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Legendre Polynomials, Dipole Moments, Generating Functions etc..

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: March 22, 2007)

I. SYNOPSIS

A standard treatment of aspects of Legendre Polyno-
mials is treated here. In addition, the dipole moment ex-
pansion in Legendre Polynomials is introduced. Finally,
the inter-electronic repulsive energy between electrons is
expanded in a Legendre Polynomial like series.

II. A GENERATING FUNCTION FOR
LEGENDRE POLYNOMIALS

The technically correct generating function for Legen-
dre polynomials is obtained using the equation

1√
1− 2xu + u2

=
∞∑
0

Pn(x)un (2.1)

We expand the denominator using the binomial theorem,

1
(1 + y)m

= 1−my+
m(m + 1)

2!
y2−m(m + 1)(m + 2)

3!
y3+· · ·

where m = 1
2 and the series converges when y < 1. Notice

that it is an alternating series. Identifying y = u2 − 2xu
we have

1
(1− 2xu + u2)

1
2

= 1− (
1
2
)(u2 − 2xu) +

( 1
2 )(( 1

2 ) + 1)
2!

(u2 − 2xu)2

−
( 1
2 )(( 1

2 ) + 1)(( 1
2 ) + 2)

3!
(u2 − 2xu)3 + · · ·

which we now re-arrange in powers of u (in the mode required by Equation 2.1), obtaining

1
(1− 2xu + u2)

1
2

= 1− u2

2
+ xu +

( 3
4 )
2!

(u4 − 4xu3 + 4x2u2)−

( 1
2 )( 3

2 )( 5
2 )

3!
(u2 − 2xu)3 + · · ·

which is, rearranging
1

(1− 2xu + u2)
1
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=
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2
+
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3!
(
u6 − 6xu5 + 12x2u4 − 16x3u3

)
+ · · ·

or, collecting terms in powers of u, we have
1

(1− 2xu + u2)
1
2

= (2.2)

1 + xu +
1
2

(
3x2 − 1

)
u2 +

(
−

( 3
4 )
2!
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u3
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(
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4 )
2!
−
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)
u4
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2 )( 5
2 )

3!
(−6xu5)−

( 1
2 )( 3

2 )( 5
2 )

3!
u6 + · · · (2.3)
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where the quadratic terms (in u, i.e. 3x2 − 1) is the fa-
miliar spherical harmonic associated with the dz2 orbital,
among other things.

III. AN ALTERNATIVE GENERATING
FUNCTION METHOD

Another method of introducing Legendre Polynomials
is through the inter electronic potential energy function
in Helium atom’s Hamiltonian. Since this method is very
important in Quantum Mechanical computations con-
cerning poly-electronic atoms and molecules, it is worth
our attention. When one considers the Hamiltonian of
the Helium Atom’s electrons (for example), one has

−Ze2

r1
− Ze2

r2
+

e2

r12
(3.1)

where r12 is the distance between electron 1 and elec-
tron 2, i.e., it is the electron-electron repulsion term. We
examine this term in this discussion. We can write this
electron-electron repulsion term as

1
r12

=
1√

r2
1 + r2

2 − 2r1r2 cos ϑ
(3.2)

where r1 and r2 are the distances from the nucleus to
electrons 1 and 2 respectively. ϑ is the angle between
the vectors from the nucleus to electron 1 and electron
2. It is required that we do this is two domains, one in
which r1 > r2 and one in which r2 > r1. This is done for
convergence reasons.

For the former case, we define

ζ =
r2

r1

so that ζ < 1, and Equation 3.2 becomes

1
r12

=
1
r1

1√
1 + ζ2 − 2ζ cos ϑ

(3.3)

which we now expand in a power series in cos ϑ (which
will converge while ζ < 1). We have

1
r1

1√
1 + ζ2 − 2ζ cos ϑ

= (3.4)

1
r1

1 +
1
1!

d

(
1√

1+ζ2−2ζ cos ϑ

)
d cos ϑ

∣∣∣∣∣∣∣∣
cos ϑ=0

cos ϑ +
1
2!

d2

(
1√

1+ζ2−2ζ cos ϑ

)
d cos ϑ2

∣∣∣∣∣∣∣∣
cos ϑ=0

cos2 ϑ + · · ·

 (3.5)

It is customary to change notation from cos ϑ to µ, so
1

r12
=

1
r1

1√
1 + ζ2 − 2ζµ

(3.6)

which we now expand in a power series in µ (which will converge while ζ < 1). We have

1
r1

1√
1 + ζ2 − 2ζµ

=
1
r1

1 +
1
1!

