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Carnot Cycles: Traditional and Stefan Bolzmann, and the First Planck Argument

C. W. David∗
Department of Chemistry
University of Connecticut

Storr’s, Connecticut 06269-3060
(Dated: March 19, 2009)

I. TRADITIONAL CARNOT ENGINE USING
GASES

The first semester p-chem course traditionally centers
on thermodynamics, and therefore usually includes the
Second Law. This Second Law is usually introduced
with Carnot Engines working on ideal gas fluids, accept-
ing heat from a high temperature reservoir at Thigh and
emitting that heat into a lower temperature reservoir
whose temperature is Tlow, accompanied by the emis-
sion of some work. We illustrate (for memory revival
purposes) this traditional Carnot cycle in Figure 1. The
drawing is made to highlight the full nature of the cycle,
rather than the traditional drawing shown in most texts.

FIG. 1: A Traditional Carnot Cycle for a Gas
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FIG. 2: A Carnot Cycle for a Radiation Gas

II. NON-TRADITIONAL CARNOT ENGINE
USING RADIATION

We employ a Carnot engine with a working fluid which
is electromagnetic radiation [1]. Walls, base, and the
piston itself are assumed to be perfectly reflecting. There
is a trap door in the base; when open, radiation comes
from the accompanying bath into the cylinder, or goes
out from the cylinder to the bath. There are two baths,
Bhigh and Blow at temperatures Thigh and Tlow. The
Carnot steps are

1. fill the cylinder with radiation from Bhigh until the
piston and bath are at equilibrium. Then ψ1 is
the radiation density both in the piston and in the
cylinder. The pressure in the cylinder is p1 = 1

3ψ1

[2] .

2. With the piston at p1 allow the piston to rise re-
versibly to p2. The volume increases from V1 to
V2. the radiation density will remain constant since
the trap door is held open during the expansion.
ψ1(V2 − V1) is the amount of radiation which must
have entered the cylinder during this expansion.
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The total energy after expansion is

1
3
ψ1(V2 − V1) + ψ1(V2 − V1) =

4
3
ψ1(V2 − V1)

This is equal to the abount of heat supplied, so that
the process could remain isothermal.

3. Close the trap door, expand to P3. Energy density
goes down from ψ1 to ψ2. The pressure goes down.
The temperature decreases to Tlow. The process is
adiabatic. If Tlow differs only slightly from Thigh
then the difference in temperatures is just dT and
the corresponding change in energy density is dψ.
Since p = 1

3ψ we know that

dp =
1
3
dψ

4. open the trap door, apply external force to reduce
the volume to V4, with the piston now at P4. Ra-
diation leaves the cylinder into bath Blow.

5. Close the trap door, and close the cycle adiab-
taically.

The net work is

dw ≈ (V2 − V1)dp =
1
3

(V2 − V1)dψ

Therefore

dw

heat in
=
Thigh − Tlow

Thigh
=

dT

Thigh
=

1
3 (V2 − V1)dψ
4
3 (V2 − V1)ψ

which means

dψ

ψ
= 4

dT

T

which yields

ψ = aT 4

III. FIRST PLANCK ARGUMENT

Planck wrote

ρ(ν, T ) =
8πν2

c3
E(ν, T ) (3.1)

where E(ν, t) is the average energy of a simple harmonic
oscillator (of the wall) in equilibrium with black body
radiation.

From the first law one has

dE = TdS − pdV

so (
∂S

∂E

)
V

=
1
T

means (
∂2S

∂E∂T

)
V

= − 1
T 2

which becomes, employing the chain rule in reverse(
∂E

∂T

)(
∂2S

∂E2

)
V

= − 1
T 2

and, dividing by
(
∂E
∂T

)
we obtain(

∂2S

∂E2

)
V

= − 1
T 2

(
∂T

∂E

)
= − 1

T 2
(
∂E
∂T

) (3.2)

Substituting Wien’s formula:

ρ(ν, T ) = αν3e−βν/T

into Planck’s starting formula (Equation 3.1)

ρ(ν, T ) =
8πν2

c3
E(ν, T ) = αν3e−βν/T

we get

E(ν, T ) =
ανc3

8πeβν/T
=
ανc3

8π
e−βν/T

so, taking the derivative explicitly, we have

∂E

∂T
=
βν

T 2
E

and therefore substituting into Equation 3.2 we obtain

∂2S

∂E2
= − 1

βνE
= − 1

CE
(3.3)

where C is independent of the temperature. Since Wien’s
formula is itself wrong, for at high temperatures and low
frequencies (λ ↑), ρ(T ) ∼ T and therefore one has, ap-
proximately, E(T ) ∼ T i.e., E(T ) = a constant× T and

∂E

∂T
∼ constant→ K

so, if E=KT then T=E/K and T 2 = E2

K2 so we have using
Equation 3.2

∂2S

∂E2
= − 1

T 2 ∂E
∂T

∼ − 1
KT 2

= − 1
K ′E2

(3.4)

At high frequency is (using Equation 3.3)

∂2S

∂E2
∼ − 1

E

at low frequencies (using Equation 3.4)

∂2S

∂E2
∼ − 1

E2
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Planck saw that one equation filled the bill, i.e.,

∂2S

∂E2
= − 1

E(a+ E)

If this is true then

∂S

∂E
+ b′ = −

∫
dE

E(a+ E)

which we decompose into

= −
∫ (

1
aE
− 1
a(a+ E)

)
dE

which is

= −1
a
`nE +

1
a
`n(a+ E)

or

=
1
a
`n

(
a+ E

E

)
so

∂S

∂E
=

1
a
`n

(
a+ E

E

)
=

1
T

As T →∞, E →∞ but 1
T → 0, so

1
a
`n

(
a+ E

E

)
+ b =

1
T

Therefore, b=0 and

`n

(
a+ E

E

)
=
a

T

so

a+ E

E
= ea/T

a+ E = Eea/T

a = −E + Eea/T

E =
a

ea/T − 1

and finally

ρ(ν, T ) =
8π
c3

(
aν2

ea/T − 1

)
but, from Wien, we know that a(ν) should go as as ν3

and we have aν2 in the formula, so we should make a be
a constant ×ν3 i.e., i.e. we should have a = hν, so that

ρ(ν, T ) =
8π
c3

(
hν3

k(ehν/kT − 1)

)

[1] F. K. Richtmeyer and E. H. Kennard, “Introduction to
Modern Physics”, Fourth Edition, McGraw-Hill Book Co.,
Inc., 1947, page 149

[2] It is beyond the scope of these notes to show why this is
true. See Richtmeyer and Kennard, loc. cit., page 147-148
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