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Understanding Molecular Orbitals; Sigma-Orbitals

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: April 18, 2007)

I. SYNOPSIS

Molecular Orbitals differ significantly from atomic or-
bitals. One of their major sources of confusion, at
least to diatomic molecular orbitals, is the nature of the
coördinate system employed. The drawings herein are
intended to help understand these orbitals.

II. INTRODUCTION

The standard coördinate system for treating diatomic
molecules places one nucleus (A) at (0,0,R/2) and the
other (B) at (0,0,-R/2), as has been discussed repeatedly
in these pages. If we attempt to build a molecular orbital
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FIG. 1: The Elliptical Coordinate System for Diatomic
Molecules. The µ coordinate is not depicted.

from hydrogenic 1s orbitals, by placing one on nucleus A
and the other on nucleus B then their form is no longer
the simple Cartesian form we’ve become accustomed to

using. Instead,

rA =
√
x2 + y2 + (z −R/2)2 (2.1)

rB =
√
x2 + y2 + (z +R/2)2 (2.2)

so, for a trial (sigma) LCAO-MO (an approximate wave
function, not an eigenfunction of the H+

2 system)

ψtrial σ =
(
cAe

−αrA + cBe
−αrB

)
(2.3)

We already know that for the homonuclear case the
coëfficients are equal, so we make them “one” for our
purposes here. We then have

ψσ =
(
e−αrA + e−αrB

)
(2.4)

which we are interested in representing. Before that,
however, let’s introduce the anti bonding orbital

ψσ∗ =
(
e−αrA − e−αrB

)
(2.5)

III. ONE DIMENSIONAL PLOTS (ALONG THE
z-AXIS)

We employ our (now) standard tricks for capturing the
essence of these functions, starting with one dimensional
plots of ψ1σ(0, 0, z) versus z. The σ orbital is shown in
Figure 2, while the σ∗ orbital is shown in Figure 3.

It is clear that the bonding orbital has maxima cen-
tered about the nucleii, while the anti bonding orbital
has a node, the x− y plane, where z = 0.

IV. PSEUDO 3D PLOTS

The σ orbital is shown in Figure 4, while the σ∗ orbital
is shown in Figure 5.

V. 3D CONTOUR PLOTS

The σ orbital is shown in Figure 6, while the σ∗ orbital
is shown in Figure 7.
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FIG. 2: The ψ1σ(0, 0, z) orbital, plotted against z
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FIG. 3: The ψ1σ∗(0, 0, z) orbital, plotted against z

VI. THE pσ ORBITALS

There is another orbital pair which are labeled σ, but
built from pz orbitals rather than s orbitals. Remember,
the bond axis is contained in the z-axis. That means that
pz orbitals are parallel to the bond axis (we expected
them to be at right angles to the bond, but those are the
px and py orbitals, which become πx and πy respectively).

To continue, we put one pz orbital on nucleus A and
the other on nucleus B. The wave function now becomes

ψp± =
((

z − R

2

)
e−αrA ±

(
z +

R

2

)
e−αrB

)
(6.1)

which reminds us that the orbitals are centered on two
different locations in physical space. When we plot this
we obtain Figure 8 as our first, linear plot. This is, of

(sigma) MO(x,y,0) versus y and z
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FIG. 4: The ψ1σ(0, y, z) orbital, plotted against y and z

(sigma) MO(x,y,0) versus y and z
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FIG. 5: The ψ1σ∗(0, y, z) orbital, plotted against y and z

course, ψp∗σ (0, 0, z versus z being plotted. Notice how
weird this is vide infra.

Next we plot the bonding orbital, which is better be-
haved. Figure 9 shows the symmetry of the bonding or-
bital. We return now to the anti-bonding orbital, and
show the contributors in colors so that the odd function
being plotted can be understood (see Figure 10). Finally,
we plot the contour (3D) map of this orbital, which shows
the weird, interdigitated, positive and negative lobes. We
note in passing that the Maple code for these last few
plots is not included in the text.
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FIG. 6: The contour surface of ψ1σ(x, y, z) orbital, plotted
against x, y and z

1 sigma^* MO ( +(blue) and -(red))
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FIG. 7: The contour surfaces of ψ1σ∗(0, 0, z) orbital, plotted
against x, y and z

VII. CONCLUSION

The rigid understanding of the functionality of the con-
tributing atomic orbitals to the resultant molecular or-
bital leads to a broad comprehension of what these or-
bitals “look” like.

