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Guessing Solutions to the H-atom Schrödinger Equation

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060

(Dated: February 28, 2007)

I. SYNOPSIS

Introducing Quantum Chemical methods requires an
understanding of what it means to be an eigenfunction of
the Hamiltonian. This reading addresses the question for
the ground state (among others) of the H-atom’s electron,
in three coördinate systems, Cartesian, Spherical Polar,
and Elliptical.

II. THE SCHRÖDINGER EQUATION

For this one electron problem, the Schrödinger Equa-
tion has the form

− h̄2

2m
∇2ψ − Ze2

r
ψ = Eψ (2.1)

where m is the mass of an electron. We are going to guess
solutions to this equation and develop some understand-
ing of how it works.

III. A 1S ORBITAL

We start with

ψguess 1 = e−αr = e−α
√
x2+y2+z2

where α is a “to be determined” constant.

IV. CARTESIAN COÖRDINATE APPROACH

We re-write Equation 2.1 in its Cartesian manifesta-
tion:

− h̄2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
− Ze2√

x2 + y2 + z2
ψ = Eψ

(4.1)
so that we can “plug” ψguess 1 into Equation 4.1 and see
what happens. We obtain:

∂ψguess 1

∂x
=
∂e−α

√
x2+y2+z2

∂x
= −

α(2)x
(

1
2

)√
x2 + y2 + z2

e−α
√
x2+y2+z2

for the first derivative and taking another partial deriva-
tive of this result we obtain

∂2ψguess 1

∂x2
=
−α x√

x2+y2+z2
e−α
√
x2+y2+z2

∂x
= − α√

x2 + y2 + z2
e−α
√
x2+y2+z2

+
α2x2(√

x2 + y2 + z2
)2 e

−α
√
x2+y2+z2

+α
x2

(x2 + y2 + z2)3/2
e−α
√
x2+y2+z2 (4.2)

Now there will be two identical terms as this when we
do the y- and z- second partials, with the exception that

the second term will have a y2 and a z2 term instead of
a x2 term, so that adding them together we have:
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∂2ψguess 1

∂x2
+
∂2ψguess 1

∂y2
+
∂2ψguess 1

∂z2
=(

−3
α

r
+ α2

(
x2 + y2 + z2

)
r

+ α

(
x2 + y2 + z2

)
r3

)
e−α
√
x2+y2+z2 (4.3)

That was easy, wasn’t it?
We re-write this as

∂2ψguess 1

∂x2
+
∂2ψguess 1

∂y2
+
∂2ψguess 1

∂z2
=
(
−3

α

r
+
α

r
+ α2

)
e−αr

which is

∂2ψguess 1

∂x2
+
∂2ψguess 1

∂y2
+
∂2ψguess 1

∂z2
=
(
−2

α

r
+ α2

)
e−αr

so, returning to our starting Equation 2.1:

− h̄2

2m

(
∂2ψguess 1

∂x2
+
∂2ψguess 1

∂y2
+
∂2ψguess 1

∂z2

)
−Ze

2

r
ψguess 1

= − h̄2

2m

(
−2

α

r
+ α2

)
e−αr − Ze2

r
e−αr (4.4)

which becomes(
− h̄2

2m

(
−2

α

r
+ α2

)
− Ze2

r

)
e−αr

which allows a choice of α which, serendipitously, offers
great clarity of understanding! We have(

h̄2

2m
2
α

r
− h̄2

2m
α2 − Ze2

r

)
e−αr (4.5)

The choice (the right one) is

h̄2α

m
− Ze2 = 0

which cleans up Equation 4.5 if we choose α to be

α =
Ze2m

h̄2

Then the surviving term, α2, must be related to E!

− h̄2

2m
α2 = E

or

− h̄2

2m

(
Ze2m

h̄2

)2

= E

i.e.,

E = −Z
2e4m

2h̄2

which is the correct Bohr value for n=1! Further,

ψ1s = e−
Ze2

h̄2 r

V. SPHERICAL POLAR COÖRDINATE
APPROACH

The Schrödinger Equation in spherical polar
coördinates is

− h̄2

2m

(
1
r2
∂r2 ∂ψ∂r
∂r

+
1

r2 sin2 ϑ

[
sinϑ

∂ sinϑ∂ψ∂ϑ
∂ϑ

+
∂2ψ

∂φ2

])
− Ze2

r
ψ = Eψ (5.1)

which means that substituting ψguess1 into it is no more
than an exercise in partial differentiation.

