liquid phase. This process is completed when
the total composition reaches f ′′A. On further addition
of A, the solid solution, which has previously been sat-
urated with respect to liquid, becomes unsaturated and
remains so as the total composition proceeds to fA. As
the degree of unsaturation with respect to L increases the
degree of unsaturation with respect to the compound K1
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FIG. 19: A modestly difficult phase diagram showing various
solid solutions

decreases until at f ′′′A the solution is saturated or this new
phase; K1 then forms at the expense of α until it alone is
present at The same analysis can be pursued through any
number of areas, In each case involving a two-phase area
within the diagram, the increase in the relative weight of
the phase of higher composition due to addition of the
component A proceeds by simultaneous increase in the
weight of the phase of higher concentration and decrease
in the weight of the phase of lower concentration.

Suppose now that instead of adding component A to
a phase in the region of composition f ′′A to f ′′′A (unsatu-
rated α), we add the compound K1. At f ′′′A the solution is
saturated with respect to the added phase and will main-
tain that composition in the presence of any amount of
it whatever. In this case therefore continued addition of
the saturating phase causes the total composition to ap-
proach that of K1 only as a limit and without decreasing
the weight of the saturated phase α.

Obviously a second method of tracing phase rule di-
agrams is here implied, viz., instead of tracing cooling
curves for various fixed compositions, the variations in
the phase compositions may be noted as the total com-
position is changed for various fixed temperatures? The
direct method of effecting this, of course, is to separate
and analyze the phases, and represents the normal pro-
cedure for example in determining the solubility curves
for solids in liquids. If, however, both phases are solid,
it Is obviously impracticable to try to separate them for
chemical analysis. In this case some physical means of
analysis will frequently be found satisfactory . The prin-
ciple involved is simple since all the physical properties
of the phases are functions of the Phase Rule variables
and since the total composition of the system at a fixed
temperature regulates either

1. the phase composition if only one phase is present
or

2. the nature and relative amounts of the phases if

two phases are present, it will generally be found
that the rate of change with total composition of
any physical property, while varying continuously
within a given area, will suffer discontinuities at
the boundaries of that area.

Almost any physical property may be tried subject to the
obvious practical criterion that the experimental method
available for its measurement be sufficiently sensitive to
detect the discontinuities in the rate curve for the sys-
tem in question. Hardness, refractive index, electrical
conductivity, magnetic permeability, lattice constants as
determined by X-ray analysis, ease of reaction to etching
agents and abrasives as noted under the microscope may
be mentioned among the properties which have found
application in this connection.

In case it is desired to locate the area boundaries for
solid systems at elevated temperatures, advantage may
be taken of the slowness with which equilibrium is estab-
lished in such systems– the characteristic which consti-
tutes a serious disadvantage in the use of cooling curves.
The system may be maintained at the desired temper-
ature until equilibrium has been established and then
rapidly cooled(“quenched””) to room temperature where
the physical property is measured.

D. Intermetallic Compounds and Solid Solution

A few words should be said concerning the nature of
the so-called “compounds” which appear on the phase
diagrams of alloy systems. Although in case one of the
components is a non-metal or one of the intermediate
elements which may function either as a metal or as a
non-metal some of the compounds may correspond with
the ordinary valences of the components, in general this
is not the case and the only obvious qualification, these
substances possess entitling them to the name ”chemical
compounds” is the fact that the atomic ratios of their
constituents are expressible in terms of small integers.
Where X-ray analysis has been made, however, evidence
of their claim to individual entity is often shown in the
possession of a definite crystal structure usually repre-
sented by a more complicated unit cell than those of the
components. On the whole one of the most satisfactory
classifications of these compounds which can be made is
on the basis of the atomic volumes of the components
(determined by the atomic weights and densities of the
elements); this classification demonstrates that the chief
reason for the existence of the simple atomic ratios char-
acteristic of the compounds of a given pair of compo-
nents is the possibility of close packing of the atoms at
these ratios; the determining factor is therefore geomet-
rical rather than chemical. However, in many cases the
valence electrons carried by the component atoms appar-
ently also contribute to the stability of the structure as
evidenced by certain existing generalizations as to the
ratio of valence electrons to atoms in the compound.
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Solid solutions are mainly of two types ”interstitial”
and ”substitution”. In the first, the solute enters the
interstices or spaces within the lattice of the solvent; it is
therefore necessary for the formation of solid solutions of
this type that the solute atoms be small as is the case for
example with carbon and hydrogen. In the substitution
type of solid solution, the solute atoms replace the solvent
atoms at random points on the lattice of the latter.

In the substitution type of solid solution, the solute
atoms replace the solvent atoms at random points on the
lattice of the latter. In case complete series of solid so-

lutions are formed it will always be found that the com-
ponents crystallize in the as the lattice pattern; as the
substitution or solution progresses therefore, the lattice
constants change continuously from those of one to those
of the other component. When several solvents and so-
lutes are the intermetallic compounds. Indeed some of
these compounds never exist as such at total compo-
sitions greater or less than their own but instead form
solid solutions with both components or with neighbor-
ing compounds.

[1] Assuming both components present in every phase
[2] As previously indicated, any concentration scale may be

selected for x , since conversion from one scale to another
is always allowable. If, however, it is desired to represent
the entire composition range from one pure component to
the other, the choice will be made among the scales mol-,
weight-, or volume-fraction or -per cent. For these scales,
of course, the composition of the system or of the phases
composing it with respect to both components can be in-
dicated, the two components being measured in opposite
direction along the x-axis, since the sum of the concentra-
tions on these scales is always one or one hundred. (The

error must not be made of assuming that this represents a
method of representing two independent variables in one
dimension.)

[3] Actually, since the composition of the azeotrope depends
on the pressure (or temperature) it is not really a compo-
nent, and this argument is not quite perfect (cwd).

[4] When not saturated with respect to either phase II or
phase III, phase I may be represented by any point in the
area designated I, such a point being described by the then
unrelated coördinates x′A, T ).

[5] well really!!!!
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