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MO Visualization of Pi Orbitals

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: April 22, 2009)

I. SYNOPSIS

In the spirit of trying to convert people to understand-
ing atomic orbitals centered elsewhere than the origin,
we continue the discussion of visualizing molecular or-
bitals, so called LCAO-MO, using various plotting tricks
in Maple.

II. INTRODUCTION

p orbitals come in three varieties, with two representa-
tions each. We eschew the magnetic representation here,
based on ` and m`, and instead focus, as usual in visual-
ization problems, on the real representations. In Carte-
sian coördinates, we have

ψpx = xe−r/2

and

ψpy = ye−r/2

while, or course, we have

ψpz = ze−r/2

(remember that r =
√
x2 + y2 + z2.)

The orbitals (above) are textbook examples. They
are centered on the origin, since r is measured from the
point (0, 0, 0). But in molecules, the nuclei are dispersed
in space (in some pattern determined by minimum en-
ergy considerations, but that’s another tale). Thus each
nucleus in the molecule has a specific (xnuc, ynuc, znuc)
which therefore requires us to write orbitals associated
with said nuclei centered on each one of them. That’s
how the quantum mechanical formulation allows the ge-
ometry of a molecule to be included in the electronic wave
function.

For a diatomic, the tradition is to located the two
nuclei at (0, 0, R/2) (called nucleus A) and (0, 0,−R/2)
(called nucleus B), so that the distance between them is
R, the internuclear separation. Figure 1 shows how the
nuclei are arranged.

Thus, an s orbital centered on nucleus A might be

e−
q
x2+y2+(z−R2 )2

/2

while one centered on nucleus B might be

e−
q
x2+y2+(z+R

2 )2
/2

FIG. 1: The standard coördinate scheme for diatomics.

since the r vectors in each case, i.e., rA and rB have
different lengths when pointing to the same point in space
(x, y, z).

To create π orbitals, we know that we need to “add”
two p-orbitals, one located on each contributing nucleus.
These contributing atomic orbitals (AO’s) are supposed
to be perpendicular to the bond line which in our case
is the z axis. Therefore, we have a choice of using either
the x set or the y set of p orbitals. For no reason, we
choose the px orbitals as contributors to the emerging πx
and π∗x MO’s.

The simplistic method of writing what has been writ-
ten in words (above) is:

ψpAx = xe−rA/2

ψpBx = xe−rB/2

as can be found in a multitude of textbooks (the 2 in the
denominator is caused by this being a 2px orbital). This
notation is delusional, since it implies understanding,
where none exists. Instead, we write these contributing
orbitals in complete Cartesian coördinates rather than
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FIG. 2: Two px orbitals, one centered at nucleus A and the
other centered at nucleus B waiting to be added (or sub-
tracted) to from a πx MO (or a π∗x MO) . Notice the classic
figure-8 representation of p orbitals, which actually are polar
plots! They are incomensurate in the sense that the origins
of the two plots differ, one centered on nucleus A, the other
on nucleus B. It is the avoidance of this “error” which has
motivated all the discussions here!

mixed coördinates, i.e.,

ψpAx = xe−
q
x2+y2+(z−R2 )2

/2

ψpBx = xe−
√
x2+y2+(z+R

2 )2/2

We now have the contributing AO’s written in a self con-
sistent form which allows us to start plotting the LCAO-
MO.

There are two combinations of p-orbitals which lead
to two MO’s, one uses a plus sign and one uses a minus

sign. If one labors through the Hückel calculation, one
finds that the ‘+’ sign corresponds to our usual πx orbital,
and this is what we’ll tackle first. We obtain:

πx = xe−
q
x2+y2+(z−R2 )2

/2 + xe−
√
x2+y2+(z+R

2 )2/2

FIG. 3: Two px orbitals, one centered at nucleus A and the
other centered at nucleus B waiting to be added (or sub-
tracted) to from a πx MO (or a π∗x MO) . The definition of
positive and negative is arbitrary, so the colors are not in-
tended to match those of earlier figures.

There you have it.

Formally, we have πx(x, y, z) is a function of three vari-
ables, x, y, and z. That means, you choose the values
for the three coördinates, and the formula will tell you
the value of the wave function, i.e., that we need 4 di-
mensions to map out this function properly. We need
to plot πx(x, y, z) as the “dependent” variable, against
x, y, and z as independent (you choose their values and
πx(x, y, z)’s value follows) variables.

Since most of us do not live in that particular world,
we need to reduce the dimensionality of our plots so that
we can put them on paper. Usually, we take a section
when one of the axis is zero (example here y axis), and
then plot πx(x, y, z) → πx(x, 0, z) versus the other two.
Then, we take this three dimensional plot, and put it on
a two-dimensional page using perspective as the trick to
give the illusion of three dimensionality. Figure 3 shows
schematically how we are combining the two contributing
orbitals in this pseudo-3D representation. In our case,
we’ve chosen to set y = 0 for this original plot (with
the intent of plotting at varying values of y to see what
happens (which is a shrinkage, nothing more, hence not
worth actually doing)). The final Maple plot equivalent
to Figure 3 can be seen in Figure 5 below.



