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LCAO-MO’s are not Eigenfunctions of the H+
2 Hamiltonian

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: April 18, 2007)

I. SYNOPSIS

A simple LCAO-MO for H+
2 is tested for eigenfunc-

tionality against the correct Hamiltonian for the prob-
lem, and found to be wanting. This is done in Cartesian
coördinates and in Elliptical coördinates. This is a re-
working of an earlier article, C. W. David, J. Chem. Ed.,
59, 288 (1982)

II. INTRODUCTION

The standard coördinate system for diatomic molecules
has the two nucleii on the z axis, one (say A) at +R/2 and
the other (say B) at -R/2 (so that the internuclear dis-
tance is R) (see Figure 1). Although this system is used
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FIG. 1: The Standard Elliptical Coördinate System for Di-
atomic Molecules

in studying H2, we here start with H+
2 , the one elec-

tron problem, which is, of course, significantly simpler
than H2 [1]. Even here, in this simplest of all diatomic
“molecules”, the simplest LCAO-MO fails as an exact
wave function for this system!

Remember that

rA =
√
x2 + y2 + (z −R/2)2

and

rB =
√
x2 + y2 + (z +R/2)2

so, for a trial LCAO-MO (an approximate wave function,
not an eigenfunction of the H+

2 system)

ψtrial =
(
cAe

−αrA + cBe
−αrB

)
=

cA1sA + cB1sB = ψLCAO = ψ1σ

(which is intentionally left in un-normalized form). No-
tice that we have approximated a 1σ (and, inadvertantly,
a 1σ∗ orbital in our example), although any combinata-
tion of two atomic orbitals, one centered on nucleus A
and the other centered on nucleus B, would be appropri-
ate. Of course, using orbitals higher than 1s would mean
considering excited electronic molecular states!

The Hamiltonian is (as shown operating on a wave
function Ansatz):

Hopψ(x, y, z) = − h̄2

2me
∇2ψ(x, y, z)− ZAe

2ψ(x, y, z)
rA

− ZBe
2ψ(x, y, z)
rB

(2.1)

where we will stipulate that ZA = ZB = 1 so that we are
truly dealing with the hydrogen molecular ion.

It is important to emphasize that the Schrödinger
Equation, when applied to an LCAO, does not yield a
proper ‘=’ sign, i.e., the LCAO is not an eigenfunction

of the Hamiltonian, and does not provide a true solution
to the Schrödinger Equation.

Typeset by REVTEX
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III. DOING OUR THING IN CARTESIAN
COÖRDINATES

To see this, one needs only substitute an LCAO into
the appropriate Schrödinger equation, i.e., the appropri-
ate Hamiltonian, and conclude that the equal sign does
not hold!

Since

rA =
√
x2 + y2 + (z −R/2)2

and

rB =
√
x2 + y2 + (z +R/2)2

and given an LCAO, say a π approximation, specifically,
a π∗x LCAO, one would have

ψ = xe−αrA − xe−αrB

i.e.,

ψ = pA
x − pB

x

(had we used an intervening plus sign above we would
have been treating a πx rather than an anti-bonding π∗x
orbital).

Rathen than proceed with a computation using the π∗
orbital, which is quite messy we here change back to a
simple σ orbital. We assume that

ψtrial = e−αrA + e−αrB (3.1)

Using brute force we can obtain the effect of the Hamil-
tonian on this trial wave function.

We need to first obtain some useful partial derivatives,
i.e.

∂(rA)
∂x

=
∂(
√
x2 + y2 + (z −R/2)2)

∂x
=

∂((x2 + y2 + (z −R/2)2)1/2)
∂x

=
(

1
2

)(
2x

(x2 + y2 + (z −R/2)2)1/2

)
so

∂(rA)
∂x

=
x

(x2 + y2 + (z −R/2)2)1/2
=

x

rA
=
(
∂rA
∂x

)
y,z

and

∂(rA−1)
∂x

=
∂((x2 + y2 + (z −R/2)2)−1/2)

∂x
= −1

2
2x

(x2 + y2 + (z −R/2)2)3/2

i.e.,

∂(rA−1)
∂x

= − x

(x2 + y2 + (z −R/2)2)3/2
= − x

rA3
=

∂
(

1
rA

)
∂x


y,z

Next, we obtain

∂(rA−2)
∂x

=
∂((x2 + y2 + (z −R/2)2)−1)