d

(
1√

1+ζ2−2ζµ

)
dµ

∣∣∣∣∣∣∣∣
µ=1

µ+

1
2!

d2

(
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1+ζ2−2ζµ

)
dµ2

∣∣∣∣∣∣∣∣
µ=1

µ2 + · · ·

 (3.7)

1
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1√
1 + ζ2 − 2ζµ

=

1
r1

1 +
1
1!
−1
2

(1 + ζ2 − 2ζµ)−
3
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µ=1

µ +
1
2!
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1+ζ2−2ζµ
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dµ2
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µ=1

µ2 + · · ·

 (3.8)
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which is

1
r1

1√
1 + ζ2 − 2ζµ

=
1
r1

(
1− 1

2
(1 + ζ2 − 2ζ)−

3
2 (−2ζ) µ +

1
2!

d
(
−1
2 (1 + ζ2 − 2ζµ)−

3
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dµ

∣∣∣∣∣∣
µ=1

µ2 + · · ·

 (3.9)

i.e.,

1
r1

1√
1 + ζ2 − 2ζµ

=
1
r1

(
1− 1

2
(1 + ζ2 − 2ζ)−

3
2 (−2ζ) µ +

1
2!

d
(
(1 + ζ2 − 2ζµ)−

3
2 (ζ)

)
dµ

∣∣∣∣∣∣
µ=1

µ2 + · · ·

 (3.10)

which is, after the second differentiation

1
r1

1√
1 + ζ2 − 2ζµ

=
1
r1

(
1− 1

2
(1 + ζ2 − 2ζ)−

3
2 (−2ζ) µ +

1
2!

(
−3

2
(1 + ζ2 − 2ζµ)−

5
2 (−2ζ)ζ

)∣∣∣∣
µ=1

µ2 + · · · (3.11)

Cleaning up, a bit, we have

1
r12

=
1
r1

(
1 +

(
(1 + ζ2 − 2ζ)−

3
2 ζ

)
µ +

1
2!

(
+2

3
2
(1 + ζ2 − 2ζ)−

5
2 ζ2

)
µ2 + · · ·

)
(3.12)

where we look forward to Equation 4.1, to see similarities.
Remember that we’ve only handled the case with ζ =
r1 > r2.

IV. THE EXPANSION OF A FINITE DIPOLE IN
LEGENDRE POLYNOMIALS

There is yet another way to see Legendre Polynomials
in action, through the expansion of the potential energy
of point dipoles. To start, we assume that we have a
dipole at the origin, with its positive charge (q) at (0,0,-
a/2) and its negative charge (-q) at (0,0,+a/2), so that

the “bond length” is “a”, and therefore the “dipole mo-
ment” is “q a”.

At some point P(x,y,z), located (also) at r,ϑ,φ, we have
that the potential energy due to these two point charges
is

U(x, y, z, a) =
−q√

x2 + y2 + (z − a/2)2
+

q√
x2 + y2 + (z + a/2)2

which is just Coulomb’s law.
If we expand this potential energy as a function of “a”,

the “bond distance”, we have

U(x, y, z, a) = U(x, y, z, 0) +
1
1!

dU

da

∣∣∣∣
a=0

a +
1
2!

d2U

da2

∣∣∣∣
a=0

a2 +
1
3!

d3U

da3

∣∣∣∣
a=0

a3 + · · ·

All we need do, now, is evaluate these derivatives. We have, for the first

1
1!

dU

da

∣∣∣∣
a=0

= q

(
−

[
−

(
1
2

)
2(z − a/2)(− 1

2 )

(x2 + y2 + (z − a/2)2))
3
2

]
+

[
−

(
1
2

)
2(z + a/2)( 1

2 )

(x2 + y2 + (z + a/2)2))
3
2

])

which is, in the limit a → 0,

q
(
− z

r3

) so, we have, so far,

U(x, y, z, a) = 0− qa
( z

r3

)
+ · · · = −qa

(
cos ϑ

r2

)
+ · · ·

(4.1)
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i.e., to the dipolar form.
For the second derivative, we take the derivative of the

first derivative:

1
2!

ddU
da

da

∣∣∣∣∣
a=0

= −q
1

2× 2!

d

([
(z−a/2)

(x2+y2+(z−a/2)2))
3
2

]
+

[
(z+a/2)

(x2+y2+(z+a/2)2))
3
2

])
da



which equals zero. The next term gives

q
cos ϑ

(
3− 5 cos2 ϑ

)
8r4

a3

and so it goes.

We note in passing that Maple addresses Legendre
polynomials using the “with(orthopoly)” command.
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