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Continued Fractions Solutions to Hermite’s, Legendre’s and Laguerre’s Differential
Equations

C. W. David∗
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: March 31, 2009)

I. SYNOPSIS

The continued fraction method for solving the differen-
tial equations of quantum mechanics is not well known,
but since the method is used to deal with tunneling prob-
lems and the Mathieu Equation, it makes sense to fa-
miliarize ourselves with the method, in a non-rigorous
manner.

II. HERMITE’S DIFFERENTIAL EQUATION

Hermite polynomials are usually generated using the
differential equation and a power series Ansatz which re-
quires truncation. An alternative approach is presented
here.

Hermite’s differential equation is

∂2y

∂x2
− 2x

∂y

∂x
+ 2αy = 0 (2.1)

which we rewrite as

y′′ − 2xy′ + 2αy = 0

using the “prime” notation scheme, i.e.,

y′ =
∂y

∂x

y′′ =
∂2y

∂x2

etc.. Dividing both sides by y′ and transposing one term
one obtains

y′′

y′
− 2x

y′

y′
+ 2α

y

y′
= 0

i.e.,

y′′

y′
− 2x = −2α

y

y′

which we solve for y′

y thusly:

y′

y
=
∂`ny

∂x
= (−2α)

1
y′′

y′ − 2x

∗Electronic address: Carl.David@uconn.edu

∂`ny

∂x
=

2α
2x− y′′

y′

(2.2)

Next, taking the derivative of Equation 2.1

∂
(
∂2y
∂x2 − 2x ∂y∂x + 2αy = 0

)
∂x

=
∂ (y′′ − 2xy′ + 2αy = 0)

∂x
(2.3)

we obtain

y′′′ − 2y′ − 2xy′′ + 2αy′ = 0 (2.4)

and dividing byy′′ we obtain

y′′′

y′′
+ (2α− 2)

y′

y′′
− 2x = 0

which we solve for y′′

y′ which we need in the denominator
of Equation 2.2:

y′′

y′
=

2(α− 1)
2x− y′′′

y′′

Substituting into Equation 2.2, we have

∂`ny

∂x
=

2α

2x− 2(α−1)
2x−y′′′

y′′

(2.5)

Is it clear that we will now take the derivative of Equation
2.4, i.e.,

d (y′′′ + (2α− 2)y′ − 2xy′′)
dx

= 0 (2.6)

obtaining

yiv + (2α− 2)y′′ − 2y′′ − 2xy′′′ = 0 (2.7)

i.e.,

yiv + (2α− 4)y′′ − 2xy′′′ = 0

which we solve

yiv

y′′′
+ (2α− 4)

y′′

y′′′
− 2x = 0

so,

y′′′

y′′
=

2α− 4

2x− yiv

y′′
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Using this in Equation 2.5 we obtain

∂`ny

∂x
=

2α

2x− 2(α−1)
2x− 2α−4

2x−y
iv

y′′

(2.8)

It is obvious what is going on. The process is going to
continue forever. It is also obvious, the numerators in
each cascading term can individually be set equal to zero,
thereby terminating the continued fraction. There is an
infinite set of such terminating conditions, i.e., α = 0,
α = 1, α = 2, etc., etc., etc..

If α = 0 we have

∂`ny

∂x
= 0 (2.9)

which means, upon integration

`ny = `nC1 (2.10)

where C ′1 is a constant of integratation (so that `nC1 is
also a constant).

If α = 1 then we have

∂`ny

∂x
=

2
2x− 0

(2.11)

which means that, integrating

`ny = `nx+ `nC1

or

y = C1x

again, where C1 is some constant of integration.

