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Ehrenfest’s Theorem

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: January 22, 2008)

I. SYNOPSIS

The idea that quantum mechanics “becomes” classical
mechanics in the limit h → 0 (and in the limit c → ∞,
but that’s not treated here) is discussed using Ehrenfest’s
theorem.

II. THE MOMENTUM OPERATOR px
op = −ıh̄ ∂

∂x

How is it possible that a wave function can in some
way imitate Newton’s Second Law?

We start with a definition of momentum.
Assuming the Schrödinger Equation:

Hψ = ıh̄
∂ψ

∂t

and

Hψ∗ = −ıh̄∂ψ
∗

∂t

where H, the Hamiltonian, has the form (for a one-
dimensional particle subject to a potential function
V (x)),

− h̄2

2m
∂2

∂x2
+ V (x)

i.e., we are dealing with a conservative one dimensional
system, then

d < x >

dt
=
∫
dψ∗

dt
xψdx+

∫
ψ∗x

dψ

dt
dx

which becomes
d < x >

dt
=
∫
− 1
ıh̄
Hψ∗xψdx+

∫
ψ∗x

1
ıh̄
Hψdx

d < x >

dt
=
∫
− 1
ıh̄

{(
− h̄2

2m
∂2

∂x2
+ V (x)

)
ψ∗
}
xψdx+∫

ψ∗x
1
ıh̄

{(
− h̄2

2m
∂2

∂x2
+ V (x)

)
ψ

}
dx

The integrals containing V cancel using the Hermitian
property of V over ψ. We are left with

d < x >

dt
=
∫
− 1
ıh̄

{(
− h̄2

2m
∂2

∂x2

)
ψ∗
}
xψdx+∫

ψ∗x
1
ıh̄

{(
− h̄2

2m
∂2

∂x2

)
ψ

}
dx

which is

ıh̄
2m
h̄2

d < x >

dt
=
∫ {(

∂2ψ∗

∂x2

)
xψ

}
dx−∫ {

ψ∗x

(
∂2ψ

∂x2

)}
dx

each of which can be integrated twice by parts, yielding
for the first term

ıh̄
2m
h̄2

d < x >

dt
=
∫ {(

∂ ∂ψ
∗

∂x

∂x

)
xψ

}
dx−∫ {

ψ∗x

(
∂2ψ

∂x2

)}
dx

where we define u as xψ and dv as

dv =
∂ ∂ψ

∗

∂x

∂x
dx = d

(
∂ψ∗

∂x

)
so that v = ∂ψ∗

∂x .
We integrate by parts, obtaining

=
∂ψ∗

∂x
xψ

∣∣∣∣∞
−∞
−
∫ ∞

−∞

∂ψ∗

∂x

∂(xψ)
∂x

dx−
∫ ∞

−∞

{
ψ∗x

(
∂2ψ

∂x2

)}
dx

but the non integral parts of the above vanish, since the
wave functions are required to have zero slope at plus
and minus infinity.

= −
∫ ∞

−∞

∂ψ∗

∂x

∂(xψ)
∂x

dx−
∫ ∞

−∞

{
ψ∗x

(
∂2ψ

∂x2

)}
dx

We integrate again by parts, with ∂ψ∗

∂x dx as dv, and
∂(xψ)
∂x as u, and obtain

− −ψ∗ ∂(xψ)
∂x

∣∣∣∣∞
−∞

+
∫ ∞

−∞
ψ∗
∂2(xψ)
∂x2

dx

so, again declaring the first term to be zero, we have

ıh̄
2m
h̄2

d < x >

dt
= +

∫ ∞

−∞
ψ∗
∂2(xψ)
∂x2

dx−
∫ ∞

−∞
ψ∗x

∂2(ψ)
∂x2

dx

which is

ıh̄
2m
h̄2

d < x >

dt
=
∫ ∞

−∞

∂
(
∂(xψ)
∂x − x∂ψ∂x + ∂ψ

∂x

)
∂x

dx
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or

ıh̄
2m
h̄2

d < x >

dt
=
∫ ∞

−∞

∂
(
∂(ψ)
∂x +�

��x∂ψ∂x −�
��x∂ψ∂x + ∂ψ

∂x

)
∂x

dx

which becomes

ı
2m
h̄

d < x >

dt
=
∫ ∞

−∞

∂
(
2∂(ψ)
∂x

)
∂x

dx = 2
∫ ∞

−∞
ψ∗
∂ψ

∂x
dx

which is

m
d < x >

dt
=
h̄

ı

∫ ∞

−∞
ψ∗
∂ψ

∂x
dx

m
d < x >

dt
=
∫ ∞

−∞
ψ∗
(
h̄

ı

∂

∂x

)
ψdx

or

m
d < x >

dt
=
∫ ∞

−∞
ψ∗
(
−ı h̄ ∂

∂x

)
ψdx

or, once again:

m
d < x >

dt
=
∫ ∞

−∞
ψ∗pxopψdx

which identifies the operator which we normally associate
with the linear momentum. So, Ehrenfest’s first theorem
recovers the operator definition of the linear momentum.

III. NEWTON’S SECOND LAW RECOVERED

Now we repeat the above computation, but instead
look at the time rate of change of momentum, looking to
recover Newton’s 2’nd Law. We have

d < p >

dt
= −ih̄

d
∫
ψ∗ ∂ψ∂x
dt

dx

which we are also going to integrate (by parts).
We have

− 1
ıh̄

d < p >

dt
=
∫
∂ψ∗

∂t

∂ψ

∂x
dx+

∫
ψ∗
d∂ψ∂x
dt

dx

which is

− 1
ıh̄

d < p >

dt
=
∫
∂ψ∗

∂t

∂ψ

∂x
dx+

∫
ψ∗
d∂ψ∂t
dx

dx

=
∫
∂ψ∗

∂t

∂ψ

∂x
dx+

1
ıh̄

∫
ψ∗
dHψ

dx
dx

or

− 1
ıh̄

d < p >

dt
=
∫
∂ψ∗

∂t

∂ψ

∂x
dx

+
1
ıh̄

∫
ψ∗
d
(
−h̄2

2µ
∂2ψ
∂x2 + V (x)

)
ψ

dx
dx

− 1
ıh̄

d < p >

dt
=
∫ (

1
−ıh̄

(
− h̄

2

2µ
∂2ψ∗

∂x2

+V ψ∗))
∂ψ

∂x
dx

+
1
ıh̄

∫
ψ∗
d
(
−h̄2

2µ
∂2ψ
∂x2 + V (x)

)
ψ

dx
dx

and again, when integrating by parts, the two terms re-
lated to the kinetic energy operator cancel. We are left
with

−d < p >

dt
=
(
−
∫
V ψ∗

∂ψ

∂x
dx+

∫
ψ∗
(
dV (x)ψ
dx

)
dx

)

d < p >

dt
= −

(
−
∫

(V ψ∗)
∂ψ

∂x
dx+∫ (

ψ∗
(
dV (x)
dx

ψ + V (x)
dψ

dx

)
dx

))

which is

d < p >

dt
= +

∫ (
ψ∗
(
dV (x)
dx

ψ

))
dx

Clearly, we have obtained something akin to Newton’s
second law.
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