We see immediately that ψguess1 does not depend on
ϑ or φ, so the Schrödinger Equation simplifies to

− h̄2

2m

(
1
r2
∂r2

∂ψguess1
∂r

∂r

)
+
Ze2

r
ψguess1 = Eψguess1

(5.2)
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which is, after one partial differentiation

− h̄2

2m

(
1
r2
∂(−αψguess1)

∂r

)
+
Ze2

r
ψguess1 = Eψguess1

(5.3)

After the second differentiation, one has

− h̄2

2m

(
1
r2

(r2α2ψguess1 − rαψguess1)
)

+
Ze2

r
ψguess1 = Eψguess1 (5.4)

so that, expanding, we have

− h̄2

2m

(
α2ψguess1

−α
r
ψguess1)

)
+
Ze2

r
ψguess1 = Eψguess1

(5.5)
Clearly, the 1/r terms can be forced to cancel by appro-
priate choice of α.

We have

h̄α

m
+ Ze2 = 0

which is an equation for α. Solving it yields

α = −Ze
2m

h̄

which means that the energy now becomes

E = − h̄
2

2
Z2e4m

h̄2

which is, of course, the infamous correct answer and the
one we got before).

VI. A P-ORBITAL

The 2px orbital is so called because of its special form
which is

ψ2px
= xe−βr

where the initial x can be changed to “y” to form a 2py
orbital, and of course the z-change is obvious!

We choose a 2px orbital as a next example as it il-
lustrates all aspects which will be encountered by other,
more complicated orbitals. We have

ψguess2 = re−βr sinϑ cosφ

where the β will not be the same as α.

Substituting into Equation 5.1 we have

− h̄2

2m

(
1
r2
∂r2 ∂re

−βr sinϑ cosφ
∂r

∂r

+
1

r2 sin2 ϑ

[
sinϑ

∂ sinϑ∂re
−βr sinϑ cosφ

∂ϑ

∂ϑ
+
∂2re−βr sinϑ cosφ

∂φ2

])
− Ze2

r
ψ = Eψ (6.1)

Recognizing that differential with respect to ‘r’ ignores ϑ and φ, and vice versa we have

− h̄2

2m

(
sinϑ cosφ

1
r2
∂r2 ∂

∂r

∂r

−e−βr 1
r2 sin2 ϑ

[
sinϑ

∂ sinϑ∂ sinϑ cosφ
∂ϑ

∂ϑ
+
∂2 sinϑ cosφ

∂φ2

])
− Ze2

r
ψ = Eψ (6.2)

Since the same thing applies when one differentiates with respect to either ϑ or φ, we “finally” have

− h̄2

2m

(
sinϑ cosφ

r2
∂r2 ∂e

−βr

∂r

∂r



4

+
re−βr

r2 sin2 ϑ
cosφ

[
sinϑ

∂ sinϑ∂ sinϑ
∂ϑ

∂ϑ
+ sinϑ

∂2 cosφ
∂φ2

])
− Ze2

r
ψ = Eψ (6.3)

which becomes

− h̄2

2m

(
sinϑ cosφ

r2
∂r2

(
e−βr − βre−βr

)
∂r

+
re−βr

r sinϑ
cosφ

[
sinϑ

∂ sinϑ cosϑ
∂ϑ

− sinϑ cosφ
])
− Ze2

r
ψ = Eψ (6.4)

and then becomes

− h̄2

2m

(
sinϑ cosφ

r2
∂
(
r2e−βr − βr3e−βr

)
∂r

+
re−βr

r2 sin2 ϑ
cosφ

[
sinϑ

(
cos2 ϑ− sin2 ϑ

)
− sinϑ cosφ

])
+
Ze2

r
ψ = Eψ (6.5)

which becomes

− h̄2

2m

(
sinϑ cosφ

r2
(
2re−βr − βr2e−βr − 2βr2e−βr + β2r3e−βr

)
+

re−βr

r2 sin2 ϑ
cosφ

[
sinϑ

(
cos2 ϑ− sin2 ϑ

)
− cosϑ cosφ

])
− Ze2

r
ψ = Eψ (6.6)

which becomes

− h̄2

2m

(
1
r2
(
2− βr − 2βr + β2r2

)
+
r2 sin2 ϑ

[(
cos2 ϑ− sin2 ϑ

)
− sinϑ cosϑ cosφ

])
− Ze2

r
= E (6.7)