We will do one more, just to make sure all is clear. If

α = 2 we have

∂`ny

∂x
=

2α

2x− 2(α−1)
2x− 2×2−4

2x−y
iv

y′′

(2.12)

∂`ny

∂x
=

2α

2x− 2(α−1)
2x−0

(2.13)

which is

∂`ny

∂x
=

(2α)(2x)
(2x)2 − 2(1)

(2.14)

∂`ny

∂x
=

4αx
2(2x2 − 1)

(2.15)

which is, defining u = 2x2 − 1, so that du = 4xdx, we
have

∂`ny

∂x
=
α

2
4x

(2x2 − 1)
(2.16)

∫
d`ny =

α

2

∫
4xdx

(2x2 − 1)
=
α

2

∫
du

u
(2.17)

which leads to

`ny =
α

2
`nu+ `nC =

α

2
`n(2x2 − 1) + `nC (2.18)

i.e.,

y =
αC

2
(2x2 − 1) = C ′(2x2 − 1)

which is Hermite’s Polynomial of Order 2. To make sure
that this is true, we substitute this solution into Her-
mite’s differential equation, (Equation 2.1):

y′′ = 4
−2xy′ = −2x(4x)

2αy = 2α(2x2 − 1)
0 =?

which, of course, equals zero upon adding. Not so fast.
What we have is, on the l.h.s. y′′ − 2xy′ + 2αy = 0 but,
on the r.h.s we have

4− 2x(4x) + 2α(2x2 − 1)

which is

4− 8x2 + 4αx2 − 2α

which, if α = 2 is zero! Note also, that the constant, C’,
is irrelevant for this demonstration. (Why?)

III. LEGENDRE’S DIFFERENTIAL EQUATION

Legendre polynomials are usually generated using the
differential equation and a power series Ansatz which re-
quires truncation. An alternative approach is presented
here.

Legendre’s differential equation is

(1− x2)
∂2y

∂x2
− 2x

∂y

∂x
+ `(`+ 1)y = 0 (3.1)

which we rewrite as

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0

using the “prime” notation scheme, i.e.,

y′ =
∂y

∂x
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y′′ =
∂2y

∂x2

etc.. Dividing both sides by y′ and transposing one term
one obtains

(1− x2)
y′′

y′
− 2x

y′

y′
+ `(`+ 1)

y

y′
= 0

i.e.,

(1− x2)
y′′

y′
− 2x = −`(`+ 1)

y

y′

which we solve for y′

y thusly:

y′

y
=
∂`n(y)
∂x

=
(−`(`+ 1))

(1− x2)y
′′

y′ − 2x
(3.2)

Next, taking the derivative of Equation 3.1

=
∂
(
(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0

)
∂x

(3.3)

we obtain

(1− x2)y′′′ − 2xy′′ − 2y′ − 2xy′′ + `(`+ 1)y′ = 0 (3.4)

i.e.,

(1− x2)y′′′ − 4xy′′ + (`(`+ 1)− 2)y′ = 0

and dividing byy′′ we obtain

(1− x2)
y′′′

y′′
+ (`(`+ 1)− 2)

y′

y′′
− 4x = 0

which we solve for y′′

y′ which we need in the denominator
of Equation 3.2:

y′′

y′
=

`(`+ 1)− 2)
4x− (1− x2)y

′′′

y′′

Substituting into Equation 3.2, we have

∂`ny

∂x
=

`(`+ 1)

2x− (1− x2) `(`+1)−2
4x−(1−x2)y

′′′
y′′

(3.5)

Is it clear that we will now take the derivative of Equation
3.4, i.e.,

d
(
(1− x2)y′′′ − 4xy′′ + (`(`+ 1)− 2)y′ = 0

)
dx

= 0 (3.6)

obtaining

(1−x2)yiv−2xy′′′+(`(`+1)−2)y′′−4y′′−4xy′′′ = 0 (3.7)

i.e.,

(1− x2)yiv + (`(`+ 1)− 2)y′′ − 4y′′ − 6xy′′′ = 0

i.e.,

(1− x2)yiv + (`(`+ 1)− 4)y′′ − 6xy′′′ = 0

which we solve

(1− x2)
yiv

y′′′
+ (`(`+ 1)− 6)

y′′

y′′′
− 6x = 0

so,

y′′′

y′′
=

`(`+ 1)− 6

6x− (1− x2)y
iv

y′′

Using this in Equation 3.5 we obtain

∂`ny

∂x
=

`(`+ 1)