VIII. MAPLE CODE

Here is the Maple code which generated the figures to
follow:

p sigma^*
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FIG. 8: The anti-bonding pσ orbital versus z
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FIG. 9: The bonding pσ orbital versus z

> #MO-hybrid-plot
> restart;
> with(plots);
> fsA := exp(-rA);
> fsB := exp(-rB);rA :=
sqrt(x^2+y^2+(z-R/2)^2);
> rB := sqrt(x^2+y^2+(z+R/2)^2);
> psi_plus := exp(-rA) + exp(-rB);
> psi_minus := exp(-rA) - exp(-rB);
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FIG. 10: The anti bonding pσ orbital versus z broken up into
its constituent parts to show where the odd shape comes from.
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FIG. 11: The anti bonding pσ orbital versus z broken up into
its constituent parts to show where the odd shape comes from.

Warning, the name changecoords has been redefined

[animate, animate3d , animatecurve, arrow , changecoords, complexplot , complexplot3d ,
conformal , conformal3d , contourplot , contourplot3d , coordplot , coordplot3d ,
cylinderplot , densityplot , display , display3d , fieldplot , fieldplot3d , gradplot ,
gradplot3d , graphplot3d , implicitplot , implicitplot3d , inequal , interactive,
listcontplot , listcontplot3d , listdensityplot , listplot , listplot3d , loglogplot , logplot ,
matrixplot , odeplot , pareto, plotcompare, pointplot , pointplot3d , polarplot ,
polygonplot , polygonplot3d , polyhedra supported , polyhedraplot , replot ,
rootlocus, semilogplot , setoptions, setoptions3d , spacecurve, sparsematrixplot ,
sphereplot , surfdata, textplot , textplot3d , tubeplot ]

fsA := e(−rA)

fsB := e(−rB)

rA :=

√
4x2 + 4 y2 + 4 z2 − 4 z R+R2

2



rB :=

√
4x2 + 4 y2 + 4 z2 + 4 z R+R2

2

psi plus := e(−
√

4 x2+4 y2+4 z2−4 z R+R2
2 ) + e(−

√
4 x2+4 y2+4 z2+4 z R+R2

2 )

psi minus := e(−
√

4 x2+4 y2+4 z2−4 z R+R2
2 ) − e(−

√
4 x2+4 y2+4 z2+4 z R+R2

2 )

> #note, un-normalized orbitals in use!
> lim := 8;
> plot(subs(R=8,x=0,y=0,psi_plus),z=-lim..lim,labels=[‘z‘,‘psi(z)‘],titl
> e=‘1 sigma‘);
> plot(subs(R=8,x=0,y=0,psi_minus),z=-lim..lim,labels=[‘z‘,‘psi(z)‘],tit
> le=‘1 sigma^*‘);
> plot3d(subs(R=8,x=0,psi_plus),y=-lim..lim,z=-lim..lim,axes=BOXED,label
> s=[‘y‘,‘z‘,‘psi‘],title=‘(sigma) MO(x,y,0) versus y and z‘);
> plot3d(subs(R=8,x=0,psi_minus),y=-lim..lim,z=-lim..lim,axes=BOXED,labe
> ls=[‘y‘,‘z‘,‘psi‘],title=‘(sigma) MO(x,y,0) versus y and z‘);
> implicitplot3d(subs(R=8,psi_plus)=0.006,x=-lim..lim,y=-lim..lim,z=-li
> m..lim,axes=BOXED,labels=[‘x‘,‘y‘,‘z‘],color=blue,title=‘1 sigma MO (
> + = blue) ‘);
> f1 :=
> implicitplot3d(subs(R=8,psi_minus)=-0.006,x=-lim..lim,y=-lim..lim,z=-l
> im..lim,axes=BOXED,labels=[‘x‘,‘y‘,‘z‘],color=red):
> f2 :=
> implicitplot3d(subs(R=8,psi_minus)=0.006,x=-lim..lim,y=-lim..lim,z=-li
> m..lim,axes=BOXED,labels=[‘x‘,‘y‘,‘z‘],color=blue):
> display(f1,f2,title=‘1 sigma^* MO ( +(blue) and -(red))‘);
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