− h̄2

2m

(
sinϑ cosφ

r2
(
2re−βr − 3βr2e−βr + β2r3e−βr

)
+

re−βr

r2 sin2 ϑ
cosφ

[
sinϑ

(
cos2 ϑ− sin2 ϑ

)
− cosϑ cosφ

])
− Ze2

r
ψ = Eψ (6.8)

VII. 2S ORBITAL

We start with the assumption that the wave function
for the 2s state has the form

ψtrial = (1 + αr)e−βr

where α and β are to be determined.

The Schrödinger Equation for the s-states of Hydrogen
is

− h̄2

2me

 1
r2

∂
(
r2∂ψtrial

∂r

)
∂r

− Ze2ψtrial
r

= Eψtrial

and then it is

− h̄2

2me

(
2(α− β(1 + αr))

r
− βα+ β(α− β(1 + α))

)
e−βr − Ze2(1 + αr)e−βr

r
= E(1 + αr)e−βr

Assuming that the exponential is eventually going to can- cel, provided all goes well, cross multiplying by − 2me

h̄2 ,
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and collecting the terms multiplying 1/r, we have

2α
r
− 2β(1 + αr)

r
+

2r
r

+
2meZe

2

h̄2

(
1 + αr

r

)
= 0

which we re-write as

2α(1− βr)
r

− 2β(1 + αr)
r

− 2meZe
2

h̄4

(
1 + α

r

)
= 0

which works if α = −β, so that

4α(1 + αr)
r

+
2meZe

2

h̄2

(
1 + αr

r

)
= 0

which implies that

α = −meZe
2

2h̄2

so that

β =
meZe

2

2h̄2

so that finally,

2meE

h̄2 = −β2 =
m2
eZ

2e4

22h̄4

so that, solving for E we obtain (the hoped for)

E = −meZ
2e4

2h̄222
= En=2

isn’t that something?

VIII. ELLIPTICAL COÖRDINATE EXAMPLE
FOR H+

2 PRECURSOR

If rA is the distance from nucleus A to a point P(x,y,z)
(where the electron is located, in H+

2 , presumably), and

rB is the distance from nucleus B to the same point(!),
then Elliptical Coordinates are defined as:

λ =
rA + rB

R

and

µ =
rA − rB

R

(where φ is the same as the coordinate used in Spherical
Polar Coordinates), which means that

rA =
R

2
(λ+ µ)

and

rB =
R

2
(λ− µ)

This also means that

rA =
√
x2 + y2 + (z −R/2)2

and

rB =
√
x2 + y2 + (z +R/2)2

We seek the transformation equations between (x,y,
and z) on the one hand and (λ, µ, φ) on the other. To
start, we write

r2A =
(
R

2

)2

(λ+ µ)2 = x2 + y2 + (z −R/2)2 = x2 + y2 + z2 − 2zR/2 +
(
R

2

)2

(8.1)

i.e.,

r2A = r2 − 2zR/2 +
(
R

2

)2

and

r2B =
(
R

2

)2

(λ−µ)2 = x2+y2+(z+R/2)2 = x2+y2+z2+2zR/2+
(
R

2

)2

(8.2)

i.e.,

r2B = r2 + 2zR/2 +
(
R

2

)2

so that (adding Equations 8.1 and 8.2)
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r2A + r2B = 2

(
x2 + y2 + z2 +

(
R

2

)2
)

