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Rationale for Studying Theoretical Chemistry

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060

(Dated: February 26, 2009)

I. SYNOPSIS

The various rationales for studying physical chemistry,
and specifically the theoretical component thereof are
presented in what is hoped in a coherent package.

II. WHY STUDY P. CHEM.

After one’s finished a year of physical chemistry, one
has the right to ask what have I learned, and why was I
forced to learn it?

And the answer is · · ·.

A. First Justification

Actually, the answer is far from clear. At one level,
learning physical chemistry is learning how to “plug-and-
chug” using equations (either learned or looked up), keep-
ing units straight, etc.. The argument justifying this
process is that applying the right equation (previously
known) to the right physical situation is, a priori, of
value. After all, the majority of chemists will only use
equations derived by others, if at all.

B. Second Justification

At a slightly higher level, we seek to prepare stu-
dents to create the next generation’s physical chemistry,
which implies the ability to derive new relations mod-
eling physical-chemical phenomena on an “as needed”
basis. This implies that the derivations that we do in
physical chemistry are more than what they appear to
be. They are intended to show students how modeling
in the physical sciences is approached (they are also sup-
posed to convince students of their correctness). It is
the faculty’s hope that students will emulate the deriva-
tion methodology in new, as yet undreamed of scenarios,
with not only gusto, but confidence that their skills are
adequate to the task.

C. Third Justification

No matter what kind of chemistry one ends up do-
ing (or biology, engineering, law, etc.), we hope that the
larger picture of the transition from the micro to the
macro world will be engraved in one’s mind, so that one

obtains a Gestalt about the overview of science as it is
currently understood. Even if the details evaporate, the
structure, the relationships, should remain.

If, at some future time, quantum mechanics and/or
statistical mechanics are supplanted by some as yet un-
known mechanics, we assume that what we have learned
so far will be included in the newer picture, in some limit-
ing manner. No matter what the future, the ideas studied
here will forever remain valid, even if limited by future
developments.

D. Fourth Justification (chemistry specific)

From the point of view of the thermodynamicist, ther-
modynamics is interesting per se and needs no justifica-
tion. From the point of view of the · · ·; one can fill in
whatever blank one wants here.

Clearly, specialists become enamored of their special-
ties, and teach those specialties as if they were the exclu-
sively interesting subject in the world.

Chemists, by their very choice of chemistry as their
discipline, are interested in reactions, specifically, chem-
ical reactions, and from the larger point of view, these
divide into those reactions that go to “completion” and
those that attain some kind of equilibrium. This latter
class is of interest here. How does a chemical system
come to equilibrium?

• G→ min at fixed T and P . This leads to

∆G = ∆Go +RT`nQ

which, when ∆G → 0 yields the central chemical
result

∆Go = −RT`nKeq

• G theoretically comes from the Helmholtz Free En-
ergy (A) which itself comes from the partition func-
tion (Z), which comes from the set of energy lev-
els which themselves have been obtained from the
quantum mechanics of the situation at hand.

• G experimentally comes from ∆H measurements,
So measurements, etc..

No matter how approached, chemical equilibrium
and its attainment is the crown jewel of traditional
Physical Chemistry.
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FIG. 1: Why Study Thermodynamics. If one follows the
clockwise path from Hψi = εψi to Kp versus the counter-
clockwise path from dE = dq + dw one arrives at the same
point.

E. And then there was Spectroscopy, etc.

One must always keep in mind that the study of
Physical Chemistry partly transcends thermodynamics
and aesthetics. There are spectroscopic, structural, and
chemical mechanistic reasons for studying all of these
subjects in a Physical Chemistry environment.

And finally, in the true scientific nature of the en-
deavor, there is just plain simple curiosity concerning how
things work in the chemical environment we are dealing
with.

For any of these reasons, the study of theoretical chem-
istry may require some review of principals which come
from different parts of the entire world of chemical theory
but which illustrate the above comments. The following
sections deal with these elements as a review.