∂x
= −1

2x
(x2 + y2 + (z −R/2)2)2

i.e.,

∂(rA−2)
∂x

= − 2x
(x2 + y2 + (z −R/2)2)2

= − 2x
rA4

=

∂
(

1
rA

2

)
∂x


y,z

and, finally,

∂(rA−3)
∂x

=
∂((x2 + y2 + (z −R/2)2)−3/2)

∂x
= −3/2

2x
(x2 + y2 + (z −R/2)2)5/2



3

i.e.,

∂(rA−3)
∂x

= −
3
2 (2x)

(x2 + y2 + (z −R/2)2)5/2
= − 3x

rA5
=

∂
(

1
rA

3

)
∂x


y,z

Derivative Result
of is

∂rA

∂x
x

rA(
∂
(

1
rA

)
∂x

)
y,z

− x
rA

3∂

(
1

rA
2

)
∂x


y,z

− 2x
rA

4∂

(
1

rA
3

)
∂x


y,z

− 3x
rA

5

Now, we have enough information to begin.

IV. ENDING PRELIMINARIES, THE ACTUAL
DERIVATION PROCEEDS NOW

We need to form the partial derivative of the LCAO
with respect to x (then y, and then z). We write out,

in excrutiating detail (so you can verify the steps one by
one without resorting to pencil and paper), the following:

∂ψtrial

∂x
=
(
∂e−αrA

∂x

)
+
(
∂e−αrB

∂x

)

which is

∂ψtrial

∂x
=
(
−α x

rA

)
e−αrA +

(
−α x

rB

)
e−αrB

and then

∂2ψ

∂x2
=

(
−α 1

rA
+ α

x2

rA3
+
(
−α x

rA

)2
)
e−αrA +

(
−α 1

rB
+ α

x2

rB3
+
(
−α x

rB

)2
)
e−αrB (4.1)

Then, continuing, we have

∂2ψ

∂y2
=

(
−α 1

rA
+ α

y2

rA3
+
(
−α y

rA

)2
)
e−αrA +

(
−α 1

rB
+ α

y2

rB3
+
(
−α y

rB

)2
)
e−αrB (4.2)

with a similar term for the partial with respect to z:

∂2ψ

∂z2
=

(
−α 1

rA
+ α

(z −R/2)2

rA3
+
(
−α (z −R/2)

rA

)2
)
e−αrA

+

(
−α 1

rB
+ α

(z +R/2)2

rB3
+
(
−α (z +R/2)

rB

)2
)
e−αrB (4.3)

We can now add these three (Equations 4.1, 4.2 and 4.3) together:

∇2ψ =
(
−α 3

rA
+ α

1
rA

+ α2

)
e−αrA

(
−α 3

rB
+ α

1
rB

+ α2

)
e−αrB (4.4)

i.e.,

∇2ψ =
(
−α 2

rA
+ α2

)
e−αrA

(
−α 2

rB
+ α2

)
e−αrB (4.5)
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so, in atomic units, we have

Hopψtrial(x, y, z) =

−1
2

{(
−α 2

rA
+ α2

)
cAe

−αrA

(
−α 2

rB
+ α2

)
cBe

−αrB

}
−ZAe

2 (cAe−αrA + cBe
−αrB )

rA
− ZBe

2 (cAe−αrA + cBe
−αrB )

rB
(4.6)

It is apparent that this wave function ψtrial, is not an
eigenfunction. Notice there is no way of “getting rid” of
the terms

−ZAe
2 (e−αrB )
rA

− ZBe
2 (cAe−αrA)
rB

i.e., there is no choice of α or any other adjustable con-
stant which can obliterate these terms. Since they do not
appear elsewhere, they languish, uncancelled, destroying
the “eigenfunctionality” of ψtrial. As a general state-
ment, LCAO’s are not eigenfunctions, even of one elec-
tron Hamiltonians. That means that invoking LCAO’s
is a priori approximating!

