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1sA − 1sB overlap computation

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: February 26, 2009)

I. SYNOPSIS

The calculation of overlap between adjacent orbitals
(not on the same center) requires a slight facility with
calculus which is quite instructive. That calculation is
presented here.

II. INTRODUCTION

Avoiding the blind use of Maple and/or Mathematica
is important for many who need to know that they have
sufficient learning to ascertain the validity and veracity of
symbolic calculus programs before committing to their
usage in real problems whose size renders them daunting
in a paper and pencil environment.

Here, we consider the integral∫
all space

dτ ψ∗1sA
ψ1sB

where ψ1sA
means a 1s orbital located (centered) on nu-

cleus A, and another similar orbital centered on nucleus
B.

The text book form

ψ1s = e−r

for hydrogen atoms doesn’t suffice once we deal with
more than one center, as in the case of a diatomic
molecule of hydrogen (H2), as an example. Thus we
must confront the two (or more) center molecular or-
bitals, whether constructed form atomic orbitals or not,
and search how how to actually do the calculus we need
to do in order to perform quantum chemical calculations.

III. IN CARTESIAN COÖRDINATES

Traditionally, diatomic molecules have been treated in
a vertical arrangement, with one nucleus located on the
+z axis and the other on the −z axis (the reason being
that the molecule has symmetry then about the z axis,
and in the transition from Cartesian to Cylindrical Polar
coördinates it is the z axis which is chosen as the cylinder
axis). Thus, nucleus “A” is usually located at z = R/2
while nucleus “B” is located at z − R/2. Using R/2 as
the displacement allows us to use R as the internuclear
distance.

FIG. 1: The traditional orientation of a diatomic molecule.

So, we make the transition to “proper” coördinates [1]
in stages, starting with

ψ1sA
= e−rA

and

ψ1sB
= e−rB

With these choices, which are obvious, we have for the
LCAO

ψLCAO−MO = cAe
−rA + cBe

−rB

and, for clarity in this presentation, we let the constants
be equal to each other and equal to one, i.e.,

cA = cB = 1

so that

ψLCAO−MO = e−rA + e−rB

Now, by elementary geometric considerations we have

rA =
√
x2 + y2 + (z −R/2)2
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and

rB =
√
x2 + y2 + (z +R/2)2

so, substituting, we obtain

ψLCAO−MO = e−
√
x2+y2+(z−R/2)2 + e−

√
x2+y2+(z+R/2)2

which means that out LCAO-MO is a function of x, y,
and z as it should be.

The overlap calculation we’ve been asked to do (at the
outset) is related to normalizing this wave function, since
of the three integrals required in the normalization, one
of them is the overlap integral:∫
all space

dxdydz
(
e−
√
x2+y2+(z−R/2)2e−

√
x2+y2+(z+R/2)2

)

where we have explicitly converted to Cartesian
coördinates in both the integrand and the differential vol-
ume element (dτ = dxdydz). We note in passing that
since these wave functions are real, we’ve dropped the
complex conjugates.

Now all the expertize we have from 2 years of calculus
will not help us do this integral by brute force. Re-writing
it:

∫ ∞
∞

dx

(∫ ∞
∞

dy

{∫ ∞
∞

dz
(
e−
√
x2+y2+(z−R/2)2e−

√
x2+y2+(z+R/2)2

)})

we see that we can not write this as the product of in-
dependent integrals over dx, dy and dz. The variables
are hopelessly intermixed, and unsusceptible to simplifi-
cation!

Ah, what to do?

IV. SWITCH TO ELLIPTICAL COÖRDINATES

In several separate pieces addressing H+
2 wave func-

tions, I’ve addressed the question [2]. of elliptical
coördinates. These consist of a three coördinates, λ, µ,
and ϕ. The latter corresponds to the polar angle in both
cylindrical coördinates and spherical polar coördinates.
The first two, which lie in the (to be replaced) x − y
plane, correspond to ellipses and hyperbolas

λ =
rA + rB

R

and

µ =
rA − rB

R

These definitions, which happen to be based on the same
radii as are used in this two nucleus problem, can be
inverted to

rA =
R

2
(λ+ µ)

with the concomitant definition

rB =
R

2
(λ− µ)

This last form is perfect for allowing us to re-write the
integrals and wave functions!