= 2
(
λ2 + µ2

)(R
2

)2

= 2r2 + 2
(
R

2

)2

so

r2 =
(
λ2 + µ2

)(R
2

)2

−
(
R

2

)2

and

r2 =
(
R

2

)2 (
λ2 + µ2 − 1

)
(8.3)

We need the z-coordinate first, so, subtracting Equa-
tion 8.2 from Equation 8.1 instead of adding, we obtain

(z −R/2)2 − (z +R/2)2 =
R2

4
(
(λ+ µ)2 − (λ− µ)2

)
=
(
R

2

)2 (
λ2 + 2λµ+ µ2 − (λ2 − 2λµ+ µ2)

)

i.e.,

−4z
R

2
=
(
R

2

)2

(4λµ)

or

z = −Rλµ
2

(8.4)

This is our first transformation equation. To check that
this is correct, we examine the point (0,0,R) which would
have rA=R/2 and rB=3R/2 as shown in the diagram.
From Equation 8.4 we have

R = −R
2
λµ = −R

2
1
R

(R/2 + 3R/2)
1
R

(R/2− 3R/2)

which is

R = − 1
2R

(2R)(−R)

We return now to obtaining x and y in this new coor-
dinate system. Since, in spherical polar coordinates one
has

cos θ =
z

r

it follows that

sin2 θ = 1− cos2 θ = 1−
(z
r

)2

i.e,

r sin θ = r

√
1−

(z
r

)2

=
√
r2 − z2

Using Equation 8.4, we have

r sin θ =

√
r2 −

(
Rλµ

2

)2

and (using Equation 8.3)

r sin θ =

√(
R

2

)2

(λ2 + µ2 − 1)−
(
Rλµ

2

)2

i.e.,

r sin θ =
R

2

√
(λ2 + µ2 − 1− λ2µ2)

then

x = r sin θ cosφ

i.e.,

x =
R

2
cosφ

√
(λ2 − 1)(1− µ2)

and

y =
R

2
sinφ

√
(λ2 − 1)(1− µ2)

IX. RE-CAPITULATION

For future reference, we collect the transformation
equations here:

λ = rA+rB

R x = R
2 cosφ

√
(λ2 − 1)(1− µ2)

µ = rA−rB

R y = R
2 sinφ

√
(λ2 − 1)(1− µ2)

φ = φ z = −Rλµ
2



7

X. KINETIC ENERGY OPERATOR IN
ELLIPTICAL COÖRDINATES

Here we introduce the Laplacian
in elliptical coordinates [1]. (See
http://digitalcommons.uconn.edu/chem educ/5)

∇2 =
4

R2 (λ2 − µ2)

{(
∂
(
(λ2 − 1) ∂

∂λ

)
∂λ

)
+

∂
(
(1− µ2) ∂

∂µ

)
∂µ

+

∂
(

λ2−µ2

(λ2−1)(1−µ2)
∂
∂φ

)
∂φ



Equation 2.1 becomes,

− h̄2

2m

 4
R2 (λ2 − µ2)

(∂ ((λ2 − 1) ∂
∂λ

)
∂λ

)
+

∂
(
(1− µ2) ∂

∂µ

)
∂µ

ψ − Ze2

r
ψ = Eψ

since there is not going to be any φ dependence in our
wave function, where

ψguess 1 = e−αr

We put the proton arbitrarily at point A (0,0,R/2), leav-
ing point B empty until we consider H+

2 . Since

rA =
R

2
(λ+ µ)

we know then that

ψguess 1 = e−αr = e−α
R
2 (λ+µ)

Therefore we have

− h̄2

2m

 4
R2 (λ2 − µ2)


∂

(
(λ2 − 1)∂e

−α R
2 (λ+µ)

∂λ

)
∂λ

+

∂
(

(1− µ2)∂e
−α R

2 (λ+µ)

∂µ

)
∂µ



− Ze2

r
ψ = Ee−α

R
2 (λ+µ)

or, taking the first derivatives

− 4h̄2

2mR2 (λ2 − µ2)

(
∂
(
(λ2 − 1)

(
−αR2

))
e−α

R
2 (λ+µ)

∂λ
+
∂
(
(1− µ2)

(
−αR2

))
e−α

R
2 (λ+µ)

∂µ

)