V. THE LCAO-MO IN ELLIPTICAL
COÖRDINATES

We start with a quick review.
If rA is the distance from nucleus A to a point P(x,y,z)

(where the electron is located, in H+
2 , presumably), and

rB is the distance from nucleus B to the same point(!),
then Elliptical Coordinates are defined as:

λ =
rA + rB

R

and

µ =
rA − rB

R

(where φ is the same as the coördinate used in Spherical
Polar Coordinates), which means that

rA =
R

2
(λ+ µ)

and

rB =
R

2
(λ− µ)

This also means that

rA =
√
x2 + y2 + (z −R/2)2

and

rB =
√
x2 + y2 + (z +R/2)2

We seek the transformation equations between (x,y,
and z) on the one hand and (λ, µ, φ) on the other. To
start, we write

r2A =
(
R

2

)2

(λ+ µ)2 = x2 + y2 + (z −R/2)2 = x2 + y2 + z2 − 2zR/2 +
(
R

2

)2

(5.1)

i.e.,

r2A = r2 − 2zR/2 +
(
R

2

)2

and

r2B =
(
R

2

)2

(λ− µ)2 = x2 + y2 + (z +R/2)2 = x2 + y2 + z2 + 2zR/2 +
(
R

2

)2

(5.2)

i.e.,

r2B = r2 + 2zR/2 +
(
R

2

)2



5

so that (adding Equations 5.1 and 5.2)

r2A + r2B = 2

(
x2 + y2 + z2 +

(
R

2

)2
)

= 2
(
λ2 + µ2

)(R
2

)2

= 2r2 + 2
(
R

2

)2

so

r2 =
(
λ2 + µ2

)(R
2

)2

−
(
R

2

)2

and

r2 =
(
R

2

)2 (
λ2 + µ2 − 1

)
(5.3)

A. the z-coördinate

We need the z-coördinate first, so, subtracting Equa-
tion 5.2 from Equation 5.1 instead of adding, we obtain

(z −R/2)2 − (z +R/2)2 =
R2

4
(
(λ+ µ)2 − (λ− µ)2

)
=
(
R

2

)2 (
λ2 + 2λµ+ µ2 − (λ2 − 2λµ+ µ2)

)

i.e.,

−4z
R

2
=
(
R

2

)2

(4λµ)

or

z = −Rλµ
2

(5.4)

This is our first transformation equation. To check that
this is correct, we examine the point (0,0,R) which would
have rA=R/2 and rB=3R/2 as shown in Figure 2 (r.h.s).

From Equation 5.4 we have

R = −R
2
λµ = −R

2
1
R

(R/2 + 3R/2)
1
R

(R/2− 3R/2)

which is

R = − 1
2R

(2R)(−R)

which, being a tautology, means that we were correct.

B. x and y coördinates

We return now to obtaining x and y in this new
coördinate system. Since, in spherical polar coördinates
one has

cos θ =
z

r

it follows that

sin2 θ = 1− cos2 θ = 1−
(z
r

)2

i.e,

r sin θ = r

√
1−

(z
r

)2

=
√
r2 − z2

Using Equation 5.4, we have

r sin θ =

√
r2 −

(
Rλµ

2

)2

and (using Equation 5.3)

r sin θ =

√(
R

2

)2

(λ2 + µ2 − 1)−
(
Rλµ

2

)2

i.e.,

r sin θ =
R

2

√
(λ2 + µ2 − 1− λ2µ2)

then

x = r sin θ cosφ

i.e.,

x =
R

2
cosφ

√
(λ2 − 1)(1− µ2)

and

y =
R

2
sinφ

√
(λ2 − 1)(1− µ2)
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B

(0,0,R/2) A

(0,0,−R/2)
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FIG. 2: The Elliptical Coordinate System for Diatomic
Molecules. The µ coördinate is not depicted. On the right
hand side, one sees the depiction of the point (0,0,R) which
would make rA=R/2 and rB=3R/2

VI. RE-CAPITULATION

For future reference, we collect the transformation
equations here:

λ = rA+rB

R x = R
2 cosφ

√
(λ2 − 1)(1− µ2)

µ = rA−rB

R y = R
2 sinφ

√
(λ2 − 1)(1− µ2)

φ = φ z = −Rλµ
2

VII. KINETIC ENERGY OPERATOR IN
ELLIPTICAL COÖRDINATES

Here we introduce the Laplacian in elliptical
coördinates [2]. (See
http://digitalcommons.uconn.edu/chem educ/5)

∇2 =
4

R2 (λ2 − µ2)