We write

ψ1sA
= e−

R
2 (λ+µ)

while

ψ1sB
= e−

R
2 (λ−µ)

so ∫
all space

dτ ψ∗1sA
ψ1sB

=
∫
dτe−

R
2 (λ+µ)e−

R
2 (λ−µ)

The µ’s cancel in the exponentials, and the two λ terms
add together, i.e.,∫

dτe−
R
2 (λe−

R
2 λ)e−

R
2 µe−

R
2 (−µ)

so ∫
dτe−

R
2 (2λ)

�
��

e−
R
2 µ����
e−

R
2 (−µ)

The only question left is, what is dτ? In Cartesian
coördinates, we know it’s dxdydz while is spherical po-
lar coördinates it’s r2 sinϑ cosϕdrdϑdϕ but in elliptical
coördinates it’s R2

8 dϕ
(
λ2 − µ2

)
dλdµ. Finally, the limits

ϕ = 0 → 2π, λ = 1 → ∞, and µ = −1 → +1. Knowing
this, the rest is elementary.

V. MAPLE

In the following Maple code, the actual wave functions
have included a variational parameter α in the exponents,
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to allow optimization (another topic not covered here).
Further, dτ has been evaluated (as derived in the Ellipti-
cal Coördinate paper cited earlier). Other than that, the
rest is straightforward.

And by the way, Maple really isn’t required for such
trivial integrals.

Parenthetically, its interesting to note that the overlap,
often written SAB , is truly a function of R, as can be seen
explicitly in the Maple result (last line of output).

VI. MAPLE CODE
> #1s1soverlap.mws 1s orbitals in var11
> assume (alpha > 0,R>0);
> SAB := (Pi*(R^3)/4)*(lambda^2-mu^2)*
> exp(-alpha*R*lambda);
> SAB1 := int(SAB,mu);
> SAB11 := subs(mu=1,SAB1);
> SABm1 := subs(mu=-1,SAB1);
> SAB1direct := collect(expand(SAB11 -
SABm1),exp(-alpha*R*lambda));
> SAB1 := int(SAB,mu=-1..1);
> SAB2 := int(SAB1,lambda=1..infinity);

SAB :=
1
4
πR˜3 (λ2 − µ2) e(−α˜R˜λ)

SAB1 :=
1
4
πR˜3 e(−α˜R˜λ) (λ2 µ− 1

3
µ3)

SAB11 :=
1
4
πR˜3 e(−α˜R˜λ) (λ2 − 1

3
)

SABm1 :=
1
4
πR˜3 e(−α˜R˜λ) (−λ2 +

1
3

)

SAB1direct :=
1
2
πR˜3 λ2

e(α˜R˜λ)
− 1

6
πR˜3

e(α˜R˜λ)

SAB1 :=
1
6
πR˜3 (3λ2 − 1) e(−α˜R˜λ)

SAB2 :=
(
1
3
α˜2 R˜2 + α˜ R˜ + 1)π e(−α˜R˜)

α˜3

It is worth noting that the explicit R dependence of
what is commonly called SAB , i.e., the last Maple ex-
pression (above) has been demonstrated.

[1] We need to be clear here that there are going to be only 3
coördinates, and the nuclei have to be located in terms
of these three coördinates and, at the same time, the
electron’s position. There will be three “numbers”, three
triples,(0, 0, R/2), (0, 0,−R/2) and (xe, ye, ze) where the

first two are for the two nuclei and the third is for the
electron.

[2] C. W. David, http://digitalcommons.uconn.edu/chem educ/5
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