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The Three Body Problem and the Runge-Lenz Equivalent Constant of the Motion

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: March 14, 2007)

I. SYNOPSIS

The Runge-Lenz equivalent for the H+
2 (and the Earth,

Moon and Sun) problem is obtained

II. INTRODUCTION

The simplest three body problems of solar interest are
the Sun-Earth-Moon system, where the Moon is consid-
ered small relative to the Sun and the Earth, and the
Earth-Moon-rocket system (see M. C. Gutwiller, Rev.
Mod. Phys., 70, 589 (1998) for an up-to-date review of
this three body problem.) If we ignore the Sun, and con-
sider the Earth-Moon-rocket system, a three body sys-
tem, we begin to encounter (even ignoring the Sun) ex-
traordinary difficulties which makes analysis so difficult
as to border on the impossible. Certainly, we will not
achieve such clean and aesthetic results as we did with
the two body Kepler problem.

Three things are moving in this system, the Earth,
the Moon, and the rocket. In order of mass, the Earth
is the most massive, followed by the Moon and trailed
(distantly) by the rocket. The effect of the rocket on
either the Earth or the Moon is negligible and we will
ignore it. Thus, concentrating on the rocket, we will
argue that the rocket travels in the field of forces set up
by the Moon and the Earth. It therefore might make
sense to place our coordinate system on the center of
gravity of the Earth-Moon system (ignoring the rocket)
and we will temporarily do this now. Technically, we are
not on the center of gravity of the entire system!

We recognize that the entire system, Earth, Moon, and
rocket, might be tumbling ”about the center of gravity”
and to be able to concentrate on what interests us, let us
arbitrarily agree to place the Moon on the +z axis, and
the Earth on the -z axis of our system, treating the Earth
Moon system as a non-rigid two body rotor. From our
perspective ”on the center of gravity”, the Earth and the
Moon are sometimes approaching us, sometimes fleeing
from us, i.e., oscillating in some strange way against each
other. For very short rocket flights, it might be of interest
to study the rocket assuming the Earth-Moon distance
was fixed. This implies that the rocket moves very much
faster than the Earth or the Moon.

Now the Moon is at a place on the +z axis, and the
Earth is at another place on the -z axis, and the rocket is
located at x,y,z in the same coordinate system. For the
purposes of our discussion, the Earth and Moon positions

are fixed. Now substitute for Earth, nucleus B, and for
the Moon substitute nucleus A, and for the rocket let’s
substitute an electron. The forces which were gravita-
tional are now Coulombic, but by an irony of nature, the
form of these forces is retained. Thus, gravitational or
Coulombic, it makes no difference at our level of treat-
ment.

The situation is shown in Figure 1.
Let the charge on nucleus A be called ZAe, where ZA

is the atomic number of nucleus A and e is the magnitude
of the elementary electron charge. The charge on nucleus
B will then be ZBe, while the charge on the electron will
be -e.

If ZA = ZB then we are talking about a homonuclear
diatomic, while when ZA 6= ZB we are talking about a
heteronuclear diatomic. For the homonuclear case, when
ZA = ZB = 1 we are talking about H2

+ the prototypi-
cal 1-electron chemical bonding situtation. H+

2 and H2

(neutral) are the kernel problems which shape our think-
ing about the chemical bond!

Interstellar interest in H+
2 continues unabated even if

chemists tend to ignore it. A hydrogen molecule (H2(g))
can be ionized by cosmic radiation to form H+

2 which
then can collide with another hydrogen molecule to cause
the reaction

H+
2 + H2 → H+

3 + H

This H+
3 is very reactive, and can transfer a proton to a

wandering oxygen atom, giving

H+
3 + O → OH+ + H2

Next, the OH+ ion can steal a H atom from H2 to give

OH+ + H2 → H2O
+ + H

and so it goes (Physics World, October 1996, page 39).
Because the internuclear distance in diatomics is a

measureable, we prefer to couch our discussion in terms
of that variable, so we define the positions of the two
nuclei to be +R/2 and -R/2 on the z axis, as shown in
Figure 2.

This means that we abandon the center of gravity con-
cept entirely now. In this final coordinate system, we will
study the motion of the electron in the field of the two
fixed nuclei. This is truly a restricted three body prob-
lem, isn’t it? We abandon the idea of using the center of
mass and writing the total energy in terms of the mass
motion
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and terms in vibration, rotation, etc., in the center of
mass system.