(
∂
(
(λ2 − 1) ∂

∂λ

)
∂λ

)∂
(
(1− µ2) ∂

∂µ

)
∂µ

+

∂
(

λ2−µ2

(λ2−1)(1−µ2)
∂

∂φ

)
∂φ


Equation 2.1 becomes,

− h̄2

2m

 4
R2 (λ2 − µ2)

(∂ ((λ2 − 1) ∂
∂λ

)
∂λ

)
+

∂
(
(1− µ2) ∂

∂µ

)
∂µ

ψ − ZAe
2

rA
ψ − ZBe

2

rB
ψ = Eψ

since there is not going to be any φ dependence in our
wave function, where

ψLCAO−MO = e−αrA + e−αrB

We put the protons arbitrarily at point A (0,0,R/2) and
B (0,0,-R/2). Since

rA =
R

2
(λ+ µ)

and

rB =
R

2
(λ− µ)

we know then that

ψLCAO−MO = e−α R
2 (λ+µ) + e−α R

2 (λ−µ)

Alternatively, we can write this as

ψLCAO−MO = e−α R
2 λ
(
e−α R

2 (µ) + e+α R
2 (µ)

)
= 2e−α R

2 λ cosh
(
R

2
µ

)
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Therefore we have

− h̄2

2m

 4
R2 (λ2 − µ2)

(e−α R
2 (+µ) + e−α R

2 (−µ)
)∂

(
(λ2 − 1)∂e−α R

2 λ

∂λ

)
∂λ

+

e−α R
2 λ


∂

(1− µ2)
∂

(
e−α R

2 (+µ)e−α R
2 (−µ)

)
∂µ


∂µ






−

(
ZAe

2

R
2 (λ+ µ)

+
ZBe

2

R
2 (λ− µ)

)(
e−α R

2 (λ+µ) + e−α R
2 (λ−µ)

)
= E

(
e−α R

2 (λ+µ) + e−α R
2 (λ−µ)

)
(7.1)

or, taking the first derivatives

− 4h̄2

2mR2 (λ2 − µ2)

(e−α R
2 (+µ) + e−α R

2 (−µ)
) ∂ ((λ2 − 1)

(
−αR

2

)
e−α R

2 (λ)
)

∂λ
+

(
e−α R

2 (−λ)
) ∂ ((1− µ2)

[(
−αR

2

)
e−α R

2 (µ) +
(
αR

2

)
eα R

2 (µ)
])

∂µ

+

−

(
ZAe

2

R
2 (λ+ µ)

+
ZBe

2

R
2 (λ− µ)

)(
e−α R

2 (λ+µ) + e−α R
2 (λ−µ)

)
= E

(
e−α R

2 (λ+µ) + e−α R
2 (λ−µ)

)
which we re-write prior to the next step as

− 4h̄2

2mR2 (λ2 − µ2)

(e−α R
2 (+µ) + e−α R

2 (−µ)
)(
−αR

2

) ∂
(
(λ2 − 1)e−α R

2 (λ)
)

∂λ
+

(
e−α R

2 (λ)
)(

α
R

2

) ∂
(
(1− µ2)

[
−e−α R

2 (µ) + eα R
2 (µ)

])
∂µ

+

−

(
ZAe

2

R
2 (λ+ µ)

+
ZBe

2

R
2 (λ− µ)

)(
e−α R

2 (λ+µ) + e−α R
2 (λ−µ)

)
= E

(
e−α R

2 (λ+µ) + e−α R
2 (λ−µ)

)
and, taking the second derivative:

− 4h̄2

2mR2 (λ2 − µ2)

((
e−α R

2 (+µ) + e−α R
2 (−µ)

){(
−αR

2

)(
2λ+ (λ2 − 1)

(
−αR

2

)}
e−α R

2 (λ)

)
+(

e−α R
2 (λ)

)(
α
R

2

)(
−2µ+ (1− µ2)

[
−
(
−αR

2

)
e−α R

2 (µ) +
(
α
R

2

)
eα R

2 (µ)

]))
+

−

(
ZAe

2

R
2 (λ+ µ)

+
ZBe

2

R
2 (λ− µ)

)(
e−α R

2 (λ+µ) + e−α R
2 (λ−µ)

)
= E

(
e−α R

2 (λ+µ) + e−α R
2 (λ−µ)

)
and re-arranging

− 4h̄2

2mR2 (λ2 − µ2)

{(
−αR

2

)(
2λ+ (λ2 − 1)

(
−αR

2

))
+(

α
R

2

)(
−2µ+ (1− µ2)

(
α
R

2

))}
+

−

(
ZAe

2

R
2 (λ+ µ)

+
ZBe

2

R
2 (λ− µ)

)
= E
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which becomes, upon artful simplification:

− 4h̄2

2mR2 (λ2 − µ2)

(
−αR

2

)(
2(λ− µ) + (λ2 − µ2)

(
−αR

2

))
−

(
ZAe

2

R
2 (λ+ µ)

+
ZBe

2

R
2 (λ− µ)

)
= E

Unless I’ve made a calculus mistake, something completely inside the realm of reason, there is no complete cancellation
here, and the wave function does not solve the differential equation.