2x− (1− x2) `(`+1)−2
4x−(1−x2) `(`+1)−6

6x−(1−x2)
yiv

y′′′

(3.8)
It is obvious what is going on. The process is going to
continue forever. It is also obvious, the numerators in
each cascading term can individually be set equal to zero,
thereby terminating the continued fraction. There is an
infinite set of such terminating conditions, i.e., `(`+1) =
0, `(`+1) = 1, `(`+1) = 2, etc., etc., etc.. If `(`+1) = 0
we have

∂`ny

∂x
= 0 (3.9)

which means, upon integration

`ny = `nC2 (3.10)

where C2 is a constant of integratation (so that `nC2 is
also a constant).

If `(`+ 1) = 2 (i.e., `=1) then we have

∂`ny

∂x
=

2
2x− 0(1− x2)

∂`ny

∂x
=

1
x

(3.11)

which means that, integrating

`ny = `nx+ `nC2

or

y = C2x

again, where C2 is some constant of integration.
We will do one more, just to make sure all is clear. If

`(`+ 1) = 6 (i.e., ` = 2), we have

∂`ny

∂x
=

6

2x− (1− x2) (2(2+1)−2)
4x−(1−x2) 2×3−6

6x−y
iv

y′′
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∂`ny

∂x
=

6

2x− (1− x2) (6−2)
4x−(1−x2) 0

6x−y
iv

y′′

(3.12)

∂`ny

∂x
=

6

4x− (1− x2) 4
4x−0

(3.13)

which is (moving to common denominators)

∂`ny

∂x
=

(6)(4x)
(2x)(4x)− 4(1− x2)

(3.14)

∂`ny

∂x
=

24x
12x2 − 4

(3.15)

which is, defining u = 3x2 − 1 so that du = 6xdx, we
have

∂`ny

∂x
=
du

u
(3.16)

which leads to

`ny = `n(3x2 − 1) + `nC (3.17)

i.e.,

y = C(3x2 − 1)

which is Legendre’s Polynomial of Order 2. To make
sure that this is true, we substitute this solution into
Legendre’s differential equation, (Equation 3.1):

(1− x2)y′′ = (1− x2)6 = 6−��6x2

−2xy′ = −2x(6x) = −�
��12x2

2`(`+ 1)y = 2(1)(2 + 1)(3x2 − 1) = ���18x2 − 6
0 =?

which equals zero upon adding (when `=2).. Note also,
that the constant, C, is irrelevant for this demonstration.
(Why?)

IV. LAGUERRE’S DIFFERENTIAL EQUATION

Laguerre polynomials associated with the radial solu-
tion to the Schrödinger Equation for the H atom’s elec-
tron are usually generated using the differential equation
and a power series Ansatz which requires truncation.

Laguerre’s differential equation is

x
∂2y

∂x2
+ (1− x)

∂y

∂x
+ αy = 0 (4.1)

which we rewrite as

xy′′ + (1− x)y′ + αy = 0 (4.2)

Dividing both sides by y′

x
y′′

y′
+ (1− x)

y′

y′
+ α

y

y′
= 0

and transposing one obtains

y′

y
=

α

(x− 1)− xy′′

y′

(4.3)

Next, taking the derivative of Equation 4.2

∂ (xy′′ + (1− x)y′ + αy = 0)
∂x

(4.4)

we obtain

xy′′′ + y′′ − y′ + (1− x)y′′ + αy′ = 0
= xy′′′ + (2− x)y′′ + (α− 1)y′ = 0 (4.5)

and dividing by y′′ we obtain

x
y′′′

y′′
+ (2− x) + (α− 1)

y′

y′′
= 0

which we solve for y′′

y′ which we need in the denominator
of Equation 4.3:

y′′

y′
=

(1− α)
(2− x) + xy

′′′

y′′

=
(α− 1)