It is very convenient to introduce two distance which
appear relevant. These are called rA and rB the distances
from the electron to nucleus A and B respectively.

From this drawing, it is clear that the magnitude of
these two distances are

rA =

√
x2 + y2 +

(
z − R

2

)2

; rB =

√
x2 + y2 +

(
z +

R

2

)2

(2.1)
(using the Pythagorous Theorem) and we see that the
forces on the electron due to the nuclei lie in these two
directions (see Figure 3).

These forces are

~FA = −ZAe2 (~r − ~R/2)
rA

3

~FB = −ZBe2 (~r + ~R/2)
rB

3

where ~R/2 points directly at nucleus A. If you check the
units, you will see this is inverse square, just hidden under
flowers.

How wonderful it would have been if, relative to the
Kepler problem, the problem under study here reduced to
two nuclei at the two foci of the ellipse, with the path still
elliptical. Where before we had the Sun (nucleus) at the
focus of an ellipse, it would have been pleasing to just
stick the other nucleus at the other focus and preserve
the orbit. Such is not to be. In fact, we can not, even
under the super restrictive conditions used here, write
down the formula for the path of the electron (classical)
as a function of either time, or angle. We are at the end
of the analytical mathematical road (for us).

Why? The easiest way to see what is wrong is to ask, is
the angular momentum of the electron (rocket) constant?
That is, what is the time derivative of ~L?

d~L

dt
=

d[~r × ~p]
dt

= ~r × ~F

which equals

d~L

dt
= ~r×(−ZAe2(~r−~R/2)/r3

A)+~r×(−ZBe2(~r+~R/2)/r3
B)

(2.2)
since ~F = ~FA + ~FB . Looking at the numerator of the
first term in this expression we have

~r × (~r − ~R/2) =

∣∣∣∣∣∣
î ĵ k̂
x y z
x y

(
z − R

2

)
∣∣∣∣∣∣

which can be expanded to be:

= î

(
y

(
z − R

2

)
− yz) + ĵ(xz − x

(
z − R

2

))
+k̂(xy−yx)

which equals

= î

(
−y

R

2

)
+ ĵ

(
+x

R

2

)
+ zero k̂ (2.3)

We get a similar expression for the other (the plus) term,
i.e.,

~r × (~r + ~R/2) = î

(
y
R

2

)
+ ĵ

(
−x

R

2

)
(2.4)

Therefore, for the time derivative of ~L (substituting
Equations 2.3 and 2.4 into Equation 2.2 )we obtain

d~L

dt
= −(ZAe2/r3

A)
[
î

(
−y

R

2

)
+ ĵ

(
x

R

2

)]
− ZBe2

r3
B

[
î

(
y
R

2

)
+ ĵ

(
−x

R

2

)]

Written in components we have

d~L

dt
= e2

(
îy

[
ZA

r3
A

− ZB

r3
B

]
+ ĵx

[
−ZA

r3
A

+
ZB

r3
B

])

which is, sob, sob, not zero! ~L is not a constant of the
motion.

III. ONE CONSTANT OF THE MOTION FOR
ANGULAR MOMENTUM

Only the z component (the component in the k̂ direc-
tion) of the time derivative of ~L vanishes, and therefore,
only the component of ~L along the k̂ direction is constant
in time. Where before we had three constants in ~L (in
the Kepler problem), here we have only one constant, the
z-component of ~L, called usually Lz . The fact that ~L is
not constant does not mean however that there are only
two constants of the motion for this problem, E and Lz.
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In fact, there is another (H. A. Erikson and E. L. Hill,
Phys. Rev., 75,29(1949)). To find it, we begin by defin-
ing the angular momentum as measured about nucleus
A (and later we will do the same about nucleus B). If
we are sitting on nucleus A, and we wished to define the
angular momentum, referring to shows how to define ~LA

e.g.,

~LA ≡ ~rA × ~p

where ~rA is the vector from nucleus A to the electron.
Similarly, we have

~LB = ~rB ⊗ ~p

~rA +
~R

2
= ~r ; ~rB −

~R

2
= ~r

In components (comparing to Equation 2.1), this means
that

~rA = xî + yĵ +
(

z − R

2

)
k̂

~rB = xî + yĵ +
(

z +
R

2

)
k̂

If we restrict ourselves to motion in the y-z plane (set
x=0, and since the forces then would have no x compo-
nent, and hence no x-acceleration, x would remain zero!)
the problem at hand simplifies a bit. Now we can expand
the two defined angular momemta into components. We
obtain:

~rA ⊗ ~p = ~LA =

∣∣∣∣∣∣
î ĵ k̂
0 y (z − R

2 )
0 py pz

∣∣∣∣∣∣
which means that there is only an î component of this
angular momentum, i.e.,

~LA = î

[
ypz −

(
z − R

2

)
py

]
and, analogously,

~LB = î

[
ypz −

(
z +

R

2

)
py

]

Notice that, rearranging, we have

~LA = î

(
~Lx +

R

2
py

)
(3.1)

~LB = î

(
~Lx −

R

2
py

)
(3.2)

and that ~LA and ~LB (as defined) only have components
in the x direction, and that these components are them-
selves related to Lx , the component of angular momen-
tum for the electon when measured from the origin itself.

The constant of the motion we seek is related to ~LA ·
~LB , where

~LA · ~LB = L2
x −

(
R

2

)2

p2
y

where we have explicitly used Equations 3.1and 3.2.
What is the time behaviour of ~LA ·~LB? To answer this

question we take the time derivative, i.e.,

d (LA · LB)
dt

= 2Lx
dLx

dt︸ ︷︷ ︸
1

− 2
(

R

2

)2

py
dpy

dt︸ ︷︷ ︸
2

(3.3)

Both of these terms admit of simple substitutions. Take
the first term (1 above). Starting with

dLx

dt
=

d[ypz − zpy]
dt

=
dy

dt
pz + y

dpz

dt
− dz

dt
py − z

dpy

dt

we obtain

dLx

dt
= py

pz

m
+ yṗz − pz

py

m
− zṗy = yFz − zFy (3.4)

where Fz and Fy are the z and y components of the force
on the electron. But that force was

~F = ~FA + ~FB = −ZAe2 (~r − ~R/2)
rA

3
− ZBe2 (~r + ~R/2)

rB
3

Since the term in Ze2 will appear frequently, we will sub-
stitute Q for it. Then, from Equation 3.4 we have

dLx

dt
= yFz − zFy = y

[
−QA

(z − R
2 )

rA
3

−QB

(R
2 + z)
rB

3

]
− z

[
−QA

y

rA
3
−QB

y

rB
3

]
This means that, returning to term 1 in Equation 3.3,

Lx
dLx

dt
= (ypz − zpy)

(
−y

[
−QA

(z − R
2 )

rA
3

−QB

(z + R
2 )

rB
3

]
− z

[
−QA

y

rA
3
−QB

y

rB
3

])
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The last two terms cancel the leading parts of the first two terms, leading to

Lx
dLx

dt
= Lx

R

2
y

[
QA

r3
A

− QB

rB
3

]
Since Equation 3.3 is only partially addressed so far, we have (after adding the second (term 2) force)

d~LA · ~LB

dt
= 2Lx

R

2
y

[
QA

r3
A

− QB

rB
3

]
− 2

(
R

2

)2

py

[
−QA

y

rA
3
−QB

y

rB
3

]

which becomes

= 2Lx
R

2
y

[
QA

rA
3
− QB

rB
3

]
−2
(

R

2

)2

py

[
−QA

y

rK
3
−QB

y

rB
3

]

= 2Lx
R

2
y

[
QA

rA
3
− QB

rB
3

]
−2
(

R

2

)2

py

[
−QA

y

rA
3
−QB

y

rB
3

]
(3.5)

You were hoping for more? Nature isn’t kind.

IV. CONTINUING

We now investigate a special vector pair defined
through special vectors:

~R
2 · ~rA

rA
;

~R
2 · ~rB

rB

We ask what are the time derivatives of these two spe-
cial vectors? Taking the time derivatives explicitly we
have

d
[

~R
2 ·

~rA

rA

]
dt

=
~R

2
·
d

[
~r− ~R

2
rA

]
dt

(4.1)

where

(~r − ~R
2 )

rA
=

(0̂i + yĵ + (z − R
2 )k̂)√

(02 + y2 + (z − R
2 )2)