−Ze
2

r
ψ = Ee−α

R
2 (λ+µ)

and, taking the second derivative:

− 4h̄2

2mR2 (λ2 − µ2)

[(
2λ+ (λ2 − 1)

(
−αR

2

))(
−αR

2

)
+
(
−2µ+ (1− µ2)

(
−αR

2

))(
−αR

2

)]
e−α

R
2 (λ+µ)

−Ze
2

r
ψ = Ee−α

R
2 (λ+µ)

and re-arranging(
α
R

2

)
4h̄2

2mR2 (λ2 − µ2)

[(
2λ+ (λ2 − 1)

(
−αR

2

))
+
(
−2µ+ (1− µ2)

(
−αR

2

))]
e−α

R
2 (λ+µ)

−Ze
2

r
ψ = Ee−α

R
2 (λ+µ)

or

αh̄2

mR (λ2 − µ2)

[(
2λ+ (λ2 − 1)

(
−αR

2

))
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+
(
−2µ+ (1− µ2)

(
−αR

2

))]
− Ze2

R
2 (λ+ µ)

= E

which becomes

αh̄2

mR ((λ− µ)(λ+ µ))

[
2λ+ (λ2 − 1)

(
−αR

2

)
− 2µ+ (1− µ2)

(
−αR

2

)]
− Ze2

R
2 (λ+ µ)

= E

or, rearranging

αh̄2

mR ((λ− µ)(λ+ µ))

[
2(λ− µ) +

{
(λ2 − 1) + (1− µ2)

}(
−αR

2

)]
− Ze2

R
2 (λ+ µ)

= E

and rearranging terms once again

2
αh̄2

mR (����(λ− µ)(λ+ µ))�
���(λ− µ) +

αh̄2

mR ((λ− µ)(λ+ µ))
{
(λ2 − 1) + (1− µ2)

}(
−αR

2

)
− Ze2

R
2 (λ+ µ)

= E

One sees that the term λ − µ cancels on the first term,
leaving something which can “cancel” the potential en-
ergy term if α is appropriately chosen, i.e.,

2
αh̄2

mR(λ+ µ)
− 2Ze2

R(λ+ µ)
+

αh̄2

mR ((λ− µ)(λ+ µ))
{
(λ2 − 1) + (1− µ2)

}(
−αR

2

)
= E

so that, combining terms, we have

2
(
αh̄2

mR
− Ze2

R

)(
1

λ+ µ

)
αh̄2

mR ((λ− µ)(λ+ µ))
{
(λ2 − 1) + (1− µ2)

}(
−αR

2

)
= E

i.e., choosing αh̄2

m = Ze2 i.e.,

α =
Ze2m

h̄2

makes the first term vanish, and

αh̄2

mR ((((((((
(λ− µ)(λ+ µ))

{
(((((((((
(λ2 − 1) + (1− µ2)

}(
−αR

2

)
= E

Recognizing the appropriate cancellation, we have

−αh̄
2

mR
α
R

2
= E

i.e.,

−α
2h̄2

2m
= E

and interpreting α from above, we obtain

−

(
Ze2m
h̄2

)2

h̄2

2m
= E

which cleans up to

−Z
2e4m

2h̄2 = E

a most famous, at this point, result.
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B

(0,0,R/2) A

(0,0,−R/2)

φ

A

(0,0,−R/2)

λ,µ,φ)p(x,y,z)<−>p(
r A

r B

φ

(0,0,R/2)

p(0,0,R)

x

y

z

x

z

y

FIG. 1: The Elliptical Coordinate System for Diatomic
Molecules. The µ coordinate is not depicted. On the right
hand side, one sees the depiction of the point (0,0,R) which
would make rA=R/2 and rB=3R/2

[1] Pauling and Wilson, “Introduction to Quantum Mechan-
ics”, McGraw Hill Book Co., page 444 calls them “Confo-
cal Elliptic Coordinates (Prolate Spheroid)”.
Margenau and Murphy, “The Mathematics of Physics and

Chemistry”, D. Van Nostrand Co., page 181 calls them
“Prolate Spheroidal Coordinates”. Take your pick.
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