(x− 2)− xy′′′

y′′

Substituting into Equation 4.3, we have

y′

y
=

α

(x− 1)− x (α−1)
(x−2)−xy′′′

y′′

(4.6)

Is it clear that we will now take the derivative of Equation
4.5, i.e.,

d (xy′′′ + (2− x)y′′ + (α− 1)y′)
dx

= 0 (4.7)

obtaining

xyiv + y′′′ − y′′ + (2− x)y′′′ + (α− 1)y′′ = 0 (4.8)

i.e.,

xyiv + (3− x)y′′′(α− 2)y′′ = 0

which we solve

yiv

y′′′
+ (α− 2)

y′′

y′′′
+ 3− x = 0

so,

y′′′

y′′
=

α− 2

(x− 3)− xyiv

y′′
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Using this in Equation 4.6 we obtain

y′

y
=

α

(x− 1)− x (α−1)
(x−2)−x (α−2)

(x−3)−x y
′′

y′′′

(4.9)

It is obvious what is going on. The process is going to
continue forever. It is also obvious, the numerators in
each cascading term can individually be set equal to zero,
thereby terminating the continued fraction. There is an
infinite set of such terminating conditions, i.e., α = 0,
α = 1, α = 2, etc., etc., etc..

If α = 0 we have

∂`ny

∂x
= 0 (4.10)

which means, upon integration

`ny = `nC (4.11)

where C is a constant of integratation (so that `nC is
also a constant).

If α = 1 then we have

∂`ny

∂x
=

1
(x− 1)

(4.12)

which means that, integrating

`ny = `n(x− 1) + `nC

or

y = C(x− 1)

again, where C is some constant of integration.

We will do one more, just to make sure all is clear. If

α = 2 we have

y′

y
=

2

(x− 1)− x (2−1)
(x−2)−x (2−2)

(x−3)−x y
′′

y′′′

=
2

(x− 1)− x (2−1)
(x−2)

(4.13)

y′

y
=

2(x− 2)
(x− 1)(x− 2)− x

(4.14)

which is

d`ny

dx
=

2(x− 2)
x2 − 4x+ 2

(4.15)

∂`ny

∂x
=
du

u
(4.16)

which is, defining u = x2−4x+2 so that du = (2x−4)dx,
we have ∫

d`ny =
∫
du

u
(4.17)

which leads to

`ny = `nu+ `nC = `nC((x2 − 4x+ 2)) (4.18)

i.e.,

y = C(x2 − 4x+ 2)

which is Laguerre’s Polynomial of Order 2. To make
sure that this is true, we substitute this solution into
Laguerre’s differential equation, (Equation 4.2):

xy′′ = 2x

(1− 2)y′ = (1− x)(2x− 4) = 2x− 4− 2x2 + 4x

αy = 2(x2 − 4x+ 2) = 2x2 − 8x+ 4

which, of course, equals zero upon adding.

xy′′ = 2x

(1− 2)y′ = (1− x)(2x− 4) = 2x− 4−��2x2 + 4x

αy = ��2x2 − 8x+ 4

which, equals zero upon adding. Note also, that the con-
stant, C ′, is irrelevant for this demonstration. (Why?)

V. REMARKS

You will have noted how similar the wording is in
the three sections treated here. In the original online
version(s), using Computer Assisted Reading, they were
separated, cloned from an original text with equations
changed, but with the layouts left intact. With my re-
tirement, the Computer Assisted Reading sites will be
(eventually) dismantled, and to prevent their loss, I’ve
created this document. Readers should be aware that this
corresponds to an article I wrote [1] which corresponds
to the same material, presented in yet still a different
arrangement.
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