VIII. DO THE H ATOM ALONE STARTING HERE

It is fun to check that the 1s orbital does work properly in the single nucleus case.

− h̄2

2m

 4
R2 (λ2 − µ2)

(e−α R
2 (+µ)

)∂
(

(λ2 − 1)∂e−α R
2 λ

∂λ

)
∂λ

+

e−α R
2 λ


∂

(1− µ2)
∂

(
e−α R

2 (+µ)
)

∂µ


∂µ






−

(
ZAe

2

R
2 (λ+ µ)

+
ZBe

2

R
2 (λ− µ)

)(
e−α R

2 (λ+µ)
)

= E
(
e−α R

2 (λ+µ)
)

(8.1)

which is, taking the first derivative

− h̄2

2m

 4
R2 (λ2 − µ2)

(e−α R
2 (+µ)

)∂
(
(λ2 − 1)

(
−αR

2

)
e−α R

2 λ
)

∂λ

+

e−α R
2 λ
∂
(
(1− µ2)

(
−αR

2

) (
e−α R

2 (+µ)
))

∂µ


−

(
ZAe

2

R
2 (λ+ µ)

+
ZBe

2

R
2 (λ− µ)

)(
e−α R

2 (λ+µ)
)

= E
(
e−α R

2 (λ+µ)
)

(8.2)

or, taking the partial derivative again

− h̄2

2m
4

R2 (λ2 − µ2)

[(
2λ+ (λ2 − 1)

(
−αR

2

))(
−αR

2

)
+
(
−2µ+ (1− µ2)

(
−αR

2

))(
−αR

2

)]
− Ze2

R
2 (λ+ µ)

= E

which becomes
αh̄2

mR (λ2 − µ2)

(
−αR

2

)[(
2λ+ (λ2 − 1)

(
−αR

2

))
+
(
−2µ+ (1− µ2)

(
−αR

2

))]
− Ze2

R
2 (λ+ µ)

= E

and rearranging terms once again

2
αh̄2

mR (����(λ− µ)(λ+ µ))�
���(λ− µ) +

αh̄2

mR ((λ− µ)(λ+ µ))
{
(λ2 − 1) + (1− µ2)

}(
−αR

2

)
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− Ze2

R
2 (λ+ µ)

= E

One sees that the term λ − µ cancels on the first term,
leaving something which can “cancel” the potential en-
ergy term if α is appropriately chosen, i.e.,

2
αh̄2

mR(λ+ µ)
− 2Ze2

R(λ+ µ)
+

αh̄2

mR ((λ− µ)(λ+ µ))
{
(λ2 − 1) + (1− µ2)

}(
−αR

2

)
= E

so that, combining terms, we have

2
(
αh̄2

mR
− Ze2

R

)(
1

λ+ µ

)
αh̄2

mR ((λ− µ)(λ+ µ))
{
(λ2 − 1) + (1− µ2)

}(
−αR

2

)
= E

i.e., choosing αh̄2

m = Ze2 i.e.,

α =
Ze2m

h̄2

makes the first term vanish, and

αh̄2

mR ((((((((
(λ− µ)(λ+ µ))

{
(((((((((
(λ2 − 1) + (1− µ2)

}(
−αR

2

)
= E

Recognizing the appropriate cancellation, we have

−αh̄
2

mR
α
R

2
= E

i.e.,

−α
2h̄2

2m
= E

and interpreting α from above, we obtain

−

(
Ze2m

h̄2

)2

h̄2

2m
= E

which cleans up to

−Z
2e4m

2h̄2 = E

a most famous, at this point, result.

[1] C. W. David, J. Chem. Ed., 59,288 (1982).
[2] Pauling and Wilson, “Introduction to Quantum Mechan-

ics”, McGraw Hill Book Co., page 444 calls them “Confo-
cal Elliptic Coordinates (Prolate Spheroid)”.

Margenau and Murphy, “The Mathematics of Physics and
Chemistry”, D. Van Nostrand Co., page 181 calls them
“Prolate Spheroidal Coordinates”. Take your pick.
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