III. THERMODYNAMICS FROM STATISTICAL
THERMODYNAMICS

We know that

S = kB`nWmax (3.1)

where

Wmax =
N !∏
i n
⊗
i !

in which the energy level occupation numbers
({
n⊗i
})

are those which describe equilibrium, i.e.,

n⊗i =
Ne−βεi∑
i e
−βεi

(3.2)
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FIG. 2: The man

where β will become 1
kBT

, vide infra. As usual, using
Stirling’s approximation, we have

`nWmax = N`nN −N −
∑
i

(
n⊗i `nn

⊗
i − n

⊗
i

)
(3.3)

where we note in passing that∑
i

ni = N =
∑
i

n⊗i

(whether we are in the equilibrium state or not) results in
a fortuitous cancellation. We add in passing that again∑

i

niεi = E =
∑
i

n⊗i εi

for any set of n’s ({ ni }) and for the equilibrium
set

({
n⊗i
})

. Substituting the equilibrium populations
(Equation 3.2) into the occupation numbers of Equation
3.3 we obtain

`nWmax = N`nN −
∑
i

{
Ne−βεi∑
i e
−βεi

`n

(
Ne−βεi∑
i e
−βεi

)}
which is

`nWmax = N`nN −
∑
i

{
Ne−βεi∑
i e
−βεi

(`nN − βεi − `nZ)
}

which is

`nWmax = −
∑
i

N

{
(−β

∑
i

εie
−βεi − `nZ)

}

where, of course,

Z ≡
∑
i

e−βεi

so that, using Equation 1, we obtain

S = kB [βE +N`nZ]

where, we know that β = 1
kBT

.
Remember that the energy levels are functions of the

length, area, or volume only if we are dealing with par-
ticles in 1, 2, or 3 dimensional boxes. Therefore, cross
multiplying by T we have

TS = E +NkBT`nZ(V, T )

or

E − TS = −NkBT`nZ(V, T ) ≡ A(V, T )

:::::
This

:::::::::::::
fundamental

:::::::::::::
identification

:::
of

::::
the

:::::::::::
Helmholtz

:::::
Free

:::::::
Energy

:::::
with

::::
the

:::::::::
partition

:::::::::
function

:::::::
shows

:::::
that

::
A

::::::
(and

::
Z)

::::
are

::::::::::
functions

::
of

::::::::::::
temperature

:::::
and

::::::::
volume.

:
[1].

IV. AN EXAMPLE OF PARTITION FUNCTION
EVALUATION

For a one dimension gas (where L will serve instead
of V ), we know that the energy levels are given by the
quantum mechanical formula

εi =
i2h̄2π2

2mL2

Since the energy levels are themselves functions of the
volume (here length, L), it is apparent that when one
substitutes these energy levels into the partition function
that one generates a function of T and L (or V , if you
will):

Z =
∑
i

e−β
i2h̄2π2

2mL2

Further, as all elementary treatments show (vide ante),
this partition function leads to the average thermal en-
ergy being E = (1/2)NkBT (i.e., assigning β = 1/T ),
where, had we done the derivation in three dimensions,
we would have had (3/2)NkBT . This, of course, is a
triumph of the statistical mechanical theory.

A. Temperature Identification

It may be worthwhile to remind the reader that the
approximate evaluation of the partition function in this
case results in the identification of β with 1/kBT , i.e.
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Z =
∑
i

e−β
i2h̄2π2

2mL2 =
∑
i

e−β
i2h̄2π2

2mL2 (i+ 1− i) =
∑
i

e−β
i2h̄2π2

2mL2 (∆i)

which, in standard calculus fashion, substituting an area
for an integral when passing to the limit the ∆i→ 0, we
have

Z ≈
∫
e−β

i2h̄2π2

2mL2 di

which is a Gauss integral, eminently evaluable. From the
(now) known expression for Z one obtains an expression
for Z, and then G and then p, such that, recasting pL

nR
one associates β with temperature.

V. RE-INTERPRETING THE FIRST LAW OF
THERMODYNAMICS

From thermodynamics, we had

dE = dq + dw

and from statistical thermodynamics we now have

E =
∑
i

n⊗i εi

and we see that there are two ways to change the en-
ergy in this last expression, changing the energy levels
themselves, or changing the occupation numbers. Thus

dE =
∑
i

{
dn⊗i εi

}
+
∑
i

{
n⊗i dεi

}
The first term corresponds to reversible heat (dq), and
the second term corresponds to reversible work (dw). It
is little short of amazing that the extension of these ideas
to irreversible processes results in the First Law,

dE = dq + dw

in exact correspondence with the reversible case. This
miracle was noted nicely by Batino [2].

What a spectacular clarification. Keeping systems in
their individual energy levels but allowing those levels to
shift corresponds to external work of some kind. Keeping
the energy levels fixed and shifting the populations of
those energy levels corresponds to heating (or cooling).

Adiabatic processes correspond to processes in which
the populations are maintained constant and equilibrium
adiabatic (reversible) processes are those in which the
equilibrium populations {n⊗i } are maintained constant.

Heat addition (or subtraction) results in population
changes, while work (either performing it or having it
performed on the system) results in changes in the energy
levels themselves.