III. MAPLE
> #MO-pi-plot
> restart;
> with(plots):
> fsA := exp(-rA/2);
> fsB := exp(-rB/2);
> rA := sqrt(x^2+y^2+(z-R/2)^2);
> rB := sqrt(x^2+y^2+(z+R/2)^2);
> p_pi_plus := x*fsA+x*fsB;
> p_pi_minus := x*fsA-x*fsB;

Warning, the name changecoords has been redefined

fsA := e(−
rA
2 )

fsB := e(−
rB
2 )

rA :=

√
4x2 + 4 y2 + 4 z2 − 4 z R+R2

2

rB :=

√
4x2 + 4 y2 + 4 z2 + 4 z R+R2

2

p pi plus := x e(−
√

4 x2+4 y2+4 z2−4 z R+R2
4 ) + x e(−

√
4 x2+4 y2+4 z2+4 z R+R2

4 )

p pi minus := x e(−
√

4 x2+4 y2+4 z2−4 z R+R2
4 ) − x e(−

√
4 x2+4 y2+4 z2+4 z R+R2

4 )

Having defined the orbitals in a consistent
coördinate scheme (one origin, one set of x,
y, and z axis) we can proceed to plot them
> lim := 16;
plot(subs(R=16,z=0,y=0,p_pi_plus),
x=-lim..lim,labels=[‘x‘,‘pi_x(x,0,0).pdf‘],
title=‘2 pi_x‘);

Figure 4 shows the ψ(x, 0, 0) versus x section.

FIG. 4: ψπx(x, 0, 0) versus x. This plot demonstrates that
the wave function of the π orbital changes sign as one goes
from the +x axis to the −x axis.

plot3d(subs(R=8,y=0,p_pi_plus),
x=-lim..lim,z=-lim..lim,axes=BOXED,
labels=[‘x‘,‘z‘,‘p_pi‘],
title=‘(pi_x) MO(x,0,z) versus x and z‘);

To get a better understanding of this π orbital, we

plot next the value of the wave function when x and
z are allowed to vary, all with y = 0, i.e., y fixed
at zero. We obtain Figure 5 using the Maple code:
plot3d(subs(R=8,y=0,p_pi_minus),
x=-lim..lim,z=-lim..lim,.pdf
axes=BOXED,
labels=[‘x‘,‘z‘,‘p_pi‘],
title=‘(pi_x^*) MO(x,0,z) versus x and z‘);

FIG. 5: ψ(πxx, 0, z) versus x and z. This plot also demon-
strates that the wave function of the π orbital changes sign
as one goes from the +x axis to the −x axis. For negative
values of x, the wave function lies below the ψ = 0 plane.

Finally, we plot ψπ∗x , the anti-bonding (π∗) orbital.
Here, the wave function has a node between the nuclei,
making bonding impossible.

Next, we plot a 3 dimensional contour map (Fig-



FIG. 6: ψπ∗x versus x for the antibonding π∗ orbital. This plot
demonstrates that the wave function of the π orbital changes
sign as one goes from the +x axis to the −x axis as well as
when one goes from the z to the −z axis.

ure 7) of the πx orbital, showing again that the wave
function changes sign in company with the x-axis.

FIG. 7: Contour map in 3-dimensions, showing a contour of
positive and negative (red) wave function for a π orbital.

> f1 :=
> implicitplot3d(subs(R=8,
> p_pi_minus)=-0.006,
> x=-lim..lim,y=-lim..lim,z=-lim..lim,
> axes=BOXED,labels=[‘x‘,‘y‘,‘z‘],color=red):
> f2 :=
> implicitplot3d(subs(R=8,p_pi_minus)=0.006,
> x=-lim..lim,y=-lim..lim,z=-lim..lim,
> axes=BOXED,labels=[‘x‘,‘y‘,‘z‘],color=blue):
> display(f1,f2,title=‘1 pi_x^* MO ( +(blue)
and -(red))‘);

IV. A NON-π ORBITAL

Just to make sure that one understands what is going
on, a plot of the orbital obtained by using pz orbitals is
shown in Figure 8:

FIG. 8: When contributing pz orbitals are used, one gets a
pσ orbital (and p∗σ).

Here, we obtain a cylidrically symmetric (about the
z-axis) orbital. The basis orbitals are shown in the plot,
sufficient that one can see that the plus sign joining the
two contributing pz orbitals would lead to anti-bonding,
while the minus sign would lead to the bonding (pσ) or-
bital. Specifically, we plot

ψ2pσ = pAz − pBz

(the usual, semi-meaningless notation), i.e.,

ψ2pσ =
(
z − R

2

)
e−sqrtx

2+y2+(z−R/2)2/2 −(
z +

R

2

)
e−sqrtx

2+y2+(z+R/2)2/2

ane plot ψ2pσ (x, 0, z) versus z and x (Figure 8). Since
the signs are opposite to the usual experience, means
that extra thought is needed to put the signs into mental
perspective.
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