(remember, ~R points in the z-direction here, we restricted
the motion to the y-z plane, remember?) so that

d
[

~R
2 ·

~rA

rA

]
dt

=
~R

2
·
(

0̇
rA

+
ẏ

rA
+

ż

rA

)
+

[
~R

2
·
(

yĵ +
(

z − R

2

)
k̂

)]
d
{
rA
−1
}

dt

so

R

2
pz

mrA
+

~R

2
· (yĵ + (z − R

2
)k̂)

d
[
y2 + (z − R

2 )2
]−1/2

dt

Since ~R is parallel to k̂ (i.e., ~R
2 = R

2 k̂ and pz = mż and,

finally, ~R · ˆ̇j = 0), we obtain

=
R

2
pz

mrA
+

R

2

(
z − R

2

) d
[
y2 +

(
z − R

2

)2]−1/2

dt

=
R

2
pz

mrA
+

R

2

(
z − R

2

)−1
2

(
y2 +

(
z − R

2

)2
)−3/2

 2
(

yẏ +
(

z − R

2

)
ż

)

=
R

2
pz

mrA
− R

2

(
z − R

2

) (
yẏ +

(
z − R

2

)
ż
)

r3
A



5

=
R

2
pz

mrA
− R

2

(
z − R

2

) (
ypy + (z − R

2 )pz

)
mrA

3
(4.2)

We obtain a similar result for B, i.e.,

d[ ~R
2 ·

~rB

r ]
dt

=
R
2 pz

mrB
− R

2

(
z +

R

2

)(
ypy +

(
z + R

2

)
pz

mrB
3

)

Now the ”fun” begins.

R
2 pz

mrA
=

R
2 rA

2pz

mrA
3

having multiplied top and bottom by the same item
(p2/r2).

R
2 pz

mrA
=

R
2 (02 + y2 + (z − R

2 )2)pz

mrA
3

(4.3)

(in the y-z plane, i.e. x=0) we have substituting, into
Equation 4.1 and using Equations 4.2 and 4.3,

d[ ~R
2 ·

~rA

rA
]

dt
=

R

2
y2pz

mrA
3

+
R

2
(z − R

2 )2pz

mrA
3

−

R

2
y(z − R

2 )py

mrA
3

− R

2
(z − R

2 )2pz

mrA
3

so

d
[

~R
2 ·

~rA

rA

]
dt

=
R

2
y
(
ypz − (z − R

2 )py

)
mrA

3

d
[

~R
2 ·

~rA

rA

]
dt

=
R

2
yLx

mrA
3

+
(

R

2

)2
ypy

mrA
3

Notice the similarity to the ”A” terms in the expression
for the time derivative of ~LA · ~LB (Equation 3.5) which
was

d[ ~LA · ~LB ]
dt

= 2Lx
R

2
y

[
QA

rA
3︸ ︷︷ ︸ −

QB

rB
3

]
− 2

(
R

2

)2

py

[
−QA

y

rA
3︸ ︷︷ ︸ −QB

y

r3
B

]

We conclude that

1
2

d[ ~LA · ~LB ]
dt

−

[
QA

m

d[ ~R
2 · ~rA/rA]

dt

]
−

[
QB

m

d[ ~R
2 · ~rB/rB ]

dt

]
= 0

so that

d
(

~LA · ~LB − QA

m [~R · ~rA

rA
]− QB

m [~R · ~rB

rB
]
)

dt
= 0

Therefore

~LA · ~LB −
QA

m

[
~R · ~rA

rA

]
− QB

m

[
~R · ~rB

rB

]

(where Qi = Zie
2) is a constant of the motion. QED
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x

y

z

sun

earth

moon

FIG. 1: The Sun-Earth-Moon the Earth-Moon-Rocket and
the A-B-electron systems in the coordinate system in which
the z-axis connects the two heavy bodies. The two heavy
particles are located on the z-axis at +R/2 and -R/2.
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x

y

z

(0,0,R/2)

(0,0,−R/2)

proton

proton

electron

FIG. 2: The coordinate system for H+
2



8

z−
R

/2

z+
R

/2
x

y

z

(0,0,R/2)

(0,0,−R/2)

electron
r A

r
B

proton A

proton B

FIG. 3: The coordinate system for H+
2 . The two important

distances rA and rB are shown explicitly.
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B

(0,0,R/2)A

(0,0,−R/2)

λ,µ,φ)p(x,y,z)<−>p(
r A

r B

φ

x

z

y

FIG. 4: The coordinate system for H+
2 . rA and rB in terms

of the differing z coordinate are shown. Also, the forces are
shown explicitly as a red and a blue vector (attractive).
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