VI. INTERPRETING ENTROPY

The equation

S = kB`nWmax

forms the basis for our molecular (as opposed to ther-
modynamic) understanding of entropy [3]. If we are at
an equilibrium state, and the exterior conditions change
so that we end up at another equilibrium state, then the
value of S guides us in understanding whether or not this
process was spontaneous. Increasing entropy (associated
with spontaneity) means that the number of states over
which the systems are to be distributed has increased.
The end state is more probable than the beginning state,
when the probability is defined as the number of ways the
systems can be distributed amongst their microstates in
the two cases, before and after.

Consider a particle in a one-dimensional box of length
`1 (this was L above). Fix the number of particles, fix
the total energy, and distribute the particles amongst
the energy levels consistent with that fixed (total) en-
ergy. Consider that there’s a most probable distribution
of particles amongst energy levels.

OK!
Now, allow `1 to become `2, with `2 > `1. This corre-

sponds to an expansion. Let’s allow the change to occur
with no flow of heat in or out of the system, i.e., adi-
abatic. Since this in an ideal gas, we know from the
first law that the total energy does not change. dq = 0,
dE = 0 and

∫
dE = 0. No work has been performed or

obtained from the system, therefore when equilibrium is
established after this free expansion, the particles have
to be redistributed amongst the new set of energy levels
(the number of particles has not changed!).

The energy levels have dropped, since `2 is in the de-
nominator of the expression for the energy levels in the
final situation.

There are more ways, now, of distributing the particles
amongst the (new) energy levels than there were before.

There has been an increase in entropy! We’ve gone
from one equilibrium state to another. But that makes
no difference for ∆S.

VII. SUMMARY, SO FAR

This overview of the why and wherefore of relating
classical thermodynamics to modern statistical thermo-
dynamics (and an underlying quantum mechanics) is sim-
plistic in some ways, since it, in essence, assumes the
ideal gas state for every system. Thus, the real challenge
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is not understanding this interrelationship between sim-
ple concepts in the several disciplines, but understanding
instead the nature of the grotesque assumptions being
made, which need to be undone before applying this work
to “reality”.

Consider the linkage between quantum mechanics and
statistical mechanics. Is the only use of this linkage pos-
sible when the Hamiltonian is a sum of uncoupled, in-
dividual Hamiltonians, implying a separation of energy
terms using sums? If the assumption is not made that
atoms interact independently in a system, say a system
of Helium atoms, then the true Hamiltonian of the sys-
tem consists of the Hamiltonian for all the nuclei and all
the electrons. Since we can not, and most likely never
will be able to, solve this enormous problem, it is usual
practice that we solve the two problems separately, first
say, solve the problem of the electronic energy levels of
Helium’s electrons and second the quantum mechanics
(or statistical mechanics) of the interaction of two, three,
four, etc., Helium atoms, attempting to infer a scheme
which allows us to bypass continuing these computations
ad nauseum but instead, allows us to shift our attention
from the Schrödinger equation to the partition function.
Of course, breaking up the system into discrete atoms
means we may have to invent three-body, four-body, etc.,
interaction terms, an artifice induced because the decom-
position is false (but useful).

VIII. THE THERMODYNAMICS EXAMPLE
WHICH SHOWS THE PASSAGE TO

EQUILIBRIUM

The passage to equilibrium from arbitrary starting
points is a “central mystery” of elementary chemistry.
A previous discussion (J. Chem. Ed., 65,407(1988),
there is a typo in this paper) amplified, using a differ-
ent example, to cement understanding can be found at
http://digitalcommons.uconn.edu/chem educ/51.

IX. CONCLUSIONS

So, there you have it. We’ve shown the relationship
between quantum mechanics, statistical thermodynam-
ics and classical thermodynamics, and offered a classi-
cal thermodynamic argument why chemical equilibrium
comes about under the postulate that the Gibbs free en-
ergy seeks a minimum at constant T and p; changing the
extent of reaction allows the Gibbs free energy to change
under these constraints so that one can find the minimum
Gibbs free energy.

One can only hope that these arguments help in moti-
vating our desire to master all of these topics.

[1] Note that if we multiple and divide NkB by NAvogadro

we obtain the molecular form nR, where n is the num-
ber of moles and R is the familiar molar gas constant
NkBNAvogadro

NAvogadro
= nR since N

NAvogadro
= n.

[2] R. Batino, J. Chem. Ed., 84, 753 (2007).

[3] There is so much written about entropy that can be mis-
leading to students, that I refer the reader to Frank L.
Lambert, J. Chem. Phys. 76, 1385 (1999) for an excellent
statement about how to understand this concept
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